LukinLukin Kostyantyn Oleksandrovych
The Head of the Department
Doctor of physics and mathematics science, Professor,
IEEE Fellow
Tel. (+ 38-057)7634-349; +38 050 3232756
E-mail: lukin.konstantin@gmail.com

Subjects

R&D works in the LNDES Department #17 have been carried out in the following areas:

  • Dynamic chaos in microwave resonators with non-integrated boundaries and/or nonlinear reflecting surfaces
  • Chaotic and regular dynamics of charge carriers in semiconductor multilayer structures with impact ionization (avalanche multiplication of charges)
  • New current instabilities in reverse-biased multilayer semiconductor structures for generation of periodic and random oscillations in the microwave and terahertz frequency ranges
  • Digital generation and coherent processing of random signals in real time. Development of FPGA-based signal processors for Noise Radar Sensors and microwave “video cameras”
  • New antennas with pattern synthesis
  • Noise Radar Systems
  • SAR tomography; radiometric imaging using on Ground Noise SAR hardware
  • Development of methods and systems for forming and processing SAR images
  • Optical noise reflectometers based on LED sources of random optical radiation and spectral interferometry methods for measuring micro- and nano-distances
  • New methods of wireless vehicle communication, e.g. communication between cars on autobahns
  • Microwave and THz vacuum electronics
  • New methods in quantum theory and modeling of “Quantum Radars”
  • New methods in modern relativistic theory

Scientific results

The main results of the Department for all time

In the Laboratory for Nonlinear Dynamics of Electronic Systems (LNDES) – Department #17, on the initiative by Prof. K.O. Lukin, the Head of the Department #17, more than a dozen directions of scientific research were formed and successfully developed during the entire existence of the unit. The intensity of research in these directions directly depends on the priorities set by the National Academy of Sciences of Ukraine (NASU), the availability of funding through international projects, grants, contracts and other types of scientific and technical cooperation and other circumstances.

During the period of 2017-2023, under the leadership of K.O. Lukin, Department #17 carried out two State Research Projects: “New methods for generating chaotic and random signals of the microwave, terahertz and optical ranges of electromagnetic waves, methods and techniques for their emission and reception for the purpose of application in noise radar systems for the formation of radioimages” (Rukh), (2017 – 2021), and “Digital and analog generation and processing of chaotic and pseudorandom signals for noise and quantum radar sensors and communication systems, as well as for multi-channel systems for forming coherent images in the sub-terahertz, optical and X-ray ranges(“GRIFFON”), (2022 – 2026).

The following results were obtained:

  1. A thorough comparison of the Noise Radar (NR) concept with the concept of ‘Quantum Radar’ (QR) was carried out and as a result it was proposed to use another term: ‘Quantum Radar Sensor’ (QRS) L2[1]. In addition, to implement QR, an extremely low temperature (about 7ºK) is required, which can only be achieved in special refrigerators, which makes QR unreasonably expensive. At the same time, the NR concept is much easier to implement in the microwave, millimeter wave, and sub-Terahertz ranges L2[23]. Recently, the use of light-emitting diodes (LEDs) and the spectral interferometry technique made it possible to construct a noise reflectometer even in the infrared and optical frequency ranges, which was experimentally proven in L2[10].

It was established that the QR concept has a good perspective in the development of QRS in ultraviolet, X-ray and gamma frequency ranges of electromagnetic radiation. In addition, application of a step-like the photon’s frequency varying in QRS is also proposed and considered, which provide a range profile measurement and range resolution capability in QRS. L2[20].

  1. Measurement of a thin-films thickness by the method of spectral interferometry of optical random signals generated by LED sources has been experimentally proven. The measurement method developed has a fairly good error, the relative value of the limit of the confidence interval of measurements at a confidence probability of 0.95 was 0.88%, while the absolute value is 0.17 μm L2[10].

The measurement of the distance by the method of spectral interferometry and heterodyne transfer of the spectrum from the optical range to the radio range has been implemented. The possibility of using radio frequency spectrum-analyzers, the resolution of which spectrum measurement allows obtaining reflectograms (range profiles) of long fiber-optic communication lines, is shown. In this case, the problem of the “dead zone” is solved via using a continuous signal instead of the traditional pulse measurement mode. A prototype of an optical correlation reflectometer was developed and experimentally tested.

  1. A new concept for design a self-organizing SMART system for information transmission and radar monitoring of vehicles on the autobahn is proposed based on a new method of multiplex transmission of code signals with an extended spectrum previously developed by the authors for the implementation of a multiple access with spatial code separation of channels. A new method of generating unique binary pseudorandom sequences (BPS) with quasi-ideal periodic and inverse-periodic autocorrelation is proposed. The method is developed on the basis of a modified discrete chaotic mapping with two delay parameters. The structure of the BPS generated by the proposed algorithms was investigated and studied by computer simulation, and the spectra of the periods of various BPS were found. The conducted analysis showed that BPS have correlation characteristics sufficiently close to the characteristics of M-sequences.
  2. A new method for information transmission using a broadband chaotic signal generated by a nonlinear dynamic system with a time-delayed feedback was suggested and elaborated. This proposed novel method differs from the previously known ones in that it uses a feature of chaotic systems, which consists in the possibility of forming a periodic structure in the signal spectrum directly in the process of its generation. In the non-coherent receiver, which does not require chaotic synchronization with the transmitter, an information message decoding algorithm is implemented that is close to the optimal one, which makes it possible to achieve immunity to interference and high accuracy of data recovery.

It is shown that the correct restoration of the transmitted binary message is possible at the level of additive broadband Gaussian interference in the communication channel, which significantly exceeds the level of the useful chaotic signal. The efficiency of the information transmission system based on the spectral manipulation of a chaotic signal using the proposed algorithm was demonstrated experimentally, which confirmed the theoretical conclusions. Signal processing in the transmitter and receiver is performed in the discrete time domain, which makes the proposed technique ready for implementation in DSP and FPGA.

  1. An adaptation of the chaotic signal generation algorithm based on a nonlinear dynamic system with delayed feedback is proposed for its implementation in FPGA.

A noise (random) signal generator in the variable frequency bandwidth within the range of 12-16 GHz was developed and implemented by modulating the voltage-controlled oscillator (VCO) with a low-frequency random signal generated digitally in the FPGA. The algorithm for generation and digital-analog processing of broadband random signals was tested using the developed software and the main parameters of noise and deterministic signals generated were evaluated.

  1. The method for processing of radar signals was improved and an advanced algorithm was developed for obtaining 2D radioimages in real time, which makes it possible to obtain images of radar scenes in the format of microwave video.
  2. Developed models of antenna arrays based on Vivaldi antennas for multi-channel SAR imaging systems. A comparative analysis was made with the parameters of real antennas. The mutual influence of antenna array elements is analyzed. The developed antenna meets all required performance in the selected frequency range.
  3. The Ku-band (wavelength 2 cm) Microwave Video Camera Demonstrator which is a ground-based SAR with a transmitter and a multi-channel receiver, was developed and tested, as well as the necessary algorithms for the formation of 2D SAR images in real time with a 10ms frame rate, that enables formation of microwave video with high resolution L2[7].
  4. A new mathematical model has been developed to analyze the processes of the chaotic oscillations generation in Gunn diode systems, taking into account mutual coupling delays in electronic systems based on several implicit methods of numerical modeling of increased accuracy and order, which are designed to obtain non-stationary solutions to the so-called “non-stiff” problems. The conditions for solving the same problems have been found.
  5. The mode of excitation of hybrid volume-surface waves in a Clinotron with a ribbon electron beam and a biperiodic grating was theoretically investigated. It is shown that the advantage of the hybrid mode is an increase in both feedback and radiation efficiency due to the bulk wave. The simulation results showed an output power of tens of Watts in the frequency range from 0.5 to 0.7 THz, which is provided by a beam of 0.2 A and a voltage of 17 kV. The efficiency of interaction is about 1%. A frequency tuning range of about 5% by changing the accelerating voltage was demonstrated.
  6. A new mechanism for the generation of ultra-high energy cosmic rays from active galactic nuclei has been proposed and studied. It has been proven that taking into account the effects of quantum gravity leads to the emergence of a trans-Planck jump in the energy density and the momentum density of matter fields. In addition, the resulting pulse density reflects structures indicating a disk-like configuration near the equator and the outflow of collimated matter from the poles. The bipolar outflow/disc structure must be an essential part of the mechanism underlying the jets/accretion discs of active galactic nuclei. For the first time, the Membrane Paradigm of Black Hole physics in the Parik-Wilchek formalism was applied to Kerr’s solutions for the General Relativity equation. The description of black holes in terms of dual microscopic degrees of freedom is generalized, which affects the interpretation of gravitational and electromagnetic wave signals in the merging processes of compact relativistic objects in binary star systems L2 [32-34,36].
  7. Peculiarities of tunneling dynamics in the exactly solvable N=4 model of supersymmetric quantum mechanics with a multi-well potential and broken reflection symmetry were studied. The main advantages of application of iso-spectral, exactly solvable Hamiltonians in the study of quantum mechanical systems with two- and three-well potentials are given in the study of such phenomena as partial localization and coherent tunneling destruction L2[35].

All obtained results have no analogues in Ukraine and the world.

The main achievements of the department’s staff in the developing the research areas are briefly described below L2[1-44], L1[1-120]:

  • Dynamical chaos in electromagnetic resonators with non-integrable boundaries and/or nonlinear reflecting inhomogeneities, chaotic dynamics in quantum billiards.

This direction was primarily developed by K. O. Lukin and O. V. Zemlyaniy. The studies of chaotic dynamics of electromagnetic fields in resonators with nonlinear reflecting walls, as well as non-linear radiophysical systems with delay were continued. The new methods for generating of chaotic signals in radio and microwave bands for noise radar and communication systems were developed. A new method of smoothing (correction) of spectral irregularities of chaotic oscillations in the ring oscillator with the delay time dependence of the instantaneous amplitude of generated oscillations (amplitude-dependent delay) was suggested. The possibility of a significant reduction in non-uniformity of the power spectral density of generated signals has been shown. A new method of quasi-orthogonal sequences forming using multidimensional discrete maps suitable for use in modern radar and communication systems was proposed and investigated (K. O. Lukin O. V. Zemlyaniy, V. E. Scherbakov.) L1[1–5]. Further development of research in this direction L2[9, 29 -31, 38-39].

  • Chaotic and regular dynamics of charge carriers in multilayer semiconductor structures with avalanche charge multiplication; new methods for generating periodic and random oscillations in the millimeter and terahertz ranges.

K. O. Lukin, P. P. Maksymov, L. V. Yurchenko are participated in development of this direction. The study of dynamic instability of currents in sharp two-span p-n junctions and the improvement of the range, energy and spectral characteristics of semiconductor generators based on them, called avalanche generator diodes (AGD), was continued. The sharp of two-span Ge, Si, and GaAs p-n junctions with different impurity atom concentrations, reverse bias voltages, and minority carrier lifetimes were investigated. The range, energy and spectral characteristics of AGD are determined by the concentration of impurity atoms, the size of the doping regions, the reverse shift voltage and the lifetime of minority carriers in the multiplying layer, which makes it possible to generate oscillations in the terahertz range. The effect of direct frequency conversion in pn-i-pn structures associated with the generation of a local oscillator signal in the pn-i-pn structure itself due to the presence of positive feedback on the drift current between avalanche p-n junctions has been discovered. Semiconductor photomultiplier tubes (SPMT) based on semiconductor avalanche pn-i-pn structures, the operating principle of which is based on avalanche-cascade multiplication of the primary photocurrent (K. O. Lukin, P. P. Maksymov, H. Cerdeira) have been researched L1[6- 10]. Further development of research in this direction was carried out in L2[8-9,12-13, 22-23,39].

A study of regular and chaotic oscillations in strongly nonlinear electronic and radiophysical systems, including self-oscillatory systems of terahertz band, with the aim of finding new methods for generation of chaotic signals needed for the design of new kinds of noise generators for noise radars has been done. A mathematical model for the efficient time-domain simulation of complicated ultra-wide-band auto-oscillations in a series chain of large-current GaN Gunn-diode microstrip circuits with time-delay coupling has been developed. The model allows one to perform self-consistent simulation of basic nonlinear effects in this kind of circuits assuming no restriction on the waveform (spectral composition) of the emerging oscillation signals, accounting for the presence of open (radiative) microstirp sections, considering non-instant response of active devices, and imposing minimal demands on the computer resources. On the basis of nonlinear modeling of time-delay active systems in the time domain, new effects have been found such as chaotic oscillations in an open (radiative) one-dimensional multi-device propagation system without dispersion, spontaneous generation of chains of high frequency pulses, nonlinear summation of power, bistability and hysteresis in the excitation of pulses and continuous wave oscillations (L. V. Yurchenko, V. B. Yurchenko) L1[11–15]. The study of new effects in these systems L2[39], new materials for radar applications L2[12], modeling of impulse-chaotic type of oscillations for hybrid multi-band systems L2[13] was extended, and a new mathematical model was developed based on several implicit methods of numerical simulation of increased accuracy and order, intended for obtaining non-stationary solutions of so-called “non-stiff ” problems.

  • Generation and coherent processing of random signals; implementation of signal processors based on FPGA for real-time operation of radar sensors.

K. O. Lukin, O. V. Zemlyaniy, P. L. Vyplavin, S. K. Lukin were performing research in this area. The developed methods of chaotization of auto-oscillating systems were used for creation of chaotic generators of radio and microwave bands for noise radar and communication systems. The possibility of usage in radar Arbitrary Waveform Generators (AWG) and FPGA, to generate noise complex signals has been shown. K. A. Lukin proposed a new method of processing the received signal in noise radar: the “step delay” method, the essence of which is the implementation of hopping change of delay of transmitted signal in the reference channel of the noise radar and subsequent evaluation of the cross-correlation function with the use of the analog correlator, which avoids application of high-speed ADC or delay lines in the radar reference channel and at the same time provide a high range resolution without the use of wideband ADC, as well as to increase the dynamic range of the noise radar. Elaboration of the methods for generating and processing of noise signals allowed to develop and implement the concept of a fully digital noise radar (Software Defined Noise Radar), which allows to develop radars with generation and processing of radar signals directly into FPGA, which enables completely new possibilities in the design of the radar allowing quick variation the type of transmitted signals and change their parameters L2[16–20]. Further development of research in this direction was carried out in L2[7,16,27,40].

In addition, techniques of time-frequency analysis of non-stationary random signals based on their two-parameter representations and algorithms for processing such signals developed in the Department. As a result of these studies, a monograph was published (A. A. Mogyla, K. O. Lukin) L1[21].

  • Antennas with pattern synthesizing and reconfigurable antenna based on MEMS (micro-electro-mechanical system) switches.

K. O. Lukin, V. P. Palamarchuk, M. K. Zaets were involved in developing this area.

Within this framework, various options of antennas of new type – antennas with radiation pattern synthesizing proposed by K. O. Lukin L1[22-24] were examined L1[25-26]. The basic principle of such antennas is to implement a virtual (or real) antenna array due to the real (or virtual) displacement of the emitting or receiving physical antennas with a wide antenna pattern and the subsequent application of SAR (Synthetic Aperture Radar) for the antenna pattern synthesizing, or formation of the SAR images, including three-dimensional tomographic ones. Several modifications of the proposed antennas with radiation patterns synthesizing: spiral-slit scanning antenna; waveguide-slot antenna; scanning microstrip antenna were developed in the LNDES. For Noise Radars, fixed non-switched antenna arrays with time delays between its physical antenna elements exceeding the coherence time of the probing noise signals were also proposed, which make it possible to implement cross-correlation separation (orthogonality) of the signals received by each antenna element in a single-channel receiver.

The proposed antennas with radiation patterns synthesizing is suitable for use in surveillance radars, in radar sensors and radar tomography, as well as for the establishment of ground Noise SAR for monitoring structural changes and registration of the pre-catastrophic states of engineering facilities. In addition, W-band and Ku-band “video cameras” for 2-dimensional and 3-dimensional real-time imaging based on them is being developed (K. O. Lukin, V. P. Palamarchuk, P. L. Vyplavin, N. K. Zaets, D. M. Tatyanko, O. V Zemlyaniy, S. K. Lukin, A.O.Shelekhov). Further research developments in this direction was done in L2[7,42].

  • Noise Radar Systems

K.O. Lukin, V. P. Palamarchuk, A. A. Mogyla, P. L. Vyplavin, V. M. Konovalov were involved in development of this area. The main goal of research in this direction is to search for fundamentally new applications of Noise Radars and the proposed new type of antennas. Several novel millimeter wave Noise Radars and sensors have been developed and tested. First of all, it should be noted the development and testing of the world’s first X-band pulse-coherent Noise SAR, with coherent processing of the noise radar returns, which can operate in two different modes: (1) Surveillance mode and (2) Arc SAR mode. This radar was developed by LNDES and supplied to DSTA, Singapore.

 

image002 image004
The LNDES Antenna with pattern synthesizing (Kharkiv, 2008)

The LNDES X-band pulse-coherent Noise SAR, (Singapore, 2008)

The world’s first Ka-band bistatic ground Noise SAR has been developed, manufactured and tested, using the proposed antennas with radiation pattern synthesizing and intended for monitoring structural changes in various objects such as large buildings, bridges, TV towers, dams, etc., in order to record eye imperceptible structural changes and, therefore, identifying their pre-catastrophic states. The proposed SARs can also be used for monitoring transport areas: highways, railway junctions, seaports, as well as airport runways (K. O. Lukin, V. M. Konovalov, A. A. Mogila, P. L. Vyplavin, V. P. Palamarchuk) L1[27-32]. Further research developments in this direction was done in  L2[3,16-19,21,28].

image006
Bistatic Ka-band ground MIMO Noise SAR

A method has been developed for suppressing the side lobes of the cross-correlation function for short-range radar with pseudo-random signals intended for detecting slow-moving objects in optically opaque media. For the same radar, a method for coherent compensation of powerful reflections by local stationary objects has been implemented. A method has been realized for processing the signal reflected by a nonmoving person, which acquired a Doppler frequency shift due to the person’s physiological activity during the interval of several periods of his breathing (K. O. Lukin, V. M. Konovalov) L1[31-32].

  • Radar tomography and radiometry on the basis of the ground Noise SAR

K. O. Lukin, P. L. Vyplavin, V. V. Kudryashov, V. P. Palamarchuk, M.K. Zaets and S. K. Lukin were involved in developing of this area. The formation of tomographic and radiometric images based on antennas with a radiation pattern synthesizing and the MIMO (multiple input, multiple output) radar concept (multiple input, multiple output – multi-channel reception, multi-channel transmission) was proposed by K. O. Lukin and was actively developed by the department staff. Methods have been elaborated for generating 2- and 3-dimensional coherent images in the MM wavelength range using MIMO Noise SAR with time-division of the received signals. SAR imaging experiments in the LNDES laboratory and field trials were carried out to obtain 2- and 3-dimensional coherent images, allowing the generation of radio holograms and radio tomograms, respectively.

 

image008
The LNDES team that developed the ground MIMO Noise SAR for radar tomography: standing – P. L. Vyplavin, K. O. Lukin, V. V. Kudryashov, V. P .Palamarchuk; sitting – S. K. Lukin

Using the developed noise ground-based 8-mm range SAR, a series of measurements were carried out on the territory of the National Reserve “Sofia of Kyiv” in order to measure displacements in the bell tower building. Coherent radioimages and differential interferograms of the Cathedral were obtained, and the stability of its interior and the outer surface of the bell tower was recorded when the ambient temperature was constant. A displacement of approximately 0.1 mm was detected when the metal elements of the building were heated during sunrise with an instrumental measurement error of no worse than 0.03 mm.

image010 image012
Photograph (left) and SAR image (right) of the Bell Tower of the Saint Sophia Cathedral of Kyiv, obtained with the help of the Ka-band ground Noise SAR (Kyiv, 2008)
image014 image016
Photograph (left) and SAR image (right) of the interior of the Bell Tower of the Saint Sophia Cathedral of Kyiv, obtained with the help of the Ka-band ground Noise SAR (Kyiv, 2008)

The effect of long-term stability of the probe signal to the accuracy of differential interferometric measurements using this SAR was investigated. The research made it possible to obtain an error in object displacement measurements of no worse than 10 μm with a signal-to-noise ratio of 45dB in the absence of atmospheric interference. This result agrees with the Cramer-Rao theoretical criterion for the maximum achievable precision of phase measurements. The method of augmentation of the SAR data has been proposed to depict the way of compensating the signals received through the side the side lobes L1[33-36].

In 2013, to demonstrate the capabilities of ground-based Noise SARs, experiments were implemented with capturing radioimages of folding objects. The vigilance was carried out together with the staff of I. Kozhedub Kharkiv University of the Air Force under supervision by Colonel K. S. Vasyuta.

 image018

Researchers of the LNDES (Department #17) O. Ya. Usikov IRE NASU (S.K. Lukin, V.P. Palamarchuk, K. O. Lukin, P. M. Sushchenko, and P. L. Vyplavin) and military scientists of the I.Kozhedub Kharkiv University of the Air Force after joint field trials of Ka-band Noise SAR (Kharkiv, 2013)

Ka-band ground Noise SAR based on the antenna with pattern synthesizing for monostatic and MIMO-configurations was used during the field trials. SAR and tomographic images of various models of military vehicles were obtained during these trials L1[37].

image020a) image022b)
image023c) image025d)

Photographs (left column) and SAR image (right column) of the samples of ground military vehicles (a,b) and jet-fighter SU-27 of Ukrainian Air Forces (c,d), Kharkiv, 2013

In particular, this opens a possibility of developing radar imaging systems enabling formation of 2- and 3-dimensional images, as well as measurement of the distance to an object and estimation of its velocity in the covered operation mode. Further development of research in this direction presented in L2[7,19,21,24,40,42,44].

The proposed antenna with pattern synthesizing became the basis of the SAR radiometer designed to get radiometric images in the length-azimuth plane. This direction of research was proposed by K. O. Lukin and was developed by V. V. Kudryashov, V. P. Palamarchuk, P. L. Vyplavin and S. K. Lukin. Algorithms for radiometric SAR imaging with one or two antennas with pattern synthesizing were obtained, and first experimentally capturing the radiometric images of thermal radio sources in the plane of the range-azimuth using bistatic SAR radiometer L1[38-42].

  • Optical noise reflectometers and micro- and nano-scale detectors based on LED sources and methods of spectral interferometry.

This area of research was suggested by K. O. Lukin as a generalization of the principles of the noise radar technology for optical measuring systems and is actively developing by D. M. Tatyanko, Yu. A. Shiyan, O. V. Zemlyaniy in collaboration with Dr. M. Danailov ‘Ellectra’ Synchrotron, Trieste, Italy and with PFEE department of NURE (Kharkiv). The feasibility of the spectral interferometry method and wideband optical radiation of ultra-bright LEDs in Coherence optical tomography and Low-coherence optical tomography was shown. Optical instruments based on spectral interferometry are convenient for measuring micro- and nano-distances and generating standard frequency grids for optical telecommunication systems. The conducted research also made it possible to solve the problem of measuring the phase shifts of the envelope of modulated optical signals. New optical radiation power detectors based on trap detectors were developed, which made it possible to increase the accuracy of optical radiation power measurements and improve the characteristics of measuring instruments, including devices based on low-coherence spectral interferometry (K. O. Lukin, D. M. Tatyanko, O.V. Zemlaniy) L1[43-48]. Further development of research in this direction are shown in L2[10-11,23,27].

  • New methods of wireless radio communication for vehicles

K. O. Lukin, V. M. Konovalov, V. E. Scherbakov were involved in developing of this area. A fundamentally new method for constructing communication systems between independent vehicles on highways has been proposed, for which two US patents have been received (K.O.Lukin, V. M. Konovalov, D. Breed –Detroit, USA) L1[49-50]. The key idea of the method is that in the proposed space-code division communication system, a unique code for each car is associated not with the car itself, but with its current position on the autobahn. In addition, a new concept for constructing a multiplex system of short-range communication between vehicles (DSRC-VVDT system) has been proposed. Within the framework of this concept, a mathematical model of the system has been developed that takes into account the requirements of US and European standards (K. O. Lukin, V.E. Scherbakov) L1[51–53].

  • New methods in quantum theory

K. O. Lukin proposed a new method for describing the motion of quantum mechanical (QM) particles in potential wells. The method is based on the representation of the wave function that describes the state of a QM particle in the form of a superposition of successive reflections of a spreading wave packet from the walls of the well, which makes it possible to take into account its self-interference over a finite number of reflections. The method is asymptotically consistent with the traditional quantum mechanical approach to solving such problems, based on representing the solution in the form of an expansion over the eigenstates of a particle in a potential well. A generalization of the method to the case of nonlinear boundary conditions is proposed. Together with scientists from the National Scientific Center KIPT (Prof.Yu.L. Bolotin and Dr. V. Cherkasky), a model of a compound billiard was considered, consisting of two ring billiards, chaotic and regular ones, connected by a narrow waveguide, which is suitable for studying the fundamental properties of both quantum and wave chaos. K.O. Lukin, in collaboration with Nuclear Physics Department of Odessa National Polytechnic University, developed a theory describing motion of a QM particle in a dissipative-fluctuation field at the presence of a Quantum Potential (first introduced by D. Bohm). It is shown that the Schrödinger equation describes the motion of those particles for which there is an exact compensation of the disturbance of their motion by the force of the quantum potential, which, in particular, explains the Hamiltonian nature of modern Quantum Mechanics. To describe the motion of those particles for which such compensation is not complete, a more complex equation containing a stochastic term should be used. In this case, the resulting equation qualitatively coincides with the well-known equation of the GWR theory (Ghirardi, Weber, Rimini), which enables a description of QM particles under condition of micro- and macro-world interaction, L1[54–57]. Further development of research in this direction was done in L2[1,20].

  • Research in the field of Microwave Vacuum Electronics

Research in this direction was done by K.O. Lukin in collaboration with the Department #11 IRE NASU and Seoul National University (South Korea). Vacuum microwave integrated circuits (VMICs) have been proposed for use in receiver input units of aircraft communications and radar systems. The use of VMIC will improve the resistance of receivers to the effects of ionizing radiation and powerful electromagnetic pulse radiation L1[58].

The theory of multimode and multi-frequency self-oscillations in the generators of diffraction radiation (DRGs) with an open resonator (OR) was also developed for studying both steady-states and transients of self-oscillations in such DRGs. Solutions are obtained that describe the stable mode of two-mode two-frequency generation during the interaction of an electron beam with the fundamental and higher modes of the DRG OR. Similar studies were carried out for the Clinotron, where self-modulation modes were also discovered and ways to increase the efficiency of devices of this type were found L1[59–63]. Some results of further developments in this direction published in L2[2,4-6,14-15, 22, 25-26,41].

  • New methods in advanced relativistic theory.

Book L2[43] is devoted to the application of the concept of discrete space-time to overcome the consequences of the old traditional assumptions of the space-time continuum by introducing finite differences x, t, distance and time respectively, as well as accounting the electric and magnetic dipole currents of the physical vacuum in relativistic theories.

The book’s main contribution to the discussion is our assumption that bosons, electrons, and positrons have a positive rest mass of +m0 or a negative rest mass of -m0. If they are so close to each other that they cannot be observed individually, we get the result of “nothing observable,” or “NOTHING” for short. If particles move away from each other (for example, as a result of mutual repulsion of masses of opposite sign) and can be distinguished by an observer, the result will be “something observed” or “SOMETHING”. Therefore, the clear difference between NOTHING and SOMETHING becomes hidden if particles with positive mass +m0 or negative mass -m0 can exist, as required by the theory. Therefore, creating particles of positive mass +m0 and negative mass -m0 from nothing implies that matter with positive or negative mass can be created from nothing.

Particles or substances with the same mass sign attract each other, and particles with the opposite sign repel each other. This should lead to the assembly of galaxies with both positive and negative mass.

Another particularly important result of the book is that it may convince young scientists of the benefits of studying the finite difference effect in relativistic theories.

We clearly understand that overcoming the influence of infinitesimals dx, dt on physical concepts may take a long time.

The development of research in this direction will be continued in future projects.

It should be noted that all the recent achievements of the department of nonlinear dynamics of electronic systems would have been impossible without theoretical and experimental studies carried out in previous years. A number of results were also obtained by specialists from Department #17 of the IRE NASU together with other organizations within the framework of international cooperation.

Developments were carried out in the following areas (1989-2005):

  • The study of nonlinear phenomena in electronic and radiophysical systems

A theory of self-oscillations in resonant self-oscillators with long-term interaction of electrons with a synchronous field was created, in particular, in generators of diffraction radiation (DRGs) L1[64], L2[2] which became the basis for an interactive system of computer modeling and design of these devices. These results expanded knowledge about the properties of induced diffraction and Cherenkov radiations and made it possible to patent a new method for electromagnetic waves amplification (K. O. Lukin L1[120]). Developed self-consistent theory of the autodyne effect in DRG (K. O. Lukin, A. B. Lebedev) L1[69]. Discovery of parametric instability of an electrons ensemble in the field with phase inversion made it possible to propose the design of an electron-vacuum generator based on this instability (K. O. Lukin) L1[64-70]. A nonlinear stationary theory of Reflex DRG with M-fold interaction of the reflected electron beam with the Gaussian field of an open resonator (OR) was constructed and the mechanism of multiple energy exchange of the electron beam with the OR field was investigated. A linear analytical theory of Reflex DRG (RDRG) with M-fold interaction of the electron beam (RDRG-M) with a Gaussian electric field distribution was also elaborated. Analytical formulas were obtained for the increment of the oscillations amplitude growth, the frequency electronic tuning and the starting current of RDRG-M. The theory is valid for arbitrary values of M, which is especially important when studying the scenario of transition from harmonic oscillations to dynamic chaos, (K. O. Lukin, P. P. Maksymov) L1[68, 71,72].

  • Investigation of the chaotic dynamics of the electromagnetic field and electrons in systems with nonlinearly reflecting surfaces and barriers

A formulation and method for solving initial-boundary value problems of electrodynamics of a new type are proposed, when the mode approximation is not valid for description of the OR field (K. O. Lukin), and it becomes necessary to take into account the time delay in the feedback channel. For the first time, nonlinear boundary conditions were used for the components of the electromagnetic field (V. P. Shestopalov, K. O. Lukin, A. M. Sharkovsky) L1[73-75] and this approach was generalized for electronics problems and applied to the study of the main characteristics of the proposed semiconductor photomultiplier (K. O. Lukin, H. A. Cerdeira, A. A. Colavita) L1[76]. A new method for the numerical solution of initial boundary value problems for the equations of the drift-diffusion model in pn-i-pn-structures with an abrupt boundary between the p and n layers was proposed, (K. O. Lukin, P. P. Maksymov) L1[77-80].

  • The study of electromagnetic dynamical chaos in a 2D rectangular cavity

with an array of active microwave devices on the reflecting border as well as the strong nonlinear self-oscillations in a chain of Gunn diode circuits with possibility of nonlinear power combining for compact THz Devices design (V. B. Yurchenko, L. V. Yurchenko) L1[81,82 ]

  • The study of the propagation of electromagnetic signals in a non-conducting medium

A new approach to describing the propagation of non-stationary electromagnetic signals in a neutral medium with dipole currents (a highly rarefied gas formed by atomic hydrogen) is proposed. The main effects associated with the propagation of the front of an electromagnetic pulse, as well as radio signals of finite duration, at distances on the order of the size of the Universe were studied and it was proposed to use the resulting calculations to estimate distances to pulsars (H. F. Harmuth, K. O. Lukin) L1[83]. In this case, the presence of attenuation of the electrons of the atom, associated with the radiation reaction, leads to an increase in the period of oscillations in such a medium and, accordingly, to an additional contribution to the frequency Red-shift of the propagating signals.

  • Development of methods for spectral, correlation and fractal processing of chaotic signals, including non-stationary ones

A new two-parameter model of random nonstationary signals with finite energy was proposed and justified, allowing their representation in the form of an integro-summatory expansion over a system of functions, which forms an orthonormal basis in the Hilbert space of realizations of a random signal over the Hilbert space of their local samples (A.A. Mogila). Based on the results obtained, new approaches to analysis of the reflected radar signals have been developed, a new algorithm for modeling non-stationary radar signals with given probabilistic characteristics has been obtained, based on the established relationship between the correlation functions of one- and two-parameter representations (A. A. Mogila, K. O. Lukin) L1[84-86]. An algorithm for experimental evaluation of the uncertainty function of a narrow-band, ergodic, stationary noise signal using a simulator of a uniformly and rectilinearly moving point target was also justified. A measuring stand and measurement technique have been developed. With their help, an assessment was made of the resolution and accuracy of measuring range and radial speed when using signals of the type under consideration as probing signals (K. O. Lukin, A. A. Mogila, Yu. O. Oleksandrov, T. K. Lukina).

  • Research of chaotic self-oscillations in generators based on BWOs and development of self-generators of chaotic oscillations. Autodyne effect in stochastic oscillation generators

A technical solution was found that ensured a reduction in starting currents and sufficient broadband of the oscillatory system in backward wave tubes of type “O” (BWTO), which made it possible to obtain record values of the generated frequency band and the power of continuous generation of noise signals, characterized by a continuous frequency spectrum and a rapid decrease in correlations. Based on these Weakly Resonant BWOs, a self-oscillator of a wideband chaotic oscillations, as well as a nonlinear amplifier with ring delayed feedback were created for the first time.

In the course of studying the self-oscillatory modes of a Weakly Resonant BWO, the autodyne effect was discovered in stochastic oscillatory mode, which allowed not only to measure the distance to a target, but also its velocity. (K. O. Lukin, V. O. Rakityansky, V. V. Kulik, O. V. Zemlyaniy) L1[87-89].

  • Wideband correlation receiver of noise signals

Several wideband digital-analog correlation receivers of relay type with programmable (adjustable) delay line (PDL) were developed: (1) based on universal synchronous 8-bit registers; (2) based on computer memory; (3) digital-to-analog PDL based on multiplexers and “vernier” delay line. These receivers do not contain expensive ADC. High-speed digital memory chips of random or serial access were used as the elements of PDL. The idea of building PDL operating at the carrier frequency of the Ka-band signal using the segments of waveguide channel switching its length by means of high-speed PIN-switches was implemented. Correlator of sequential type was built on its base. Using different types of digital integrated circuits, enables design of different PDL with characteristics meeting the requirements for the modern correlation receivers. In particular, they were used in the development of the first noise radar (K. О. Lukin, Yu. О. Оlexandrov, V. L.Virchenko, V. S.Korostelev, A. A. Mogyla) L1[90, 91, 94].

  • Noise Radars systems based on Chaotic Signals

A number of research prototypes of Noise Radar systems based on the use of chaotic probing signals and coherent reception of their returns using the advanced methods for correlation and spectral processing were developed in the Department #17 by 2003. They are intended for such functions as car collision avoidance, sector or circular surveillance, remote monitoring of the environment and major engineering objects, etc. The first research sample Noise Radar used chaos generator was constructed in Ka-band and was successfully tested L1[92-99]. The experience acquired during its design and trials enabled development of a W-band CW Noise Radar for car collision avoidance systems (K. O. Lukin, A. A. Mogyla, Yu. O. Olexandrov, V. O. Rakityansky, V. V. Kulik) L1[90-93].

  • Pulse-Coherent surveillance Noise Radar and Noise SARs

The world’s first X-band pulse-coherent surveillance Noise Radar has been developed in 2005. It is intended for detecting, monitoring and measurement of range, velocity and azimuth of the objects in the field of view. An important feature of this radar is that it partially implements one embodiment of the modern concept of software-defined radar that is to replace as much as possible radar analog units by their computer analogues, which allow forming the probing signal, processing the radar returns in a computer and displaying the results in the screen. With the aim of improving methods and equipment of Noise Synthetic Aperture Radars (SAR), the Noise SAR in which the phase center of receiving and transmitting antenna moves along an arcuate path, was created on the base of the the X-band Noise Radar hardware that is of particular interest in the development of Noise SAR due to the simplicity of implementation of such movement (K. O. Lukin, V. P. Palamarchuck, A. A. Mogyla, Yu. O. Olexandrov, P. L. Vyplavin, M. K. Zaets, V. V. Kulik).

  • Differential SAR Interferometry and Noise Radars

The first SAR with a continuous noise signal has been developed in Department #17 for joint research at the European Commission Space Research Institute (JRC EC-Ispra) in Ispra, Italy in 1998 L1[99]. The results obtained experimentally confirmed the applicability of noise signals for getting coherent images. The elaborated transmitter had a number of qualities that made it possible to use Noise SAR in differential interferometry. Department #17 developed Ka-band Noise interferometric Noise SAR for remote monitoring of the condition of the Chernobyl Nuclear Power Plant sarcophagus and other engineering structures. The realized SAR used a coherent transmit-receive path and the movement of the phase center of the transmit-receive antenna along a stably repeating trajectory. To ensure rapid movement of the phase center of the ground SAR transmitter, a new type of antennas was proposed and developed – scanning antennas with pattern synthesizing (K. O. Lukin) L1[100-102].

  • Scanning Antennas with Radiation Pattern Synthesizing

Research in this direction was started in the Department #17 in 1999 in collaboration with Department #21 (V.M. Skresanov’s group) in connection with the development of forward-looking radars. The main idea of this approach was proposed by K. O. Lukin and consists of combining the application of the concept of aperture synthesizing with the implementation of moving an elementary transceiver antenna along a fixed real aperture. The spiral-slot antenna with aperture synthesizing proposed in L1[99, 100] and developed in L1[103], is one of the possible technical solutions that implements this principle. Another embodiment of the new principle is proposed in the so-called waveguide tape scanner (Tape Scanner) L1[102]. Compared to a spiral scanner, this antenna has greater frequency bandwidth and does not require the use of a rotary joint to receive and (or) transmit a microwave signal. Later on we proposed a 2D Tape Scanner, which allows us to significantly expand the viewing sector in the azimuthal plane and provide discrete scanning of the beam in the elevation plane L1[104]. One of the promising applications of such antennas could be surveillance radars for the territory of modern airports.

  • Spectral Interferometry of Stationary Random Signals

By 2000, in the Department #17, research was carried out to generalize such a fundamental concept as coherence to the case of interference of stationary random signals in the spectral region (spectral interferometry L1[64,89]). We have proposed a modification of the double spectral processing method L1[96-98], based on measuring the frequency coordinates of spectrum maxima and minima allowing absolute measurements of distances with high accuracy. A distance meter was developed using noise signals and the method of spectral interferometry in the X-band (K. O. Lukin, V. O. Rakityansky, V. V. Kulik, A. A. Mogila) L1[96-98].

  • Development of electron-optical systems (EOS) with longitudinal compression and their applications

The theory of electron-optical systems with longitudinal compression was developed and a number of three-electrode guns with output power from a few milliwatts to hundreds of kilowatts in continuous operation were manufactured. These guns made it possible to effectively and independently control the energy and density of the electron beam with very low power consumption for the control (M. S. Zinchenko, V. I. Afanasyev). The research in the field of high-perveance electron optics and its applications were continued (V. I. Afanasyev, K. O. Lukin).

  • EOS synthesis, well-posed solution to the dense electron beam synthesis problem

The problem of EOS synthesis was considered in its general form and precise formulation, without any approximations or restrictions on beam focusing methods. Well-posed Dirichlet-Neumann problem has been derived and numerically solved for this purpose instead of ill-posed Cauchy problem for the Poisson equation arising according to conventional approach. A possibility of synthesis of dense laminar electron (ion) beams with an arbitrarily specified spatial structure (with certain restrictions) has been shown when using strong magnetic fields of special configurations (L. V. Yurchenko, V. B. Yurchenko) L1[105,106].

  • Generalization of dynamic theory of quantum particles

A new form of equations of semi-quantum dynamics has been derived that allows one to apply the theory (of the higher than conventional quasi-classical approximation) to the analysis of electron motion in mesoscopic quantum superlattices with a possibility of transition to quasi-quantum dynamical chaos in a strong high-frequency electromagnetic field (L. V. Yurchenko, V. B. Yurchenko) L1[107,108].

  • Cosmic Microwave Background anisotropy and polarization measurements

Within the framework of the European Space Agency project on the “PLANCK Surveyor” deep-space satellite radio-telescope development for the Cosmic Microwave Background anisotropy and polarization measurements, research on the telescope beam simulations have been carried out. A method has been developed for super-fast computing of mm- and sub-mm-wave beams of large multi-reflector antenna systems with implementation of physical optics method on each reflector that is particularly important for broadband multi-beam systems with large aberrations and multi-mode (oversized) corrugated feed horns (V. B. Yurchenko) L1[109-112].

  • Development of the methods for creating super-short optical and high-frequency electromagnetic pulses using the “time lens” technique

A method for reducing the aberrations and improving the accuracy of the “time lens” systems for compressing super-short optical pulses has been proposed. The method is based on a more accurate adjustment (at the level of the third-order terms) of the effects of frequency dispersion and phase modulation used in the time-lens technique (V. B. Yurchenko) L1[113].

  • Advancement of the theory of temperature-electrical instability in metals at the helium temperatures

Appearance of multi-valued current-voltage characteristics, electrical current instability, and hysteresis in the switching effects under the conditions of temperature-electrical instability in metals in the case of the Corbino disk geometry has been carried out (V. B. Yurchenko) L1[114].

  • Research on the nonlinear electron transport in semiconductors

Theoretical analysis of the effect of nonlinear electron super-emission from a semiconductor in a strong high-frequency electromagnetic field has been carried out L1[115]. A method for increasing the efficiency of thin-film thermoelectric converters due to the use of the energy non-equilibrium electrons has been proposed, etc (V. B. Yurchenko) L1[116-119].

These results were included in the annual and final reports on the State Research Projects:

  1. “Digital and analog generation and processing of chaotic and pseudorandom signals for Noise and Quantum Radar Sensors and communication systems, as well as for multi-channel systems for forming coherent images in the sub-terahertz, optical and X-ray ranges”. State Research Project “GRIFFON”, Kharkіv, 2022 – 2026, K.O. Lukin and others.
  2. “New methods for generating chaotic and random signals of the microwave, terahertz and optical ranges of electromagnetic waves, methods and techniques for their radiation and reception for the purpose of application in Noise Radar systems for the formation of radioimages”. State Research Project “Rukh” Report, Kharkіv, 2021, K.O. Lukin and others.
  3. “Chaotic and pseudorandom signals of the microwave and millimeter wavelength ranges, techniques for their radiation and reception for use in Noise Radars and radioimaging systems”. State Research Project “Krok” Report, Kharkіv, 2016, K.O. Lukin and others.
  4. “Methods for generation, radiation and reception of random and chaotic signals and their application in radar and communication”. State Research Project “Versiya” Report, Kharkіv, 2011, K.O. Lukin and others.
  5. “Methods for generation, radiation and processing of chaotic signals and their application in short-range radar and communication systems” State Research Project “Variant” Report, Kharkіv, 2006, K.O. Lukin and others.
  6. “Electrodynamics of open structures, development of sources and radio systems, including noise ones, in millimeter and submillimeter wavelength ranges.” State Research Project “Start” Report, Kharkіv, 2003, K.O. Lukin and others.
  7. “Dynamic chaos in radiophysical and electronic systems with nonlinear wave transformation at boundaries and its applications”. State Research Project “Kontakt” Report, Kharkіv, 2000, K.O. Lukin and others.
  8. “Development of new methods of chaosization of nonlinear electronic systems for design of wideband generators of stochastic oscillations and their application in radioengineering systems.” State Research Project “Triplet” Report, Kharkіv, 1995, K. O. Lukin and others.
  9. “Theoretical and experimental studies of nonlinear dynamics of electronic and electron-optical systems with the aim of creating effective electron guns and sources of electromagnetic oscillations.” State Research Project “Kvadro” Report, Kharkіv, 1992, K.O. Lukin and other.
  10. “Spatiotemporal chaos in distributed radiophysical and electronic systems.” State Research Project “Chaos – M” Report, Kharkіv, 1992, K.O. Lukin and others.

Scientific results by chronology:

2023

Annual Scientific & Technical Activities Report

“Digital and analog generation and processing of chaotic and pseudorandom signals for Noise and Quantum Radar Sensors and communication systems, as well as for multi-channel systems for forming coherent images in the sub-terahertz, optical and X-ray ranges”

State Research Project “GRIFFON”

  1. The algorithm for generation and digital-analog processing of broadband random signals was tested using the developed software, and the parameters of noise and deterministic signals generated were evaluated. The obtained results correspond to high international standards. (K.O. Lukin, D.M. Tatyanko, O.V. Zemlyaniy)
  2. Developed models of antenna arrays based on Vivaldi antennas for multi-channel systems of SAR imaging. A comparative analysis was made with the parameters of real antennas. The mutual influence of antenna array elements is analyzed. The antenna array that was developed meets the required performance in the selected frequency range. The obtained results correspond to high international standards. (K.O. Lukin, V.P. Palamarchuk, A.O. Shelekhov)
  3. A new mathematical model has been developed to analyze the processes of the chaotic oscillations generation in Gunn diode systems, taking into account mutual coupling delays in electronic systems based on several implicit methods of numerical modeling of increased accuracy and order, which are designed to obtain non-stationary solutions to the so-called “non-stiff” problems. The conditions for solving the same problems have been found. The results obtained meet high-level international standards and can be used to create new radar systems. (L.V. Yurchenko).
  4. New algorithms were developed in the MathCad and MatLab environments for processing and determining the parameters of signals with deterministic random sequences. The obtained results correspond to high international standards. (V.M. Konovalov)
  5. A new research approach and method is proposed, mathematical models and methods for assessing the effect of Doppler frequency shift on the quality of correlation compression of noise signals and quasi-orthogonal code sequences are developed for the technical implementation of the self-organizing SMART system of information transmission and radar monitoring of vehicles. The proposed new approach, research method and concept of a self-organizing SMART system have no analogues in Ukraine and the world. (K.O. Lukin, V.E. Shcherbakov, Yu.A. Shiyan)
  6. The Ku-band microwave video camera demonstrator (wavelength 2 cm), which is a ground-based SAR with a transmitter and a multi-channel receiver, was developed and tested, as well as the necessary algorithms for the formation of 2D SAR images in real time with an update rate of 10ms, that is, for the formation of microwave video with high resolution. Obtained results have no analogues in Ukraine and the world. (K.O. Lukin, V.P. Palamarchuk, D.M. Tatyanko, O.V. Zemlyaniy, A.O. Shelekhov)
  7. A generalization of the hydrodynamic description of Black Holes for dual microscopic degrees of freedom is obtained. The results of the study are important for the interpretation of signals of gravitational and electromagnetic waves emitted by objects of this type. Obtained results exceed high international standards. (O.J. Nurmagambetov).
2022

Annual Scientific & Technical Activities Report

“Digital and analog generation and processing of chaotic and pseudorandom signals for Noise and Quantum Radar Sensors and communication systems, as well as for multi-channel systems for forming coherent images in the sub-terahertz, optical and X-ray ranges”

State Research Project “GRIFFON”

 An adaptation of the chaotic signal generation algorithm based on a nonlinear dynamic system with delayed feedback is proposed for its implementation in FPGA. The obtained results correspond to high international standards. (O.V. Zemlyaniy).

  1. A noise (random) signal generator in the controlled frequency band in the range of 12-16 GHz was developed and implemented by modulating the voltage-controlled oscillator (VCO) with a low-frequency random signal generated digitally in the FPGA. The obtained results correspond to high international standards. (K.O. Lukin, V.P. Palamarchuk, O.V. Zemliany).
  2. The method for processing radar signals has been improved and an advanced algorithm has been developed for obtaining 2D radioimages in real time, which makes it possible to obtain images of radar scenes in the format of microwave video. The obtained results exceed modern international standards. (K.O. Lukin, D.M. Tatyanko).
  3. A working model for estimating the spectral density of flicker noise in low-noise generators at infra-low frequencies is proposed. The obtained result corresponds to modern international standards. (V.M. Konovalov, K.O. Lukin).
  4. A theoretical model of broadband oscillation generation processes in the Gann diode system under frequency-dependent feedback delay conditions has been developed. The conditions for creating noise signals of increased chaotic complexity have been found. The obtained results correspond to high international standards. (L.V. Yurchenko)
  5. For the first time, the Membrane Paradigm of Black Hole physics in the Parik-Wilchek formalism was applied to Kerr’s solutions for the General Relativity equation. The description of black holes in terms of dual microscopic degrees of freedom is generalized, which affects the interpretation of gravitational and electromagnetic wave signals in the merging processes of compact relativistic objects in binary star systems. The obtained result exceeds modern international standards. (Nurmagambetov O.J.)
2021

Annual Scientific & Technical Activities Report

“New methods for generating chaotic and random signals of the microwave, terahertz and optical ranges of electromagnetic waves, methods and techniques for their radiation and reception for the purpose of application in Noise Radar Systems for the formation of radioimages”

State Research Project «Rukh»

Authors:

K.O. Lukin, O.J. Nurmagambetov, O.V. Zemlyaniy, P.P. Maksimov, L.V. Yurchenko, D.M. Tatyanko, Yu.A. Shiyan, S.K. Lukin, A.O. Shelekhov, S.S. Ponomarenko, V.P. Palamarchuk, V.M. Konovalov, M.K. Zayets, P.G. Sushchenko, V.E. Shcherbakov

  1. A thorough comparison of the Noise Radar (NR) concept with the concept of ‘Quantum Radar’ (QR) was carried out and as a result it was proposed to use another term: ‘Quantum Radar Sensor’ (QRS).
  2. In addition, to implement QR, an extremely low temperature (about 7ºK) is required, which can only be achieved in special refrigerators, which makes QR unreasonably expensive. At the same time, the NR concept is much easier to implement in the microwave, millimeter wave, and sub-Terahertz ranges L2[23]. Recently, the use of light-emitting diodes (LEDs) and the spectral interferometry technique made it possible to construct a noise reflectometer even in the infrared and optical frequency ranges, which was experimentally proven in L2[10].
  3. It was established that the QR concept has a good perspective in the development of QRS in ultraviolet, X-ray and gamma frequency ranges of electromagnetic radiation. In addition, application of a step-like the photon’s frequency varying in QRS is also proposed and considered, which provide a range profile measurement and range resolution capability in QRS.
  4. Measurement of a thin-films thickness by the method of spectral interferometry of optical random signals generated by LED sources has been experimentally proven. The measurement method developed has a fairly good error, the relative value of the limit of the confidence interval of measurements at a confidence probability of 0.95 was 0.88%, while the absolute value is 0.17 μm L2[10].
  5. The measurement of the distance by the method of spectral interferometry and heterodyne transfer of the spectrum from the optical range to the radio range has been implemented. The possibility of using radio frequency spectrum-analyzers, the resolution of which spectrum measurement allows obtaining reflectograms (range profiles) of long fiber-optic communication lines, is shown. In this case, the problem of the “dead zone” is solved via using a continuous signal instead of the traditional pulse measurement mode. A prototype of an optical correlation reflectometer was developed and experimentally tested.
  6. A new concept for design a self-organizing SMART system for information transmission and radar monitoring of vehicles on the autobahn is proposed based on a new method of multiplex transmission of code signals with an extended spectrum previously developed by the authors for the implementation of a multiple access with spatial code separation of channels. A new method of generating unique binary pseudorandom sequences (BPS) with quasi-ideal periodic and inverse-periodic autocorrelation is proposed. The method is developed on the basis of a modified discrete chaotic mapping with two delay parameters. The structure of the BPS generated by the proposed algorithms was investigated and studied by computer simulation, and the spectra of the periods of various BPS were found. The conducted analysis showed that BPS have correlation characteristics sufficiently close to the characteristics of M-sequences.
  7. A new method for information transmission using a broadband chaotic signal generated by a nonlinear dynamic system with a time-delayed feedback was suggested and elaborated. This proposed novel method differs from the previously known ones in that it uses a feature of chaotic systems, which consists in the possibility of forming a periodic structure in the signal spectrum directly in the process of its generation. In the non-coherent receiver, which does not require chaotic synchronization with the transmitter, an information message decoding algorithm is implemented that is close to the optimal one, which makes it possible to achieve immunity to interference and high accuracy of data recovery.

It is shown that the correct restoration of the transmitted binary message is possible at the level of additive broadband Gaussian interference in the communication channel, which significantly exceeds the level of the useful chaotic signal. The efficiency of the information transmission system based on the spectral manipulation of a chaotic signal using the proposed algorithm was demonstrated experimentally, which confirmed the theoretical conclusions. Signal processing in the transmitter and receiver is performed in the discrete time domain, which makes the proposed technique ready for implementation in DSP and FPGA.

  1. A new mechanism for the generation of ultra-high energy cosmic rays from active galactic nuclei has been proposed and studied. It has been proven that taking into account the effects of quantum gravity leads to the emergence of a trans-Planck jump in the energy density and the momentum density of matter fields. In addition, the resulting pulse density reflects structures indicating a disk-like configuration near the equator and the outflow of collimated matter from the poles. The bipolar outflow/disc structure must be an essential part of the mechanism underlying the jets/accretion discs of active galactic nuclei.
  2. Peculiarities of tunneling dynamics in the exactly solvable N=4 model of supersymmetric quantum mechanics with a multi-well potential and broken reflection symmetry were studied. The main advantages of application of iso-spectral, exactly solvable Hamiltonians in the study of quantum mechanical systems with two- and three-well potentials are given in the study of such phenomena as partial localization and coherent tunneling destruction
  3. The mode of excitation of hybrid volume-surface waves in a Clinotron with a ribbon electron beam and a biperiodic grating was theoretically investigated. It is shown that the advantage of the hybrid mode is an increase in both feedback and radiation efficiency due to the bulk wave. The simulation results showed an output power of tens of Watts in the frequency range from 0.5 to 0.7 THz, which is provided by a beam of 0.2 A and a voltage of 17 kV. The efficiency of interaction is about 1%. A frequency tuning range of about 5% by changing the accelerating voltage was demonstrated.

All obtained results have no analogues in Ukraine and the world.

2020

Annual Scientific & Technical Activities Report

“New methods for generating chaotic and random signals of the microwave, terahertz and optical ranges of electromagnetic waves, methods and techniques for their radiation and reception for the purpose of application in Noise Radar Systems for the formation of radioimages”

State Research Project «Rukh»

  1.  The smooth evolution of the Quantum Radars concept (QRs) to the concept of Noise Radars (NRs) is shown. A new type of QR is proposed – QR with a stepwise change in the energy (frequency) of photons, which ensures obtaining the range profile and spatial resolution of two nearby objects. QR with digital generation of quantum-correlated signals is proposed. The expediency of QR sensors developing in the high-frequency ranges of the electromagnetic spectrum: optical, ultraviolet, X-ray, etc. is substantiated. The obtained result exceeds international high-level standards. (K.O. Lukin).
  2. A mathematical model has been created for the numerical calculation in the time domain of the processes of generating ultra-wideband oscillations in a system of Gunn diodes, combining several different frequency ranges. Options for devices that provide an increase in output voltage or output current under nonlinear mixing conditions of the individual diodes oscillations are considered. The results obtained correspond to high-level international standards and can be used to generate noise signals with improved spectral characteristics in a wide frequency range. (L.V. Yurchenko).
  3. The method of spectral interferometry with the application of noise signal modulation of the radiation of a broadband optical source was developed for measuring the lengths of optical fibers by noise reflectometers on optical fiber transmission lines; based on this method, a scheme was developed, a model of a fiber-optic reflectometer for measuring the length and distances to inhomogeneities of an optical fiber was built and investigated. The obtained results correspond to high-level international standards and allow determining the thickness of multilayer optically transparent film structures with interferometric accuracy. (K.O. Lukin, D.M. Tatyanko).
  4. A method of digital signal processing in optical noise reflectometers has been developed, which consists in the application of spectral analysis of noise signals and the construction of algorithms for obtaining optical fiber reflectograms based on this analysis. The obtained results correspond to international high-level standards and allow obtaining two-dimensional images of the area under investigation. (K.O. Lukin, D.M. Tatyanko, O. V. Zemlyaniy, S. K. Lukin).
2019

Annual Scientific & Technical Activities Report

“New methods for generating chaotic and random signals of the microwave, terahertz and optical ranges of electromagnetic waves, methods and techniques of their radiation and reception for the purpose of application in Noise Radar Systems for the formation of radioimages”

State Research Project «Rukh»

  1.  A device based on the Medipix detector was developed for the formation of 2D and 3D X-ray images. The experimental data for the formation of 2D images and measurement of ultra-small distances by the method of spectral interferometry in the X-ray range of the spectrum (Together with the Multidisciplinary Laboratory of the International Center for Theoretical Physics (MLab, ICTP) (Trieste, Italy) were obtained. The obtained result exceeds high international standards. (S.K. Lukin, K.O. Lukin, D.M. Tatyanko).
  2. A method of information transmission using chaotic signals for the organization of a secure communication channel is proposed, which is based on a new method of spectral manipulation of a chaotic signal. Numerical modeling results were obtained, experimental layouts were created using AD9910 digital frequency synthesizer chips and 7Z007S programmable logic array (FPGA). The obtained result meets high-level international standards. (K. O. Lukin, O. V. Zemlyanyi, D. M. Tatyanko).
  3. The complex current voltage characteristic (CVC) of avalanche generator diodes (AGD) was studied, which describes the dynamics of the reverse current in the p- and n- regions of the p-n junction depending on the value of the constant reverse bias voltage on the diode. A mathematical model was developed for modeling the modes of amplification; mode and damping of two synchronous oscillations, as well as the conditions of their implementation in the AGD were studied. The obtained result exceeds international high-level standards. (K.O. Lukin, P.P. Maksymov).
  4. A new type of resonant tunneling (RTD) and laser diode (LD) circuit for visible optical communication is proposed. The scheme can convert carrier-free modulation pulses into microwaves emitted synchronously with optical pulses that also acquire microwave modulation. The conditions for the realization of these effects were found, taking into account the feedback delay between RTD and LD. The RTD-LD scheme with a resonator antenna can be used for the synchronous generation of microwave and microwave-modulated optical pulses. The obtained result exceeds high international standards. (L.V. Yurchenko).
  5. The concept, model and analytical expressions for calculating the power spectral density of flicker noise of low-noise generators in an arbitrary frequency range, including ultra-low frequency regions, are proposed. This provides developers of special equipment with a tool for evaluating the noise characteristics of low-noise generators in any frequency range. The obtained result meets high-level international standards. (V.M. Konovalov, K.O. Lukin).
2018

Annual Scientific & Technical Activities Report

“New methods for generating chaotic and random signals of the microwave, terahertz and optical ranges of electromagnetic waves, methods and techniques of their radiation and reception for the purpose of application in Noise Radar Systems for the formation of radioimages”

State Research Project «Rukh»

  1. The possibility of generating a noise signal in the operating frequency range of the radar by heterodyning using a narrowband noise signal as a local oscillator signal was theoretically investigated. The expansion of the signal band of the local oscillator leads to the disappearance of the peak in the spectrum of the generated signal and a decrease in the level of the side lobes of its ACF. The conducted experiment on transferring the noise signal up in frequency without filtering the lower sideband and the frequencies of the local oscillator narrowband signal confirmed the simulation results. Obtained results have no analogues in Ukraine and the world. (K. Lukin, O. Zemlyaniy)
  2. A hardware and software toolkit was created to estimate the range profile when using the method of gradual change of delay in Noise Radar, and experimental estimates of the range profile were obtained with its help. Obtained results have no analogues in Ukraine and the world.  (K.O. Lukin, O.V. Zemlianiy, V.P. Palamarchuk, S.K. Lukin)
  3. The algorithm for generating a broadband chaotic signal with a comb spectrum was created and researched, the core of which is the process of iteration of the functional difference equation, which is implemented on a real time scale. Experiments on covert transmission of information by the method of spectral manipulation were carried out. The results obtained indicate the possibility of applying the method of spectral manipulation to optical fiber communication lines. Obtained results have no analogues in Ukraine and the world. (K.O. Lukin, O.V. Zemlyaniy)
  4. Self-consistent modeling in the time domain of active systems with Gunn diodes connected by sections of a microstrip transmission line was performed and the self-excitation of Gunn diodes and the conditions for the occurrence of one or another type of oscillation were studied. The results highlight the importance of using a proper biasing algorithm when designing high-frequency oscillators with delay effects that can lead to different modes of oscillation. The alternative method we propose, which has no analogues in the world, allows us to carry out self-consistent computer modeling that is optimal in time and cost in various systems with parallel and serial connection of active microwave elements for the development of noise generators. (L.V. Yurchenko)
  5. As part of the Software Defined Radar concept, new multi-channel correlator circuits based on the Xilinx Virtex 6 FPGA programmable logic integrated circuit using the X6-1000M board from Innovative Integration Inc. were implemented and researched. A layout of a hardware-software device based on a relay correlator, which does not use the multiplication function, was developed and implemented, which significantly saves FPGA chip resources and speeds up the process of signal correlation processing. The obtained result has no analogues in the world. (K.O. Lukin, D.M. Tatyanko)
  6. The study of the scenario of intermittency of regular and chaotic oscillations in avalanche-generator diodes based on reverse-biased sharp Si p–n junctions with a discrete change in the reverse bias voltage was carried out. The obtained result has no analogues in the world and is promising for the creation of generators of broadband and ultra-broadband chaotic signals of the microwave range for their use as information carriers in communication systems, Noise Radar. (K.O. Lukin, P.P. Maksimov).
2017

Annual Scientific & Technical Activities Report

“New methods for generating chaotic and random signals of the microwave, terahertz and optical ranges of electromagnetic waves, methods and techniques of their radiation and reception for the purpose of application in Noise Radar Systems for the formation of radioimages”

State Research Project «Rukh»

  1. The theory of the generation of oscillations in the millimeter and terahertz ranges in resonators with coupled modes has been developed, and the fundamental regularities of the generation of powerful oscillations in DRG with such systems have been studied. The obtained results have no analogues in Ukraine and the world. (K.O. Lukin.)
  2. With the help of theoretical methods, it is shown that under the influence of an external signal, avalanche-generator diodes AGDs generates periodic, quasi-periodic and chaotic oscillations of the terahertz range, depending on the amplitude and frequency of the external signal. This approach can be used for the development of generators in the terahertz range. The obtained results have no analogues in Ukraine and the world. (K.O. Lukin, P.P. Maksymov).
  3. New algorithms for the formation of two-dimensional and three-dimensional (tomographic) SAR images were developed, and for the first time, tomographic images were obtained using Ground Noise SAR in the 4-mm wavelength range. The obtained results have no analogues in Ukraine and the world. (K.O. Lukin, V.P. Palamarchuk, A.A. Shelekhov.)
  4. A computer model of the chaos generator was developed, which is a nonlinear dynamic system with delayed feedback and a nonlinear element with a variable parameter. An experimental layout of a broadband generator of chaotic oscillations based on a microprocessor device was created and the spectral characteristics of its output signal were evaluated. The obtained results have no analogues in Ukraine and the world. (K.O. Lukin, O.V. Zemlyaniy)
  5. The spectrum of the total radiation at the output of the Fabry-Perot fiber-optic interferometer, which is formed due to reflections of the broadband radiation of LED sources from multilayer structures (thin films), was analyzed. The software for processing and visualization of the results of the experiment on measuring the thickness of optically transparent layered structures by the method of spectral interferometry was developed and tested. The obtained results have no analogues in Ukraine and the world. (K.O. Lukin, O.V. Zemlianiy, D.M. Tatyanko).
  6. A method of measuring the distance in an optical fiber by signal correlation processing has been developed. An optical reflectometer based on correlation was developed and experimentally investigated. The obtained experimental data show the possibility of measuring the length of the optical fiber and the distance to inhomogeneities in it. This reflectometer also does not have a “dead zone” and can be used for metrological support of fiber-optic communication lines. The obtained results have no analogues in Ukraine and the world. (K.O. Lukin, D.M. Tatyanko).
  7. То develop new types of generators with self-excitation of complex impulse and chaotic forms of generated signals due to multiple overreflections and nonlinear shift of waves with multiple delays of different durations in collaboration with scientists from the National University of Ireland (NUI Maynuth, Ireland), a study of RF properties and measurement of complex dielectric constant and frequency dispersion of new promising low-absorbing and high-contrast dielectric materials (fluoride glasses) as dielectric elements of wave reflection and communication delay for pulse and chaotic signal generators, in the Ka and W wave ranges (in the frequency range up to 100 GHz). The obtained results have no analogues in Ukraine and the world (L.V. Yurchenko)

 

Preliminary scientific results
2016

Annual Scientific & Technical Activities Report

“Chaotic and pseudorandom signals of the microwave and millimeter wavelength ranges, techniques for their radiation and reception for use in Noise Radars and radioimaging systems” State Research Project «Krok»

  1. An interferometer for measuring distances in the micrometric range based on a fiber-optic Fabry-Perot interferometer and a broadband LED source of infrared radiation and the method of low-coherence spectral interferometry was developed and tested. There are no analogues in Ukraine and abroad. (K.O. Lukin, D.M. Tatyanko, L.V. Yurchenko, Yu.A. Shiyan.)
  2. The use of antennas with the synthesis of the directional pattern for three-dimensional scanning is proposed. The main characteristics of such an antenna are studied and its modifications are described. Technical solutions of antennas with virtual movement of the emitter are provided. There are no analogues in Ukraine and abroad. (K.O. Lukin, V.P. Palamarchuk, M.K. Zaets, L.V. Yurchenko.).
  3. With the help of theoretical methods, it is shown that avalanche-generator diodes AGDs under the influence of an external signal generate periodic, quasi-periodic and chaotic oscillations depending on the amplitude and frequency of the external signal. There are no analogues in Ukraine and abroad. (K.O. Lukin, P.P. Maksimov.).
  4. The implementation of a multi-channel parallel relay-type correlator based on FPGA is proposed and tested. At the same time, an approach was used that allows efficient use of FPGA resources and, therefore, makes it possible to increase the number of parallel channels of the correlator, which allows to increase the operating range of the Noise Radar. There are no analogues in Ukraine and abroad. (K.O. Lukin, O. V. Zemlyaniy.).
  5. A new method of measuring distances to vibrating objects using broadband noise signals, based on spectral interference of stationary broadband random signals, is theoretically proposed and studied. . There are no analogues in Ukraine and abroad. (K.O. Lukin, Yu.A. Shiyan.).
  6. New algorithms for the formation of two-dimensional and three-dimensional (tomographic) SAR images were developed, and for the first time, tomographic images were obtained using Ground Noise SAR in the 8-mm wavelength range. There are no analogues in Ukraine and abroad. (K.O. Lukin, V.P. Palamarchuk, A.A. Shelekhov.).
  7. A new method for generating quasi-orthogonal chaotic code signals and binary pseudo-random sequences with quasi-ideal autocorrelation has been developed, allowing to forming a virtually “unlimited” family of binary codes that fully meet the requirements of the MIMO-systems. There are no analogues in Ukraine and abroad. (V.E. Shcherbakov, K.O. Lukin.).
  8. A model of the interaction of the beating heart and lungs with the surface of the chest is proposed, which makes it possible to obtain estimates of the displacement of the chest during heartbeat and breathing. The simulation results were compared with scattered experimental data and showed quite satisfactory agreement. The developed model makes it possible to significantly simplify the design of relevant radar systems. There are no analogues in Ukraine and abroad. (V.M. Konovalov.).
2015

Annual Scientific & Technical Activities Report

“Chaotic and pseudorandom signals of the microwave and millimeter wavelength ranges, techniques for their radiation and reception for use in Noise Radars and radioimaging systems” State Research Project «Krok»

  1.  Within the framework of the “KROK” R&D, a model of an optical reflectometer with a micrometric range of distances was developed and manufactured, and its characteristics were investigated. The possibility and expediency of using the method of low-coherence spectral interferometry to measure distances on fiber-optic communication lines is substantiated. There are no analogues in Ukraine and abroad. (K.O. Lukin, D.M. Tatyanko, L.V. Yurchenko, Yu.A. Shiyan).
  2. The previously proposed concept of building a new type of scanning receiving-transmitting antennas – antennas with the synthesis of a directional pattern – was developed, and another variant of the antenna – a spiral-slot antenna – was investigated. The main characteristics of such an antenna are studied and its modifications are described, as well as the use of these antennas for three-dimensional scanning is proposed. Technical solutions for antennas with virtual movement of the emitter are provided. There are no analogues in Ukraine and abroad. (K.O. Lukin, V.P. Palamarchuk, M.K. Zaets, L.V. Yurchenko.).
  3. New sources of powerful electromagnetic oscillations – avalanche generator diodes (AGDs) based on sharp Si and GaAs p-n junctions at a constant reverse bias voltage – have been studied by theoretical methods. The dynamics were studied and the mode of operation of two-frequency AGDs was determined, in which the maximum energy characteristics are achieved. For the first time, regular attractors in the phase plane of integral characteristics of AGDs are given. There are no analogues in Ukraine and abroad. (K.O. Lukin, P.P. Maksimov.).
  4. Spectral characteristics of chaotic self-oscillations in a nonlinear dynamic system with delayed ring-type feedback were studied for the case when the inertial properties of the system elements are taken into account. An approach based on replacing a nonlinear system with a linear one with time-varying parameters was used. A method of information transmission using a chaotic signal generated by this system is proposed. The effectiveness of the considered method of information transmission to ensure covert operation of the communication system at the presence of complex interference is shown. There are no analogues in Ukraine and abroad. (K.O. Lukin, O. V. Zemlyaniy.).
  5. A new approach to the design of a self-organized MIMO-system for data transmission in real time between vehicles located in the highway within the radius of 1 kilometer using the EU DSRC standard is proposed. The method makes it possible to implement in practice a multiple access with spatial code distribution of channels and information transmission using broadband chaotic and unique binary pseudo-random sequences. There are no analogues in Ukraine and abroad. (K.O. Lukin, V.E. Shcherbakov.).
  6. Prepared and carried out experiments on SAR images formation using ground-based Noise SAR of 8-mm band. Algorithms for the formation of two-dimensional and three-dimensional SAR images in the millimeter range of wavelengths were developed. There are no analogues in Ukraine and abroad. (K.O. Lukin, V.P. Palamarchuk, A.A. Shelekhov.).

Publications

Main publications

Since the establishment of the Department #17 up to now more than 725 scientific publications has been published, including 290 journal papers in leading Ukrainian and International Journal, 5 monographs, 8 chapters in the books, more than 390 reports have been presented at prestigious international conferences and symposia. 9 patents were obtained: 3 – Ukraine, 5 – USA and 1 author’s certificate (USSR).

The most important of them are the following:

After 2015, (list L2)

  1. K. A. Lukin. Evolution of Quantum Radar Concept to Noise Radar Concept.// IEEE AES Magazine. Special Issue on Quantum Radar . IEEE Aerospace and Electronic Systems Magazine, vol. 35, no. 11, pp. 30-36, 1 Nov. 2020, https://doi.org/10.1109/MAES.2020.3004015, журнал Q1
  2. Лукін К. О. Збудження електромагнітних коливань у відкритих резонаторах внутрішніми джерелами // Прикладна радіоелектроніка, 2018, Том 17, № 1, 2, с. 14-27. https://nure.ua/wp-content/uploads/2018/Scientific_editions/are_2018_2.pdf
  3. Kubilay Savci, Andrew G. Stove, Francesco De Palo, Ahmet Yasin Erdogan, Gaspare Galati, Konstantin A. Lukin, Sergii Lukin, Paulo Marques, Gabriele Pavan, Christoph Wasserzier. Noise Radar – Overview and Recent Developments. // IEEE Aerospace and Electronic Systems Magazine, vol. 35, no. 9, pp. 8-20, 1 Sept. 2020, doi: 10.1109/MAES.2020.2990591 https://ieeexplore.ieee.org/document/9187089 , журнал Q1
  4. Ponomarenko S.S., Likhachev A.A., Vlasenko A., Kovshov Yu. S., Stoyanova V.V., Kishko S.A., Khutoryan E.M., Kuleshov A.N., Lukin K.A., Tatematsu Y., Tani M. Traveling-Wave Amplification in a Circuit With Nonuniform Grating. // IEEE Transactions on Electron Devices. – 2021. -Vol. 68, No. 10. –  P. 5232-5237. журнал Q1,  https://doi.org/10.1109/TED.2021.3105951
  5. Khutoryan E., Kuleshov A., Ponomarenko S., Lukin K., Tatematsu Y., Tani M. Efficient Excitation of Hybrid Modes in a THz Clinotron. // J Infrared Milli Terahz Wave. – – Vol.42. –P. 671–683. журнал Q2, https://doi.org/10.1007/s10762-021-00800-y
  6. E. M. Khutoryan, A. N. Kuleshov, S. S. Ponomarenko, K. A. Lukin, Y. Tatematsu, M. Tani. Hybrid Bulk-Surface Modes Excited by a Sheet Electron Beam in THz Cherenkov Oscillator. // IEEE Transactions on Electron Devices. – 2022. –Volume: 69, Issue: 6. P. 3407 – 3412. https://doi.org/10.1109/TED.2022.3168526.
  7. K. Lukin, V. Palamarchuk, O. Zemlyaniy, D. Tatyanko et al. Ku-Band (sub-THz) Demonstrator of Microwave Video Camera. // URSI Radio Science Letters. – 2023. – Vol.4. –P.59-63. DOI: 10.46620/22-0059
     https://www.ursi.org/Publications/RadioScienceLetters/Volume4/RSL22-0059-final.pdf 
  8. K. A. Lukin, P. P. Maksymov. Synchronous Generation of Two Oscillations of Microwave and Terahertz Bands in Avalanche-Generator Diodes with External Signal. Telecommunications and Radio Engineering, 2017. V. 76, Issue 1, pp.35-47. DOI: 10.1615/TelecomRadEng.v76.i1.30  http://www.dl.begellhouse.com/en/journals/0632a9d54950b268,2ad0fa6c43947779,0c2ea94b282fd05e.html
  9. K. Lukin, Maksymov P.P. Scenario for transition to chaos through intermittency in avalanche generator diodes with an external signal. Telecommunications and Radio Engineering. – 2018. Vol. 77. No. 5, pp. 435-449.DOI: 10.1615/TelecomRadEng.v77.i5
  10. K.A. Lukin, D.N. Tatyanko, A.B. Pikh, O.V. Zemlyaniy. Spectral interferometry in thickness measurements of optically transparent layered structures // Radioelectronics and Communications Systems. 2017, vol.76, No.13, pp. 1181-1192. (Перевод: Радиофизика и электроника. – 2017, Т 8(22), № 1. – СС. 77-85.) DOI: 10.1615/TelecomRadEng.v76.i13.60
  11. Tatyanko D.N., Neyezhmakov P.I., Timofeev Ye.P. et al. Quantum efficiency improvement of optical radiation trap-detectors // Semiconductor Physics, Quantum Electronics & Optoelectronics (SPQEO), 2019. V. 22, N 1. P. 104-110.
  12. Yurchenko L. V., Yurchenko V. B., Mehmet Çiydem, Marcin L. Gradziel. MM-wave dielectric parameters of magnesium fluoride glass wafers // PIER M. – 2017, Vol.62, pp.89-98. http://www.jpier.org/PIERM/pierm62/09.17081805.pdf http://www.jpier.org/PIERM/pier.php?paper=17081805, журнал Q2
  13. Yurchenko V.B., Ciydem M., Yurchenko L.V. Pulse-Mode Simulations of RTD-LD Circuits for Visible Light Communication // Applied Radio Electronics: Sci. Journal. – 2018. Vol. 17. № 1-2. – P. 66–71. https://nure.ua/wp-content/uploads/2018/Scientific_editions/are_2018_9.pdf
  14. K. Lukin, ‘Contributions to Electromagnetic Theory and Telecommunications by Dr. Henning F. Harmuth’, 16th Conference on Computer Aided Systems Theory, Erocast2017, Las Palmas, Spain. Computer Aided Systems Theory – EUROCAST 2017: 16th International Conference, Las Palmas de Gran Canaria, Spain, February 19-24, 2017, Revised Selected Papers, Part I | SpringerLink, Doi:10.1007/978-3-319-74718-7
  15. E.M. Khutoryan, Yu. S. Kovshov, A.S. Likhachev, S.S. Ponomarenko, S.A. Kishko, K.A. Lukin, V.V. Zavertanniy, T.V. Kudinova, S.A. Vlasenko, A.N. Kuleshov, T. Idehara. Excitation of Hybrid Space-Surface Waves in Clinotrons with Non-uniform Grating. // Journal of Infrared, Millimeter, and Terahertz Waves, Springer US. March 2018, Volume 39, Issue 3, pp 236–249. https://doi.org/10.1007/s10762-017-0453-3.
  16. K.A. Lukin, S.K. Lukin, V. Pascazio, D.N. Tatyanko, O.V. Zemlyaniy. FPGA Implementation of Relay-Type Correlator for Noise Radar Applications // Proc. of the 22nd International Microwave and Radar Conference (MIKON), May 14-17, 2018, Poznań, Poland, pp.457-460. DOI: 10.1109/MSMW.2016.7538135
  17. Kubilay Savci, Andrew G Stove, Ahmet Yasin Erdogan, Gaspare Galati, Konstantin A Lukin, Gabriele Pavan, Christoph Wasserzier. Trials of a Noise-Modulated Radar Demonstrator–First Results in a Marine Environment. // IRS-2019 20th International Radar Symposium, 2019. p 1-10. https://ieeexplore.ieee.org/document/8768194/
  18. Tomei S., Staglianò D., Lukin K., Palamarchuk V., Lukin S. NORMA: Imaging Noise Radar Network for Covert Air and Maritime Border Security.// Advanced Technologies for Security Applications. Chapter in the book: NATO Science for Peace and Security Series B: Physics and Biophysics, Editor: Palestini C. /. – Publisher: Springer, Dordrecht, 2020. – рр. 153-174.- ISBN978-94-024-2020-3. https://doi.org/10.1007/978-94-024-2021-0_15    
  19. K. Lukin, J. R. Moreira N. and S. Lukin. Forward Looking Airborne Radar for Landing Aid.// 2020 IEEE Radar Conference (RadarConf20), 2020, pp. 1-5, https://doi.org/10.1109/RadarConf2043947.2020.9266454   
  20. K. Lukin. Range Resolution in Quantum Noise Radar. // 2020 21st International Radar Symposium (IRS), 2020, pp. 185-188, https://doi.org/10.23919/IRS48640.2020.9253815 .
  21. K. Lukin, V. Palamarchuk, D. Tatyanko, O. Zemlyaniy, M. Zaets, S. Lukin, A. Shelekhov, P. Sushchenko. Stepped Frequency Ground Noise SAR for Real Time 2D Imaging. // Proc. of the 10th Microwave and Radar Week (MRW-2022), Gdańsk, Poland, 12-14 September 2022. – P. 183-187. Proc. of the 2022 23rd International Radar Symposium (IRS), Gdansk, Poland, 12-14 September 2022. P. 169–173. https://ieeexplore.ieee.org/document/9905005/
  22. K. Lukin, E. Khutoryan, H. A. Cerdeira, A. Kuleshov, L. Yurchenko, S. Ponomarenko. Current Instabilities in Vacuum Electron Devices and Semiconductor Avalanche Diodes for Generation of THz Oscillations. // 2023 International Conference on Optical MEMS and Nanophotonics (OMN) and SBFoton International Optics and Photonics Conference (SBFoton IOPC), Campinas, Brazil, 2023. – Invited paper. – P.1-4.   https://doi.org/10.1109/OMN/SBFotonIOPC58971.2023.10230944   
  23. K. Lukin, D. Tatyanko and S. Lukin. Applications of Spectral Interferometry in Sub-THz, Infrared and Optical Frequency Ranges. // 2023 International Conference on Optical MEMS and Nanophotonics (OMN) and SBFoton International Optics and Photonics Conference (SBFoton IOPC), Campinas, Brazil, 2023. – P.1-2. https://ieeexplore.ieee.org/document/10230936/
  24. J. Góes, Gian Oré, K. Lukin and H. E. Hernández Figueroa. Refraction Effect in SAR Processing for Focused Subsurface Tomography. Presented at IMOC-2023. – Barcelona, Spain, Nov. 2023, pp. 256–258. https://ieeexplore.ieee.org/document/10379707/
  25. K. Lukin, Ed. Khutoryan. Development of Diffraction Electronics in IRE NAS of Ukraine. // Proceedings of the 2023 International Conference on Electromagnetics in Advanced Applications ICEAA-IEEE’23 Venice, Italy, Oct. 9-13, 2023 – 24th edition, p. 571 (#477). https://ieeexplore.ieee.org/document/10297942/
  26. K. Lukin. Fields Excitation in Open Resonators based on Shestopalovs – Poedinchuk Spectral Theory. // Proc. of URSI GASS 2023, Sapporo, Japan, 19 – 26 August 2023. https://doi.org/10.46620/URSIGASS.2023.3719.HXRA1523  
  27. K.A. Lukin, O. V. Zemlyaniy, D. N. Tatyanko, S. Lukin and V. Pascazio. Noise radar design based on FPGA technology: On-board digital waveform generation and real-time correlation processing // 2017 18th International Radar Symposium (IRS), Prague, Czech Republic, 2017, pp. 1-7, doi: 10.23919/IRS.2017.8008223.
  28. K. Lukin, V. Palamarchuk, O. Zemlyaniy, D. Tatyanko, S. Lukin. Transmitter for UWB Stepped-Frequency Noise Radar // 21st International Radar Symposium (IRS). – 2021. – P. 1-6, doi: 10.23919/IRS51887.2021.9466181. 
  29. K. Lukin and O. Zemlyaniy, “Chaos-based spectral keying technique for design of radar-communication systems,” 2019 Signal Processing Symposium (SPSympo), Krakow, Poland, 2019, pp. 51-56, doi: 10.1109/SPS.2019.8881982.
  30. K. Lukin, H.E. Hernades-Figueroa, and K. Svechko. Chaotic dynamics of electromagnetic field in plane-parallel resonator with semitransparent nonlinear layer, Proc. of the 2023 Int. Conf. on Electromagnetics in Advanced Application,  ICEAA-IEEE’23 Venice, Italy, Oct. 9-13, 2023 – 24th edition, p. 580 (#486). https://ieeexplore.ieee.org/document/10297833/ 
  31. K. Lukin, K. Svechko, L. Yurchenko and H.E. Hernandez-Figueroa. Spatiotemporal Dynamics of Electromagnetic Waves in Resonator with Nonlinearly Reflecting Metasurface. Proc. IMOC-2023. –Barcelona, Spain, Nov. 2023, pp. 34-36. https://doi.org/10.1109/IMOC57131.2023.10379659 
  32. A.J. Nurmagambetov and I.Y. Park. Quantum-induced trans-Planckian energy near horizon, JHEP, V. 05, 2018 167(0-23); https://doi.org/10.1007/JHEP05(2018)167 
  33. A.J. Nurmagambetov and I.Y. Park. Quantum-gravitational trans-Planckian energy of a time-dependent black hole. MDPI, Symmetry, V. 11, 2019, №10, 1303; https://doi.org/10.3390/sym11101303  
  34. A.J. Nurmagambetov and I.Y. Park. Quantum-gravitational trans-Planckian radiation by a rotating black hole. Wiley, Fortsch. Phys. 69, 10 (2021), 2100064; https://doi.org/10.1002/prop.202100064
  35. V.P. Berezovoj, M.I. Konchatnij and A.J. Nurmagambetov. Hallmarks of tunneling dynamics with broken reflective symmetry Nucl.Phys.B 969 (2021), 115483; https://doi.org/10.1016/j.nuclphysb.2021.115483
  36. A.M. Arslanaliev and A.J. Nurmagambetov. Kerr Black Holes within the Membrane Paradigm. Letters in High Energy Physics, LHEP-328 (2022); https://doi.org/10.31526/lhep.2022.328 

Monographs / Book Chapters 

  1.  К.А. Лукин. Отдел нелинейной динамики электронных систем. Зав. отд. проф. д.ф.-м.н. IEEE Fellow К.А. Лукин // К шестидесятилетию Института радиофизики и электроники  им. А. Я. Усикова НАН Украины. 2005-2015 годы. – Розділ в монографії \ під ред. П.Н. Мележика. – Х. – НПП «Контраст», 2015. – 424с.  с. 79-94.
  2. O. Zemlyaniy, K. Lukin. Chaos-Based Spectral Keying Technique for Secure Communication and Covert Data Transmission between Radar Receivers over an Open Network Channel. // Book chapter in: “Telecommunication Networks: Trends and Developments”. Edited by: Dr. M. A. Matin, 2018, p.124., pp.63-79. DOI: 10.5772/intechopen.79027. Print ISBN: 978-1-78985-719-1, Online ISBN: 978-1-78985-720-7, DOI: 10.5772/intechopen.75287
  3. V. Yurchenko, L. Yurchenko. Time-domain simulation of microstrip-connected solid-state oscillators for close-range noise radar applications // Chapter in the book: “Oscillators – Recent Developments”. Edited by: Dr. Patrice Salzenstein. 2019, p.108. Chapter 4 pp. 1-22. DOI: 10.5772/intechopen.81865. ISBN 978-953-51-6882-9. Print ISBN: 978-1-78985-837-2. eBook (PDF) ISBN: 978-1-83881-068-9. https://doi.org/10.5772/intechopen.81865 https://www.intechopen.com/chapters/64786
  4. K. Lukin, D. Tatyanko, V. Palamarchuck, P. Vyplavin, S. Lukin, O. Zemlyanіy, Yu. Shiyan, O. Mishchenko, L. Yurchenko and P.Sushchenko. Noise Stepped-Frequency Radar for High Resolution 2D&3D Imaging // Chapter in the book: Explosives Detection: Sensor, Electronic Systems and Data Processing (published under the NATO Science for Peace and Security series – 2019) Editors: Capineri, Lorenzo, and Turmus, Eyup; Series B: Physics and Biophysics. Publisher: Springer Netherlands. ISBN: 978-94-024-1729-6 (eBook); 978-94-024-1728-9 (Hardcover), DOI 10.1007/978-94-024-1729-6, Number of Pages XIV, 339, pp.284-305. DOI: 10.1007/978-94-024-1729-6, https://www.springer.com/gp/book/9789402417289
  5. S. Prijmenko, K. Lukin. Radiation and Energy Flux of Electromagnetic Fields by a Segment of Relativistic Electron Beam Moving Uniformly in Vacuum // Chapter in the book: Progress in Relativity. / Publisher: IntechOpen Limited, in press / London, UNITED KINGDOM. 2019, рр.1-17. DOI: 10.5772/intechopen.86980.  https://www.intechopen.com/onlinefirst/radiation-and-energy-flux-of-electromagnetic-fields-by-a-segment-of-relativistic-electron-beam-movin
  6. Tomei S., Staglianò D., Lukin K., Palamarchuk V., Lukin S. NORMA: Imaging Noise Radar Network for Covert Air and Maritime Border Security. // Advanced Technologies for Security Applications. Chapter in the book: NATO Science for Peace and Security Series B: Physics and Biophysics, Editor: Palestini C. /. – Publisher: Springer, Dordrecht, 2020. – рр. 153-174.- ISBN978-94-024-2020-3. https://doi.org/10.1007/978-94-024-2021-0_15
  7. Henning Harmuth and Kostyantyn Lukin. Innovation in modern science: Replacing spatial and temporal differentials by their finite differences in relativistic theories. // Monographic series «European Science». – Karlsruhe, Germany: Scientific World-NetAkhatAV, 2023. –Book 20. Part 1. – 100 p. – ISBN 978-3-949059-90-2. https://doi.org/10.30890/2709-2313.2023-20-01

Patents

 1 patent were obtained: – USA

  1.  R. Moreira Neto [BR]; K.A. Lukin [UKR]. System and method for detecting and visualizing targets by airborne radar // BR20151029775 20151127; EC EP3173814 (A1); US2017153325 (A1). 2017. US Patent App. 15/361, 238. https://worldwide.espacenet.com/publicationDetails/biblio?CC=EP&NR=3173814A1&KC=A1&date=&FT=D&locale=en_EP; https://register.epo.org/application?number=EP16200904&lng=en&tab=mainhttps://worldwide.espacenet.com/publicationDetails/biblio?CC=EP&NR=3173814A1&KC=A1&date=&FT=D&locale=en_EP; https://register.epo.org/application?number=EP16200904&lng=en&tab=main

 Before 2015, (list L1)

  1.  Lukin K.A. Initial-boundary Value Problems for Linear Equations of Electrodynamics with Nonlinear Boundary Conditions // Journal of Physics: Conference Series. – 346 (1). – Sept 2, 2012. – 012013, doi:10.1088/1742-6596/346/1/012013.
  2. Земляный О.В., Лукин К.А. Фрактальная размерность аттрактора динамической системы с запаздыванием и кусочно-линейным унимодальным отображением // Радиоэлектроника и информатика. – 2005. – №3(32). – C.8-15.
  3. Zemlyaniy O.V. Experimental Study into a Radio Frequency Band Chaos Oscillator // Telecommunications and Radio Engineering, – 2007. – 66(12). – pp. 1067-1077.
  4. Лукин К.А., Земляный О.В. Влияние вариации задержки на хаотические режимы в системе с запаздывающей обратной связью и амплитудной нелинейностью // Электромагнитные волны и электронные системы. 2008. 13. №1 C.14-20.
  5. Lukin K.A., Shcherbakov V.Ye., Shcherbakov V. New Method for Generation of Quasi-Orthogonal Chaotic Sequences // Applied Radio Electronics. – 2013. – 12, №1. – pp.17–24.
  6. Лукин К. А., Максимов П. П. Режим автоколебаний в резких p–n-переходах с постоянным обратным смещением // Радиофизика и электроника. – Харьков: Ин-т радиофизики и электрон. НАН Украины. – 2008. – 13, № 2. – С. 232-238.
  7. Лукин К. А., Максимов П. П. Терагерцовые автоколебания в инжекционном p–n-переходе с постоянным обратным смещением. // Киевский политехнический институт. Изв. Вуз. Радиоэлектроника. – 2010. – 53. № 8 – C. 16-22.
  8. Лукин К. А., Максимов П. П. Когерентное сложение мощности в лавинно-генераторных диодах // Радиофизика и электроника. – Харьков: Ин-т радиофизики и электрон. НАН Украины. – 2012. – 3 (17), № 4 – С. 70-
  9. Лукин К. А. Максимов П. П., Шиян Ю. А. Преобразование частоты в pn–i–pn-структурах // Радиофизика и электроника. – 2012. – 3 (17), №3 – С. 65-
  10. Lukin K. A., Maksymov P. P. and Hilda A. Cerdeira. Photoelectron multipliers based on avalanche pn–i–pn-structures // The European Physical Journal (EPJ), Special Topics, – 2014. –Vol. 223, – pp.1–11.
  11. Юрченко Л. В., Юрченко В. Б. Моделирование автоколебаний при последовательном включении диодов Ганна в микрополосковую линию // Прикладная радиоэлектроника. – – 6. – № 4. – С. 555–560.
  12. Юрченко Л. В., Юрченко В. Б. Хаотические режимы генерации в протяженной микрополосковой линии с цепочкой диодов Ганна // Радиоэлектроника и информатика. – 2009. – № 3. – C. 14–20.
  13. Юрченко Л. В., Юрченко В. Б. Моделирование процессов генерации серии импульсов диодами Ганна в линиях задержки с параллельным соединением // Радиофизика и электроника. – 2009. – № 3. – C. 371–377.
  14. Юрченко Л. В., Юрченко В. Б. Моделирование во временной области процессов суммирования мощности при параллельном соединении полосковых линий с диодами Ганна // Радиофизика и электроника. – 2013. – 4(18), – №3, – C. 28-36.
  15. Yurchenko L.V., Yurchenko V.B. Bistability and hysteresis in the emergence of pulses in microstrip Gunn-diode circuits // AIP Advances. – 4. №. 12. – P. 127126 (12)
  16. Lukin K.A., Kulik V.V., Zemlyaniy O.V. Random Waveform Generators for Noise Radar // Applied Radio Electronics, 4, №1. pp. 74-79.
  17. Zemlyaniy O.V., Lukin S.K. FPGA based design of random waveform generators for noise radars // Applied Radio Electronics, –2013. – 12, №.1. – pp. 32-36.
  18. Lukin K.A., Konovalov V.M., Vyplavin P. Stepped Delay Noise Radar with  High Dynamic Range // Proc. 11th International Radar Symposium IRS-2010, Vilnius, June 16-18, 2010.  2. pp. 501-503.
  19. Lukin K.A., Vyplavin P.L., Palamarchuk V.P., Lukin S.K., Zemlyaniy O.V. High Resolution Noise Radar without fast ADC // International Journal of Electronics and Telecommunications (JET), 2012. – 58, №2. – pp.135-140.
  20. Lukin K.A., Moreira J.R., Vyplavin P.L., Zemlyaniy O.V., Lukin S.K. FPGA based software defined noise radar // Applied Radio Electronics, – 2013. –12, №.1. – pp. 89-94.
  21. Могила А.А., Лукин К.А. Двухпараметрическое представление случайных сигналов: Модели и оценка статистических характеристик // Saarbrücken: LAP Lambert Academic Publishing, 2012. – 200 с. – ISBN 978-3-8383-9622-4. 
  22. Lukin K.A. Sliding Antennas for Noise Waveform SAR // Applied Radio Electronics, April 2005. – 4, №.1. – 103-106.
  23. Лукин К.А. Сканирующие антенны с синтезированием диаграммы направленности // Изв. Вуз. – Радиоэлектроника. – 2010, – 53, №4. – С.58-64.
  24. Lukin K.A. Scanning Synthetic Radiation Pattern Antennas. Radioelectronics and Communications Systems // – 53 (2010). – pp.219-224.
  25. Лукин К.А., Паламарчук В.П., Юрченко Л.В., Заец Н.К. Cканирующие антенны с синтезированием диаграммы направленности // Прикладная радиоэлектроника, – 2015, –14, № 1. – С. 79-86.
  26. Лукин К.А., Могила А.А., Выплавин П.Л. Получение изображений с помощью неподвижной антенной решетки, шумовых сигналов и метода синтезированной апертуры // Радиофизика и электроника. – Харьков: Ин-т радиофизики и электроники НАН Украины. – 2007. – 12, № 3. – С.526-531.
  27. Lukin K.A. Millimeter-Wave Band Noise Radar, Telecommunications and Radioengineering – 2009. – 68,  – pp.1229-1255.
  28. Tarchi D., Lukin K., Fortuny-Guach J., et al. SAR imaging with noise radar // IEEE Transactions on Aerospace and Electronic systems. – 2010. – 46, №3. – pp.1214-1225
  29. Lukin K.A., et al. Ka-band Bistaic Ground-Based Noise Waveform SAR for Short-Range Applications // IET Proc. Radar Sonar & Navigation, August 2008. – –pp. 233-243.
  30. Lukin K.A., Mogila A.A., Vyplavin P.L., Galati, Pavan G. Novel concepts for surface movement radar design // International Journal of Microwave and Wireless Technologies, Cambridge University Press, – 2009. – 1. – pp. 163-169.
  31. Лукин К.А., Коновалов В.М. Когерентная компенсация мощных мешающих отражений в локаторах с периодическими сигналами // Прикладная радиоэлектроника. – –11, № 1. – С. 3-14.
  32. Lukin K.А., Konovalov V.M. Through the wall detection of human beings using noise radar sensors // Proc. IRS 2006, – Krakow, Poland, May 24 – 26, 2006. – pp. 15-1 – 15-5.
  33. Lukin, K.A., Mogyla, A.A., Palamarchuk V.P. et al. Measurement of Shifts in Bell Tower of Sophia Cathedral Using Ka-band Noise Waveform SAR // Proc. of the MRRS 2008. – 134-137.
  34. Lukin K.A., Palamarchuk V. P., Vyplavin P.L. and Kudriashov V. Experimental Investigation of Factors Affecting Stability of Interferometric Measurements with Ground Based Noise Waveform SAR // International Journal of Electronics and Telecommunications. – 2011. – 57, №. 3. – pp. 389-393.
  35. Лукин К.А., Кульпа К., Паламарчук В.П. и др. Экспериментальная оценка точности измерения сдвигов объекта при использовании метода дифференциальной РСА интерферометрии // Прикладная радиоэлектроника. – 2012. – 11, № 3. – С. 366–372.
  36. Lukin K., Kulpa K., Mogyla A., et al. Quality Enhancement of Image Generated with Bistatic Ground Based Noise Waveform SAR // IET Radar, Sonar & Navigation – 2008. – 2, №.4. – pp. 263-273. 
  37. Лукин К.А., Васюта К.С., Зоц Ф.Ф. и др. Получение радиолокационных портретов образцов военной техники с помощью наземного шумового радара с синтезированной апертурой // СИСТЕМИ ОЗБРОЄННЯ І ВІЙСЬКОВА ТЕХНІКА. Науковий журнал. – 2013. – Т. 4(36) – С. 87–92.
  38. Kudriashov V.V, Lukin K.A. et al. Range-azimuth coherent radiometric imaging based on ka-band antenna with beam synthesis // Applied Radioelectronics, – 2012, – 11, № 3, – pp.328-334.
  39. Kudryashov V.V., Lukin K.A., Palamarchuk V.P., Vyplavin P.L. Coherent radiometric imaging with a Ka-band ground-based synthetic aperture noise radar // Telecommunications and Radio Engineering, – 72, № 8. – pp. 699-710.
  40. Lukin K.A., Kudriashov V.V., Palamarchuk V.P., Vyplavin P.L. Formation of coherent radiometric images in Ka-band using ground-based noise radar with antenna pattern synthesizing // Radiophysics and Electronics, – 2012, – 3 (17), № 3. – pp. 41-47.
  41. Lukin K., Kudriashov V., Vyplavin P. and Palamarchuk V. Coherent imaging in the range-azimuth plane using a bistatic radiometer based on antennas with beam synthesizing // IEEE Aerospace and Electronic Systems Magazine. – 29, № 7. – 2014. – pp. 16-22.
  42. Lukin K.A., Kudriashov V.V., Vyplavin P.L., et al. Coherent radiometric imaging using antennas with beam synthesizing // International Journal of Microwave and Wireless Technologies. –2015.
  43. Лукин К.А., Мачехин Ю.П., Данаилов М.Б., Татьянко Д.Н. Применение метода спектральной интерферометрии для измерения микро- и нанорасстояний. // Радіофізика та електроніка. – 2011. – Т.2 (16), №1. – С. 39-45.
  44. Lukin K.A., Machekhin Yu.P., Danailow M.B., Tatyanko D.N. Application of the Spectral Interferometry Method for Micro- and Nanodistance Measurement // Telecommunications and Radio Engineering. – 2011. – 70, №17. – pp. 1579 – 1591.
  45. Lukin K.A., Danailow M.B., Machekhin Yu.P., Tatyanko D.N. Nano-distance measurements using spectral interferometry based on light-emitting diodes. // Applied radio electronics. – 2013. – 12, № 1. – pp. 166-171.
  46. Lukin K.A., Machekhin P., Tatyanko D.N., Danailov M.B. Metrological maintenance of standard optical frequency grid for WDM telecommunications // Telecommunications and Radio Engineering. – 2013. – 72 (18). – pp.1665-1676.
  47. Kim J.P., Tatyanko D.N., Lukin K.A., Zemlyaniy O.V. Phase shift measurement of optical noise waveform modulation envelope // Applied Radio Electronics. –2013. – 12, №1. – pp.175-179.
  48. Татьянко Д.Н., Мачехин Ю.П., Лукин К.А. Влияние поляризации оптического излучения на фототок различных моделей трап-детекторов // Радиотехника. – 2014. – №176. – С.172-180.
  49. Patent No. US 6,720,920 B2, USA, Current S. Class: 342/386; 342/357.31. Method and arrangement for communicating between vehicles / D. S. Breed, W. E. DuVall, W.C. Johnson, K.A. Lukin, V.N. Konovalov; Assignee: ITI, Inc.; Filed: 09.04.02, Patented: 13.04.04.
  50. Commutication method and arrangement: United States Patent No.: US 7110880B2, U.S. Class: 701/207340/995.13; 701/117 / David S. Breed, Wilbur E. DuVall, Wendell C. Johnson, Kostyantyn Alexandrovich Lukin, Vladymyr Michailovich Konovalov. – Appl. No.: 11/028,386 Filed: 03.01.05, Patented: 19.09.06.; Prior Publication Data: Jun. 23, 2005, US 2005/0137786 A1.
  51. Лукин К.А., Щербаков В.Е., Коновалов В.М., Брид Д.С. Метод построения самоорганизующейся системы связи между транспортными средствами на автобане // Радіоелектронні і комп’ютерні системи, Харків «ХАІ». – 2007. – №6(25). – С. 238-244.
  52. Лукин К.А., Щербаков В.Е. Метод формирования квазиортогональных хаотических кодовых сигналов для системы передачи/приема данных между транспортными средствами на автобане // Прикладная радиоэлектроника, 2012, том 11, №1, с. 37 – 43.
  53. Щербаков В.Е., Лукин К.А. Моделирование системы передачи/приема данных между транспортными средствами на автобане // Радіоелектронні і компп’ютерні системи. – – №7(41). – С. 288 – 294.
  54. Lukin K.A. Evolution of Wave Packet in Quantum Box: Novel Approach to the Problem. Proc. of DAYS on DIFFRACTION, DD-2006, May 30 – June 2, 2006, St. Petersburg, Russia.
  55. Болотин Ю.Л., Вакульчик И.Ю., Лукин К.А., Черкасский В.А. Смешанное состояние в составном кольцевом биллиарде // Радиофизика и электроника. – –3(18), № 3. – С. 55-62.
  56. Rusov V.D., Lukin K.A., Vlasenko D.S. Schrödinger Equation as Equation for Stable Motion of Classical Particles in Fluctuation-Dissipative Environment // Proc. Third Int. Conf. on Quantum Electrodynamics and Statistical Physics (Kharkov, Ukraine, 29 August – 2 September 2011). – 127.
  57. Lukin K.A., Rusov D. Quantum mechanical motion of classical particles // Journal of Physics: Conf. Ser. 361 (2012), 012040, doi:10.1088/1742-6596/361/1/012040.
  58. Lukin K.А. Vacuum Microwave Integrated Circuits as a Tool for Protection of Radar and Communication Receivers  against High Power EMI and ionizing radiation. Applied Radioelectronics, 2012, Том 11, № 4, pp. 498 -500.
  59. Лукин К.А., Хуторян Э.М., Цвык А.И. Многомодовые колебания в ГДИ // Радиофизика и электроника. – –13,№ 3. – С.535-545.
  60. Лукин К. А., Хуторян Э. М. Взаимодействие мод в резонаторе поверхностной волны с электронным потоком // Радиофизика и электроника. – –15,№ 2. – С.92-101.
  61. Sattorov M., Khutoryan E., Lukin K., Kwon O., and Park G.-S. Improved efficiency of backward-wave oscillator with an inclined electron beam // IEEE Trans. Electron Devices, Jan. 2013. – 60, № 1. – 458–463.
  62. Khutoryan E., Sattorov M., Lukin K.A., Park Gun-Sik et al. Automodulation Processes in Clinotrons with Low-Focusing Magnetic Field // IEEE Transactions Electron Devices. May 2015 – 62 (5). – pp.1617-1621
  63. Khutoryan E., Sattorov M., Lukin K.A., Park Gun-Sik et al. Theory of Multimode Resonant Backward-Wave Oscillator with an Inclined Electron Beam // IEEE Trans. Electron Devices, May 2015. – 62 (5) – pp.1628-1634.
  64. Лукин К. А. Теория автоколебаний в приборах дифракционной электроники: Дис. на соискание научн. степени докт. физ.-мат. наук, ИРЭ АН УССР, Харьков, 1987, 431 c. (Рукопись).
  65. Евдокименко Ю. И., Лукин К. А., Ревин И. Д., Скрынник Б. К. Особенности работы ГДИ на высших модах открытого резонатора // Журн. техн. физики. – 1982. – 52, № 3. -С.525-528.
  66. Евдокименко Ю. И., Лукин К. А., Ревин И. Д. и др. О новом механизме возбуждения ГДИ-ЛСЭ // Докл. АН СССР. – 1982. – 265, № 2. – С.318-321;
  67. Евдокименко Ю. И., Лукин К. А., Ревин И. Д. и др. Об одной особенности преобразования энергии в ГДИ-ЛСЭ // Докл. АН СССР. – 1983. – 268, № 4. – С.853-
  68. Lukin K.A. ‘Theoretical analysis of stationary modes in a diffraction radiation generator with a reflected beam’ Radiofizika, vol. 23, no. 9, 1980, p. 1113-1118. Radiophysics and Quantum Electronics, vol. 23, no. 9, Mar. 1981, p. 743-747.
  69. Ермак Г. П., Лебедев А. Б., Лукин К. А. и др. Автодинный эффект в генераторе дифракционного излучения // Изв. вузов. Радиофизика. – 1986. – 29, № 8. – С.957-965.
  70. Лукин К. А. Параметрическая неустойчивость ансамбля линейных электронных осцилляторов в фазоинверсном электромагнитном поле // Вопросы атомной науки и техники. Сер. Плазменная электроника и новые методы ускорения. – 2004. – № 4. – С.80-85.
  71. Максимов П. П. Нелинейная стационарная теория отражательных ГДИ // Сб. научн. тр.: Использование радиоволн миллиметрового диапазонов. – Харьков: ИРЭ НАН Украины,1993. С.79-89.
  72. Максимов П. П. Линейная аналитическая теория отражательных ГДИ // Сб. научн. тр.: Использование радиоволн мм и субмм диапазонов. – Харьков: ИРЭ НАН Украины, 1993.С.70 – 78.
  73. Лукин К. А., Шестопалов В. П. Рассеяние электромагнитных волн на границе с нелинейным отражением. – Харьков, 1985. – 15 с. – (Препр. / АН УССР. Ин-т радиофизики и электрон.; № 288).
  74. Лукин К. А., Майстренко Ю. Л., Шарковский А. Н., Шестопалов В. П. Метод разностных уравнений в резонансной задаче с нелинейным отражением // Докл. АН СССР. – 1989. – 309, № 2. – С.327-331.
  75. Лукин К.А., Шестопалов В.П. Теория ГДИ с внутренней запаздывающей обратной связью // Квазиоптическая техника миллиметрового и субмиллиметрового диапазонов волн. – Харьков, Ин-т радиофизики и электрон. АН УССР. – 1989. – С.5-19.
  76. .Lukin K.A., Cerdeira H.A., and Colavita A.A. Current Oscillations in Avalanche Particle Detectors with pnipn-Structure // IEEE Trans. on Electron Devices 43. – 1996. – Р.473.
  77. Лукин К. А., Максимов П. П. Модифицированный метод встречной прогонки // Радиофизика и электроника. – Харьков: Ин-т радиофизики и электрон. НАН Украины. – 1999. – 4, № 1. – С.87-92.
  78. Lukin K.A., Cerdeira H.A., and Colavita A.A. Chaotic instability of current in reverse biased PNINP-structures // Applied Physics Letters. – 1997. – 71(17). – Р.2484.
  79. Lukin K.A., Cerdeira H.A., and Maksymov P.P. Self-Oscillations in Reverse Biased pn-junction with Current Injection // Applied Physics Letters. – 2003. – 83, N 20. – Р.4643-4646.
  80. Lukin K.A., Cerdeira H.A., Colavita A.A., and Maksymov P.P. Internal amplification of current pulses inside a reverse-biased PNIPN-structure //Journal of Modelling and Simulation. -2003. – 23, N 1. – Р.1-8.
  81. Yurchenko L.V. Dynamic Chaos in a Two-Dimentional Cavity Resonator Having an Active Wall with N Type Current-Voltage Characteristic // Telecommunications and Radio Engineering. – 1998. – 52, N 4. – Р.71-77.
  82. Yurchenko V.B. and Yurchenko L.V. Time-Domain Simulation of Power Combining in a Chain of THz Gunn Diodes in a Transmission Line // J. Infrared and Millimetre Waves. – 2004. –25. – Р.43-54.
  83. Harmuth H.F. and Lukin К.A. Interstellar Propagation of Electromagnetic Signals, Kluwer Academic / Plenum Publishers. – N.-Y.: 2000. – Р.277.
  84. Могила А.А., Лукин К.А. Двухпараметрическое представление нестационарных случайных сигналов с конечной средневзвешенной энергией // Радиофизика и электроника. – Харьков: Ин-т радиофизики и электрон. НАН Украины. – 1996. – С.118 -120.
  85. Могила А.А. Взаимосвязь двупараметрических представлений случайных сигналов с конечной энергией в различных ортонормированных базисах // Радиофизика и электроника. – Харьков: Ин-т радиофизики и электрон. НАН Украины. – 2000. – 5, № 3. – С.131-136.
  86. Могила А.А., Лукин К.А. Взаимосвязь одно- и двухпараметрических представлений случайных сигналов с конечной энергией // Радиофизика и электроника. – Харьков, Ин-т радиофизики и электрон. НАН Украины. – 2001. – 6, № 2-3. – с.320-326.
  87. Lukin K.A., Kulik V.V. and Zemlyaniy O.V. Random Waveform Generators for Noise Radar // Applied Radio Electronics. – 2005. – 4, N 1. – Р.104-110.
  88. Земляный О. В., Лукин К. А. Корреляционно-спектральные свойства хаоса в нелинейной динамической системе с запаздыванием и асимметричным нелинейным отображением // Радиофизика и электроника. – Харьков: Ин-т радиофизики и электрон. НАН Украины. – 2002. – 7, № 2. – С.406-414.
  89. Kulik V.V., Lukin K.A., Rakityansky V.A. Autodyne effect in the Weak-Resonant BWO with chaotic dynamics // Int. Journal of Infrared and Millimeter Waves. – 1998. – 19, N 3. -P.427-440.
  90. Mogyla A.A., Lukin K.A., Shyian Yu.A. Relay-Type Noise Correlation Radar for the Measurement of Range and Vector Range Rate // Telecommunications and Radio Engineering. -2002. – 57, N 2-3. – Р.175-183.
  91. Lukin K.A., Mogyla A.A., Alexandrov Yu.A. Fast Correlator for Coherent Reception of Noise Radar Return in Real Time Scale // The First International Workshop on the Noise Radar Technology, NRTW-2002, (18-20 Sept. 2002), Yalta, Crimea, Ukraine: Proc. – Р.157-164.
  92. Лукин К.А. Шумовая радарная технология // Радиофизика и электроника. – Харьков: Ин-т радиофизики и электрон. ИРЭ НАН Украины. – 1999. – 4, № 3. – С.105-111.
  93. of The First International Workshop on Noise Radar Technology / Ed. by Konstantin Lukin and William Miceli, (18-20 Sept. 2002, Yalta, Crimea, Ukraine). – 2002. – 280 р.
  94. of the International Conference on Noise Radar Technology, NRT-2003 / Ed. by Konstantin Lukin and William Miceli, (Oct. 2003), Applied Radio Electronics, Kharkоv. – 2005. – 1. – 142 р.
  95. Lukin K.A. and Rakityansky V.A. Sources of millimeter noise oscillations // Int. Symposium “Physics and Engineering of Millimeter and Submillimeter Waves (7-10 June 1995, Kharkov, Ukraine): Proc. – 2. – P.322-324.
  96. Кулик В.В., Лукин К.А. и Ракитянский В.А. Модификация метода двойной спектральной обработки шумовых сигналов // Укр. метрологический журн. – 1997. – 4. – С.28-32.
  97. Mogyla A.A., Lukin K.A., and Kulyk V.V. Statistical Errors of Ranging in the Spectral Interferometry Technique // Telecommunications and Radio Engineering. – 2001. – 55. – Р.10-11.
  98. Lukin K.A., Kulyk V.V. and Mogyla A.A. Spectral Interferometry Method and Autodyne (self-mixing). Effect for Noise Radar Applications // The first Int. Workshop on the Noise Radar Technology, NRTW-2002 (Sept. 18-20, 2002, Yalta, Crimea, Ukraine): Proc. – 2002. – Р.179-186.
  99. Tarchi D., Leva D., Lukin K.A. et. al. Short range imaging applications of noise radar technology / 3rd European Conference on Synthetic Aperture Radar, EUSAR 2000 (23-25 May 2000, Munich, Germany): Proc. – 2000. – Р.361-364.
  100. Lukin K.A. A Novel Approach to Scanning Antenna Design // 4-th Int. Conf. on Antenna Theory and Techniques, ICATT-2004, 2003, Sevastopol: Proc. – 2. – Р.290-293
  101. Lukin K. A. Synthetic Aperture Scanning Antennas // 5-th European Conference on Synthetic Aperture Radar, EUSAR2004 (May 25-27, Ulm, Germany): Proc. 2. – Р.679-672.
  102. Lukin K. A. Sliding Antennas for Synthetic Aperture Radar // Applied Radio Electronics. Special Issue on Noise Radar Technology. – 2005. – 4, N 1. – P.103-106.
  103. Lukin K. A., Natarov M. P., Scresanov V. N. Synthetic Aperture Antenna for Near Field Applications // 4-th Int. Conf. on Antenna Theory and Techniques, ICATT’04, (2003, Sevastopol): Proc. – 2003. – 2. – Р.290-293.
  104. Glamazdin V. V., Lukin K. A., Moreira J., Scresanov V. N. 2D Tape Scanner Antenna for Microwave Holography // 5-th Int. Conf. on Antenna Theory and Techniques, ICATT’05 (2005, Kiev): Proc. – 2005. – 2. – Р.250-253.
  105. Yurchenko L. V. Proper Solution to the Dense Electron Beam Synthesis Problem // Telecommunications and Radio Engineering. – 1998. – 51, N 8. – Р.43-47.
  106. Yurchenko V. B. and Yurchenko L. V. Alternative Approach to the Numerical Synthesis of the Dense-Ion-Beam Focusing Systems // Phys. Rev. E. – 2001. – 63. – Р.1-5.
  107. Yurchenko V. B. and Yurchenko L. V. Nonlinear Dynamics of the Semiquantal Ballistic Electrons in Superlattices under the Strong Microwave Excitation // Radioelektronika i informatika (Radio Electronics and Informatics). 2005. No. 2, PP. 23-28. – Russ.
  108. Yurchenko L. V. and Yurchenko V. B. Semiquantal Dynamics of Electrons in Quantum Heterostructures // NATO Science Series. 3. High Technology. – 1998. – 48. – Р.83-87.
  109. Yurchenko V. B., Murphy J. A., and Lamarre J.-M. Fast Physical Optics Simulations of the Multi-Beam Dual-Reflector Submillimeter-Wave Telescope on the ESA PLANCK Surveyor // J. Infrared and Millimeter Waves. – 2001. – 22. – Р.173-184.
  110. Lamarre J. M., Puget J. L., Bouchet F. et. al. The Planck High Frequency Instrument, a third generation CMB experiment, and a full sky submillimeter survey // New Astronomy Review. -2003. – 47. – Р.1017-1024.
  111. Yurchenko V. B., Murphy J. A., Lamarre J.-M., and Brossard J. Gaussian Fitting Parameters of the ESA Planck HFI Beams // Int. J. Infrared and Millimeter Waves. – 2004. – 25. – Р.601-616.
  112. Yurchenko V. B., Murphy J. A., and Lamarre J.-M. Ultrafast multireflector physical-optics beam simulations for the HFI instrument on the ESA PLANCK Surveyor // Proc. SPIE. – 2004. – 5487. – Р.542-549.
  113. Yurchenko V.B. Improving the Accuracy of a Time Lens // JOSA B, 14, 2921-2924 (1997)
  114. Slutskin A.A. and Yurchenko V.B. Multi-Valued Current-Voltage Characteristics of the Corbino Disk under the Temperature-Electrical Instability // Lithuanian J. Phys., 35, 440-444 (1995)
  115. Yurchenko V.B. Theoretical Analysis of the Mechanism of Electron Super-emission from Semiconductors in a Strong Microwave Field // Telecommunications and radioengineering, 1998. – Vol.52, No.4. – рр. 78-84
  116. Yurchenko V.B. Hot-Electron Thermoelectric Phenomena in Submicron-Thick Structures // Lithuanian J. Phys., 35, 456-460 (1995)
  117. Yurchenko B. Hot-Carrier Effects in Graded-Gap Semiconductor Solar Cells Proc. “Renewable Energy”, 1994, Vol.5, Pt.3, pp.1611-1613
  118. Yurchenko V.B., Boiko B.T., Khripunov G.S., Ruda H.E. Photovoltaic properties in CdS/CdTe thin-film heterosystems with graded-gap interfaces // Solar Energy Materials and Solar Cells, 1997, Vol.45, No.4, рр. 303-308
  119. Yurchenko V.B. Extra Oscillations in Periodically Doped Structures with Negative Differential Resistance // Lithuanian J. Phys. – 1992. – Vol. 32, No. 5 Suppl. – P. 181–184.
  120. А.с. СССР № 1134037. Способ усиления электромагнитной волны / К. А. Лукин, В. Г. Курин, Б. К. Скрынник, В. П. Шестопалов. – 1984.

Ph.D Theses Abstracts

M. Tatyanko (2014), V. V. Kudryashov (2013), P. L. Vyplavin (2011), O. V. Zemlyaniy (2009), V. V Kulyk (2005), V. I. Afanasyev (2002), A. A. Mohyla (1998), V. S. Korostylеv (1993), A. B. Lebedev (1991), V. O. Rakityanskyi (1990).

  1. Татьянко Д.М. Оптичні прилади на основі низько-когерентної спектральної інтерферометрії. автореф. дис. … канд. фіз.-мат. наук: 01.04.01 «Фізика приладів, елементів і систем» / Дмитро Миколайович Татьянко; Ін-т радіофізики та електрон. ім. О.Я.Усикова НАН України. — Х., 2014. — 23 с. — укp.
  2. Кудряшов В.В. Формування радіометричних зображень за допомогою бістатичного радіометра на основі антен із синтезованою діаграмою спрямованості: автореф. дис. … канд. фіз.-мат. наук: 01.04.03 «Радіофізика» / Володимир Вікторович Кудряшов; Ін-т радіофізики та електрон. ім. О.Я.Усикова НАН України. — Х., 2013. — 19 с. — укp.
  3. Земляний О.В. Хаотичні автоколивання в широкосмугових генераторах із затримкою та амплітудною нелінійністю: автореф. дис. … канд. фіз.-мат. наук: 01.04.03 «Радіофізика» / Олег Васильович Земляний; Ін-т радіофізики та електрон. ім. О.Я.Усикова НАН України. — Х., 2008. — 20 с. — укp.
  4. Виплавін П. Л. Формування когерентних зображень за допомогою наземних шумових радарів з синтезованою апертурою: автореф. дис. … канд. фіз.-мат. наук: 01.04.03 «Радіофізика» / Павло Леонідович Виплавін; НАН України, Ін-т радіофізики та електроніки ім. О Я. Усикова. — Х., 2011. — 20 с.: рис. — укp.
  5. Кулик В.В. Автодинний ефект в НВЧ генераторах хаотичних коливань: автореф. дис. … канд. фіз.-мат. наук: 01.04.03 «Радіофізика» / Володимир Васильович Кулік; НАН України, Ін-т радіофізики та електроніки ім. О Я. Усикова. — Х., 2005. — 16 с.: рис. — укp.
  6. Афанас’єв В.І. Електромагнітне випромінювання і тепловий вплив високопервеансних електронних потоків: автореф. дис. … канд. фіз.-мат. наук: 01.04.04 «Фізична електроніка» / Віктор Ілліч Афанас’єв; НАН України, Ін-т радіофізики та електроніки ім. О Я. Усикова. — Х., 2002. — 16 с.: рис. — укp.
  7. Могила А.А. Двопараметричний розклад та оцінка статистичних характеристик нестаціонарних радіолокаційних сигналів: автореф. дис. … канд. фіз.-мат. наук: 01.04.03 «Радіофізика» / Анатолій Андрійович Могила; НАН України, Ін-т радіофізики та електроніки ім. О Я. Усикова. — Х., 1998. — 16 с.: рис. — укp.
  8. Коростелев В.С. Когерентные ГДИ-РЛС коротковолновой части мм волн непрерывного действия для дистанционного зондирования природной среды: автореф. дис. … канд. физ.-мат. наук: 04.03 «Радиофизика» / Валерий Сергеевич Коростелев: ИРЭ АН УССР — Х., 1991. — 21 с.: рис. — рус.
  9. Лебедев А.Б. Теория автодинного эффекта в автоколебательных системах с длительным взаимодействием электронного потока и поля открытого резонатора: автореф. дис. … канд. физ.-мат. наук: 04.03 «Радиофизика» / Анатолий Борисович Лебедев: ИРЭ АН УССР — Х., 1990. — 16 с.: рис. — рус.
  10. Ракитянский В. А. Генерация регулярных и стохастических колебаний в слаборезонансных лампах обратной волны: автореф. дис. … канд. физ.-мат. наук: 04.03 «Радиофизика» / Владимир Александрович Ракитянский: ИРЭ АН УССР — Х., 1990. — 16 с.: рис. — рус.

 Monographs / Book Chapters 

  1. Harmuth H. F. and Lukin К. A. Interstellar Propagation of Electromagnetic Signals, // Kluwer Academic / Plenum Publishers. – N.-Y.: 2000. – Р.277.
  2. Могила А.А., Лукин К.А. Двухпараметрическое представление случайных сигналов: Модели и оценка статистических характеристик // Saarbrücken: LAP Lambert Academic Publishing, 2012. – 200 с. – ISBN 978-3-8383-9622-4.
  3. H F Harmuth, K A Lukin. Interstellar propagation of electromagnetic signals. // Springer, Boston, MA Print, 2012, р.277. ISBN 978-1-4613-6906-6, Online ISBN 978-1-4615-4247-6 eBook Packages Springer Book Archive https://doi.org/10.1007/978-1-4615-4247-6_5
  4. Лукин К.А. Мой Шеф. Розділ в монографії / Академик НАН Украины Виктор Петрович Шестопалов. Служение науке. // Харьков: ИПП «Контраст», 2012. – 423 с., с. 29-30.
  5. Лукин К.А. Воспоминание о моем учителе Викторе Петровиче Шестопалове. Розділ в монографії \ Академик НАН Украины Виктор Петрович Шестопалов. Служение науке. Харьков: ИПП «Контраст», 2012. – 423 с., с.102-111.
  6. В.Г. Зима, О.Ю. Нурмагамбетов. Фізика частинок від атомів до кварків. Монографія (рос.мовою). Видавництво ХНУ ім. В.Н. Каразіна, 2014, 268с. http://www.univer.kharkov.ua/images/redactor/news/2015-02-02/ Zima.pdf

Patents

8 patents were obtained: 3- Ukraine, 4 – USA and 1 author’s certificate (USSR).

  1. Сцинтиляційний детектор: патент на корисну модель 73483 Україна: МПК G01T 1/20 (2006.01) / Мачехін Ю. П., Татьянко Д. М., Лукін К. О. – № u 2012 02867; заявл. 12.03.2012; опубл. 25.09.2012, Бюл. № 18/2012.
  2. Спосіб формування екстремумів спектра оптичних частот: патент на корисну модель 64484 Україна: МПК (2011.01) H04J 1/00 / Лукін К. О., Мачехін Ю. П., Татьянко Д. М. , Меркулов Є. Г. – № u201104371; заявл. 11.04.2011; опубл. 10.11.2011, Бюл. № 21/2011.
  3. Трап-детектор: патент на винахід 87197 Укрїина: МПК (2009) G01J 5/02, G01J 5/20, G01J 1/42 / Татьянко Д. М. – № a200710120; заявл. 10.09.2007; опубл. 25.06.2009, Бюл. № 12/2009.
  4. Information transfer arrangement and method for vehicles: United States Patent No.: US7912645B2: Int.Cl. G01C 21/00 (2006.01), G08G 1/137 (2006.1) / David S. Breed, Wilbur E. DuVall, Wendell C. Johnson, Kostyantyn Alexandrovich Lukin. – Appl. No.: 11/778,127; Filed: Jul. 16, 2007; Prior Publication Data: Jan. 17, 2008, US 2008/0015771 A1.
  5. Collision avoidance methods and systems: United States Patent No.: US7418346B2: Int.Cl. G08G 1/16 (2006.01) / David S. Breed, Wilbur E. DuVall, Wendell C. Johnson, Kostyantyn Alexandrovich Lukin. – Appl. No.: 11/461,619; Filed: Aug. 1, 2006; Prior Publication Data: Jan. 25, 2007, US 2007/0021915 A1.
  6. Commutication method and arrangement: United States Patent No.: US 7110880B2, U.S. Class: 701/207340/995.13; 701/117 / David S. Breed, Wilbur E. DuVall, Wendell C. Johnson, Kostyantyn Alexandrovich Lukin, Vladymyr Michailovich Konovalov. – Appl. No.: 11/028,386 Filed: 03.01.05, Patented: 19.09.06.; Prior Publication Data: Jun. 23, 2005, US 2005/0137786 A1.
  7. Patent No. US 6,720,920 B2, USA, Current S. Class: 342/386; 342/357.31. Method and arrangement for communicating between vehicles / D. S. Breed, W. E. DuVall, W.C. Johnson, K.A. Lukin, V.N. Konovalov; Assignee: ITI, Inc.; Filed: 09.04.02, Patented: 13.04.04.
  8. А.с. СССР № 1134037. Способ усиления электромагнитной волны / К. А. Лукин, В. Г. Курин, Б. К. Скрынник, В. П. Шестопалов. – 1984.

Publications by chronology:

2023

Journal Papers

  1. E. Khutoryan, A. Kuleshov, S. Ponomarenko, K. Lukin, Y. Tatematsu and M. Tani. The Regime of the Efficiency Increase by Use of Long Circuits in the THz Cherenkov Oscillator. // IEEE Transactions on Electron Devices. – Oct. 2023 – Vol. 70, no.10, pp. 5319-5326. https://ieeexplore.ieee.org/document/10216932/
  2. K. Lukin, V. Palamarchuk, O. Zemlyaniy, D. Tatyanko et al. Ku-Band (sub-THz) Demonstrator of Microwave Video Camera. // URSI Radio Science Letters. – 2023. – Vol.4. –P.59-63. DOI: 10.46620/22-0059  https://www.ursi.org/Publications/RadioScienceLetters/Volume4/RSL22-0059-final.pdf
  3. I. Shostko, A. Tevyashev, O. Zemlyaniy, D. Tsybulnykov. Designing and testing a prototype of optical-electronic station for detecting and tracking moving objects in the air. // Eastern-European Journal of Enterprise Technologies, 6 (5 (126)), 2023, pp.36–42. https://doi.org/10.15587/1729-4061.2023.295101
  4. A.M. Arslanaliev, A.J. Nurmagambetov. Taking the Null-Hypersurface Limit in the Parikh-Wilczek Membrane Approach. // Preprint https://arxiv.org/abs/2309.14036

Monographs / Book Chapters

  1. Hening Harmuth and Kostyantyn Lukin. Innovation in modern science: Replacing spatial and temporal differentials by their finite differences in relativistic theories. // Monographic series «European Science». – Karlsruhe, Germany: ScientificWorld-NetAkhatAV, 2023. – Book 20. Part 1. – 100 p. – ISBN 978-3-949059-90-2. https://doi.org/10.30890/2709-2313.2023-20-01

Conferences Proceedings

  1. K. Lukin, E. Khutoryan, H. A. Cerdeira, A. Kuleshov, L. Yurchenko, S. Ponomarenko. Current Instabilities in Vacuum Electron Devices and Semiconductor Avalanche Diodes for Generation of THz Oscillations. // 2023 International Conference on Optical MEMS and Nanophotonics (OMN) and SBFoton International Optics and Photonics Conference(SBFoton IOPC), Campinas, Brazil, 2023. – Invited paper. – P.1-4. https://doi.org/10.1109/OMN/SBFotonIOPC58971.2023.10230944
  2. K. Lukin, D. Tatyanko and S. Lukin. Applications of Spectral Interferometry in Sub-THz, Infrared and Optical Frequency Ranges. // 2023 International Conference on Optical MEMS and Nanophotonics (OMN) and SBFoton International Optics and Photonics Conference (SBFoton IOPC), Campinas, Brazil, 2023. – P.1-2. https://ieeexplore.ieee.org/document/10230936/
  3. J. Góes, Gian Oré, K. Lukin and H. E. Hernández Figueroa. Refraction Effect in SAR Processing for Focused Subsurface Tomography. Presented at IMOC-2023. – Barcelona, Spain, Nov. 2023, pp. 256–258. https://ieeexplore.ieee.org/document/10379707/
  4. K. Lukin, K. Svechko, L. Yurchenko and H.E. Hernandez-Figueroa. Spatiotemporal Dynamics of Electromagnetic Waves in Resonator with Nonlinearly Reflecting Metasurface. // Proc. IMOC-2023. – Barcelona, Spain, Nov. 2023, pp. 34-36. https://doi.org/10.1109/IMOC57131.2023.10379659
  5. K. Lukin, H.E. Hernades-Figueroa, and K. Svechko. Chaotic dynamics of electromagnetic field in plane-parallel resonator with semitransparent nonlinear layer. // Proceedings of the 2023 International Conference on Electromagnetics in Advanced Applications  ICEAA-IEEE’23 Venice, Italy, Oct. 9-13, 2023 – 24th edition, p. 580 (#486).  https://ieeexplore.ieee.org/document/10297833/
  6. K. Lukin, Ed. Khutoryan, A. Kuleshov and S. Ponomarenko. Electrodynamic Modes Interaction in Clinotron Cavity with Bi-Periodic Grating. // Proc. of URSI GASS 2023. – Sapporo, Japan, 19 – 26 August 2023 https://doi.org/10.46620/URSIGASS.2023.3177.OQEL4833.
  7. K. Lukin, Ed. Khutoryan. Development of Diffraction Electronics in IRE NAS of Ukraine. // Proceedings of the 2023 International Conference on Electromagnetics in Advanced Applications ICEAA-IEEE’23 Venice, Italy, Oct. 9-13, 2023 – 24th edition, p. 571 (#477). https://ieeexplore.ieee.org/document/10297942/
  8. K. Lukin. Fields Excitation in Open Resonators based on Shestopalovs – Poedinchuk Spectral Theory. // Proc. of URSI GASS 2023, Sapporo, Japan, 19 – 26 August 2023. https://doi.org/10.46620/URSIGASS.2023.3719.HXRA1523
  9. E. Khutoryan, A. Kuleshov, S. Ponomarenko, K. Lukin, Y. Tatematsu and M. Tani. THz Cherenkov Oscillator Efficiency Increase by Use of Long Structures. // 2023 24th International Vacuum Electronics Conference (IVEC), 25-28 April 2023, Chengdu, China DOI10.1109/IVEC56627.2023.10157891
2022

Journal Papers

  1. Коновалов В.М., Лукін К.О. Оцінка спектральної щільності флікер-шуму малошумівних генераторів на інфранизьких частотах. // Радiофiзика i радiоастрономiя. – 2022. – Т. 27. № 3. – С. 229—239. https://doi.org/10.15407/rpra22.03.229
  2. E. M. Khutoryan, A. N. Kuleshov, S. S. Ponomarenko, K. A. Lukin, Y. Tatematsu, M. Tani. Hybrid Bulk-Surface Modes Excited by a Sheet Electron Beam in THz Cherenkov Oscillator. // IEEE Transactions on Electron Devices. – 2022. –Volume: 69, Issue: 6. P. 3407 – 3412. https://doi.org/10.1109/TED.2022.3168526.
  3. Arslanaliev A. M., Nurmagambetov A.J. Kerr Black Holes within the Membrane Paradigm. // Andromeda, Letters in High Energy Physics, LHEP-328 (2022) https://doi.org/10.31526/lhep.2022.328

Conferences Proceedings

  1. N. del-Rey-Maestre, S. Lukin; M.P. Jarabo-Amores, K. Lukin, D. Mata-Moya ,P.J. Gómez-del-Hoyo. Clutter characterization for robust detection of slow moving targets in Ka-band Noise Radar Images. // Proc. of the 2021 18th European Radar Conference (EuRAD), London, United Kingdom, 05-07 April, 2022. – P. 237-240. https://ieeexplore.ieee.org/document/9784521/
  2. K. Lukin, O. Zemlyaniy, S. Lukin. Generation of Chaotic and Random Signals for Noise Radar – Brief Overview. // Proc. of the 10th Microwave and Radar Week (MRW-2022), Gdańsk, Poland, 12-14 September 2022. – P. 177-182. Proc. of the 2022 23rd International Radar Symposium (IRS), Gdansk, Poland, 12-14 September 2022. P. 163–168. https://ieeexplore.ieee.org/document/9905030/
  3. K. Lukin, V. Palamarchuk, D. Tatyanko, O. Zemlyaniy, M. Zaets, S. Lukin, A. Shelekhov, P. Sushchenko. Stepped Frequency Ground Noise SAR for Real Time 2D Imaging. // Proc. of the 10th Microwave and Radar Week (MRW-2022), Gdańsk, Poland, 12-14 September 2022. – P. 183-187. Proc. of the 2022 23rd International Radar Symposium (IRS), Gdansk, Poland, 12-14 September 2022. P. 169–173. https://ieeexplore.ieee.org/document/9905005/
  4. Andy G. Stove, Kostyantyn A. Lukin, Valery M. Orlenko. Analysis of Partially Deterministic Waveforms in Noise Radar Applications. // Proc. of the 2022 23rd International Radar Symposium (IRS), Gdansk, Poland, 12-14 September, 2022. – P. 159–163. https://ieeexplore.ieee.org/document/9904992/
  5. K. Lukin, O. Zemlyaniy, D.Tatyanko, V.Palamarchuk, S. Lukin, M. Zaets. Data Acquisition and Signal Processing by 16-Antennas’ Receiver of Stepped Frequency Noise SAR. // Paper Collection of the 2022 IEEE 2nd Ukrainian Microwave Week (MRRS-2022). – Kharkiv, Ukraine, November 14th – 18th, 2022, pp. 650–653, https://ieeexplore.ieee.org/document/10037016/
  6. E. Khutoryan, S. Vlasenko,  A. Kuleshov,  S. Ponomarenko,  K. Lukin,  Y. Tatematsu,  M. Tani. Hybrid Bulk-Surface Modes Excited in the THz Cherenkov Oscillator with the Double Grating. // Paper Collection of the 2022 IEEE 2nd Ukrainian Microwave Week (MSMW-2022). – Kharkiv, Ukraine, November 14th – 18th, 2022, pp. 238–241. https://ieeexplore.ieee.org/document/10037038/
  7. А.М. Арсланалієв, О.Ю. Нурмагамбетов. Гідродинаміка дуальних моделей кварк-глюонної плазми у мембранній парадігмі чорних дір. // ХФТІ, Тезіси доповідей ХХ конфереції з фізики високих енергій і ядерної фізики (Харків, 2022 р.). Харків, 2022, С. 17. https://kipt.kharkov.ua/conferences/ihepnp/2022/tezis.pdf
2021

Journal Papers

  1. Ponomarenko S.S., Likhachev A.A., Vlasenko S.A., Kovshov Yu. S., Stoyanova V.V., Kishko S.A., Khutoryan E.M., Kuleshov A.N., Lukin K.A., Tatematsu Y., Tani M. Traveling-Wave Amplification in a Circuit With Nonuniform Grating.// IEEE Transactions on Electron Devices. – 2021. -Vol. 68, No. 10. –  5232-5237. журнал Q1,  https://doi.org/10.1109/TED.2021.3105951
  2. Khutoryan E., Kuleshov A., Ponomarenko S., Lukin K., Tatematsu Y., Tani M. Efficient Excitation of Hybrid Modes in a THz Clinotron. // J Infrared Milli Terahz Wave. – – Vol.42. –P. 671–683. журнал Q2, https://doi.org/10.1007/s10762-021-00800-y
  3. Arslanaliev A.M.; Nurmagambetov A.J. Scattering on Quasi-Spherical Black-Holes: Features and Beyond. // MDPI Physics. – 2021. – Vol. 3, No 1. – P. 17-41. https://doi.org/10.3390/physics3010004, https://www.mdpi.com/2624-8174/3/1/4
  4. Berezovoj V.P.; Konchatnij M.I.; Nurmagambetov A.J. Hallmarks of tunneling dynamics with broken reflective symmetry. // Elsevier, Nucl.Phys.B 969 (2021), 115483, (23 pp.), журнал Q1, https://www.sciencedirect.com/science/article/pii/S0550321321001802?via%3Dihub
  5. A.J. Nurmagambetov and I.Y. Park. // Quantum-gravitational trans-Planckian radiation by a rotating black hole. // Wiley, Fortsch. Phys. 69, 10 (2021), 2100064, журнал Q1 https://onlinelibrary.wiley.com/doi/10.1002/prop.202100064
  6. A. Tevyashev, I. Shostko, O. Zemlyaniy. Network optoelectronic airspace monitoring system. // Network optoelectronic airspace monitoring system. Transfer of Innovative Technologies, 4(1), 2021, pp.106–107. https://doi.org/10.32347/tit2141.0308
  7. A. Tevyashev, I. Shostko, O.Zemlyaniy. Intelligent video analytics of air objects in real time. // Transfer of Innovative Technologies, 4(1), 2021, pp.111–114. https://doi.org/10.32347/tit2141.03010

Conferences Proceedings

  1. Lukin K. A.,  Prisiazhnyi V. I.,  Mitikov Y. A.,  Levenko A. S.,  Lukin S. K. and  Pauk O. L. Conceptual Design of Ukrainian Reusable Single-Stage Rocket with Vertical Takeoff & Landing Capability. // Journal of Physics: Conference Series – Ser.1786 012021 http://www.acmae.com/assets/img/history2020/EI.png; https://iopscience.iop.org/article/10.1088/1742-6596/1786/1/012021/pdf
  2. Lukin K. Quantum Radar and Noise Radar Concepts. // 2021 IEEE Radar Conference (RadarConf21). – 2021. – Р. 1-4 https://doi.org/10.1109/RadarConf2147009.2021.9455276
  3. Lukin K., Palamarchuk V., Zemlyaniy O., Tatyanko D. and Lukin S. Transmitter for UWB Stepped-Frequency Noise Radar. // 2021 21st International Radar Symposium (IRS), 2021, P. 1-6, https://doi.org/10.23919/IRS51887.2021.9466181
  4. Литвиненко А.С., Суворова К.І., Неєжмаков П.І., Тимофеєв Є.П., Татьянко Д.М. // Класифікація конструкцій трап-детекторів оптичного випромінювання. // Актуальні проблеми світлотехніки [Електронний ресурс]: Матеріали VIІI Міжнар. наук.-техн. онлайн-конф., Харків, 13-14 трав. 2021 р. – 2021. – С. 35. https://science.kname.edu.ua/images/dok/konferentsii/2021/_13-14_05_2021_tezy.pdf
  5. I. Shostko, A. Tevyashev, O. Zemlyaniy ,Y. Kulia. Introduction of Private LTE Networks to Provide Specific Communication Tasks in Various Spheres of Society and the State. // IEEE 8th International Conference on Problems of Infocommunications, Science and Technology (PIC S&T), Kharkiv, Ukraine, 2021, pp. 583-586, doi: 10.1109/PICST54195.2021.9772142.
2020

Journal Papers

  1. K.A. Lukin. Evolution of Quantum Radar Concept to Noise Radar Concept.// IEEE AES Magazine. Special Issue on Quantum Radar . IEEE Aerospace and Electronic Systems Magazine, vol. 35, no. 11, pp. 30-36, 1 Nov. 2020, https://doi.org/10.1109/MAES.2020.3004015 , журнал Q1
  2. Kubilay Savci, Andrew G. Stove, Francesco De Palo, Ahmet Yasin Erdogan, Gaspare Galati, Konstantin A. Lukin, Sergii Lukin, Paulo Marques, Gabriele Pavan, Christoph Wasserzier. Noise Radar – Overview and Recent Developments. // IEEE Aerospace and Electronic Systems Magazine, vol. 35, no. 9, pp. 8-20, 1 Sept. 2020, doi: 10.1109/MAES.2020.2990591 https://ieeexplore.ieee.org/document/9187089 , журнал Q1
  3. K. Lukin, A. Stove, C. Wasserzier. Noise Radar Special Issue—Part1. // IEEE Aerospace and Electronic Systems Magazine, 2020, Vol.‏ 35, no. 9, рр. 6-7, Sept. 2020, DOI. No. 10.1109/MAES.2020.3006367 https://d1wqtxts1xzle7.cloudfront.net/69021059/09187088.pdf  журнал Q1
  4. K. Lukin, A. Stove, C. Wasserzier. Noise Radar Special Issue—Part2. // IEEE Aerospace and Electronic Systems Magazine, 2020, vol. 35, no. 10, pp. 4-5, 1 Oct. 2020, https://doi.org/10.1109/MAES.2020.3022135  журнал Q1
  5. A.J. Nurmagambetov. Quantum Leaps in the Vicinity of One-Loop Gravity Black Holes. // Springer, Phys.Part.Nucl.,volume 51, pages739–743 (2020), журнал Q3 https://link.springer.com/article/10.1134/S1063779620040553
  6. A.S. Rybalko, S.P. Rubets, E.Ya. Rudavskii, R.V. Golovashchenko, S.I. Tarapov, V.N. Derkach, V.D. Khodusov, A.S. Naumovets, A.J. Nurmagambetov. The Stark effect in superfluid He4 with relative flows.// oct.2020, Preprint 2009.06036, 23 pp. https://arxiv.org/abs/2009.06036

Monographs / Book Chapters

  1. Tomei S., Staglianò D., Lukin K., Palamarchuk V., Lukin S. NORMA: Imaging Noise Radar Network for Covert Air and Maritime Border Security.// Advanced Technologies for Security Applications. Chapter in the book: NATO Science for Peace and Security Series B: Physics and Biophysics, Editor: Palestini C. /. – Publisher: Springer, Dordrecht, 2020. – рр. 153-174.- ISBN978-94-024-2020-3. https://doi.org/10.1007/978-94-024-2021-0_15

Conferences Proceedings

  1. K. Lukin, J. R. Moreira N. and S. Lukin. Forward Looking Airborne Radar for Landing Aid. // 2020 IEEE Radar Conference (RadarConf20), 2020, pp. 1-5, https://doi.org/10.1109/RadarConf2043947.2020.9266454
  2. K. Lukin. Range Resolution in Quantum Noise Radar. // 2020 21st International Radar Symposium (IRS), 2020, pp. 185-188, https://doi.org/10.23919/IRS48640.2020.9253815 .
  3. K. Lukin, V. Palamarchuk and S. Lukin. Azimuth Resolution Enhancement in Bistatic Ground Stepped-Frequency Noise SAR using its Intrerferometry Operational Mode. // 2020 21st International Radar Symposium (IRS), 2020, pp. 189-191, https://doi.org/10.23919/IRS48640.2020.9253893
  4. Eduard Khutoryan, Sergey Ponomarenko, Sergey Kishko, Konstantin Lukin, Yoshinori Tatematsu, Seitaro Mitsudo, Masahiko Tani, Alexei Kuleshov. Efficient Regime of Hybrid Surface-Radiating Waves in a THz Clinotron. // 2020 IEEE 21st International Conference on Vacuum Electronics (IVEC), 2020, pp. 155-156, https://doi.org/10.1109/IVEC45766.2020.9520601 https://ieeexplore.ieee.org/document/9252641
  5. Aleksandr Likhachev, Sergey Ponomarenko, Sergey Kishko, Yoshinori Tatematsu, Seitaro Mitsudo, Masahiko Tani, Eduard Khutoryan, Alexei Kuleshov, Konstantin Lukin. THz Clinotron Operating in New Regime of Hybrid Surface-Volume Mode with Wide Frequency Tuning Range. // 2020 IEEE Ukrainian Microwave Week (UkrMW), September 21 – 25, 2020, 3, pp.942-945.https://doi.org/10.1109/UkrMW49653.2020.9252641 . https://ieeexplore.ieee.org/document/9252641
  6. A. Tevyashev, I. Shostko, O. Zemlyaniy. Video Analytics оf Aerial Objects. // Інформаційні системи та технології : матеріали 9-ї Міжнар. наук.-техн. конф., 17-20 листопада 2020 р. – Харків: Друкарня Мадрид, 2020. – С. 93–95. https://openarchive.nure.ua/handle/document/16182
  7. A. Tevyashev, I. Shostko, O. Zemlyaniy, A. Dokhov, A. Zhalilo. Range Instrumentation Complex for the Precision- Guided Weapons Testing. // Інформаційні системи та технології : матеріали 9-ї Міжнар. наук.-техн. конф., 17-20 листопада 2020 р. – Харків : Друкарня Мадрид, 2020. – С. 100–102. https://openarchive.nure.ua/handle/document/16184
  8. O. Zemlyaniy, A. Tevyashev, I. Shostko, A. Koliadin. Mathematical Model and Method for Covert Estimation of Aerial Object Coordinates Using Two Optical-electronic Stations. // Інформаційні системи та технології : матеріали 9-ї Міжнар. наук.-техн. конф., 17-20 листопада 2020 р. – Харків : Друкарня Мадрид, 2020. – С. 96–99. https://openarchive.nure.ua/handle/document/16183
  9. I. Shostko, A.Tevyashev, O. Zemlyaniy. The Task of Weapon Guidance onto the Aerial Target Using Optoelectronic Station of Trajectory Measurements. // Інформаційні системи та технології : матеріали 9-ї Міжнар. наук.-техн. конф., 17-20 листопада 2020 р. – Харків : Друкарня Мадрид, 2020. – С. 106–109. https://openarchive.nure.ua/handle/document/16185
  10. О. Ю. Нурмагамбетов. О текущих кризисах в физике высоких энергий и астрофизике. // ХФТИ, Тезисы докладов XVIII конференции по физике высоких энергий, ядерной физике и ускорителям, Харьков, ННЦ ХФТИ, 24-27 марта 2020 г., С. 26 https://kipt.kharkov.ua/conferences/ihepnp/2020/tezis.pdf
2019

Journal Papers

  1. Tatyanko D.N., Neyezhmakov P.I., Timofeev Ye.P. et al. Quantum efficiency improvement of optical radiation trap-detectors // Semiconductor Physics, Quantum Electronics & Optoelectronics (SPQEO), 2019. V. 22, N 1. P. 104-110. DOI: 15407/spqeo22.01.104, https://doi.org/10.15407/spqeo22.01.104
  2. В.Е. Щербаков, К.А. Лукин. Метод формирования бинарных псевдослучайных последовательностей с квазиидеальной периодической и инверсно-периодической автокорреляцией” // Прикладная радиоэлектроника. –T.18, №1-2. – С.10-15. http://nbuv.gov.ua/UJRN/Prre_2019_18_1-2_4
  3. A.J. Nurmagambetov, I.Y. Park. On Firewalls in quantum-corrected General Relativity // IOPScience, J.Phys.Conf.Ser. 1390 (2019) no.1, 012091(1-8) https://iopscience.iop.org/article/10.1088/1742-6596/1390/1/012091
  4. A.J. Nurmagambetov, I.Y. Park. Quantum-gravitational trans-Planckian energy of a time-dependent black hole // MDPI, Symmetry, V. 11, 2019, №10, 1303 https://www.mdpi.com/2073-8994/11/10/1303

Monographs / Book Chapters

  1. V. Yurchenko, L. Yurchenko. Time-domain simulation of microstrip-connected solid-state oscillators for close-range noise radar applications // Chapter in the book: “Oscillators – Recent Developments”. Edited by: Dr. Patrice Salzenstein. 2019, p.108. Chapter 4 pp. 1-22. DOI: 10.5772/intechopen.81865. ISBN 978-953-51-6882-9. Print ISBN: 978-1-78985-837-2. eBook (PDF) ISBN: 978-1-83881-068-9. https://doi.org/10.5772/intechopen.81865 https://www.intechopen.com/chapters/64786
  2. K. Lukin, D. Tatyanko, V. Palamarchuck, P. Vyplavin, S. Lukin, O. Zemlyanіy, Yu. Shiyan, O. Mishchenko, L. Yurchenko and P.Sushchenko. Noise Stepped-Frequency Radar for High Resolution 2D&3D Imaging // Chapter in the book: Explosives Detection: Sensor, Electronic Systems and Data Processing (published under the NATO Science for Peace and Security series – 2019) Editors: Capineri, Lorenzo, and Turmus, Eyup; Series B: Physics and Biophysics. Publisher: Springer Netherlands. ISBN: 978-94-024-1729-6 (eBook); 978-94-024-1728-9 (Hardcover), DOI 10.1007/978-94-024-1729-6, Number of Pages XIV, 339, pp.284-305. DOI: 10.1007/978-94-024-1729-6, https://www.springer.com/gp/book/9789402417289
  3. S. Prijmenko, K. Lukin. Radiation and Energy Flux of Electromagnetic Fields by a Segment of Relativistic Electron Beam Moving Uniformly in Vacuum // Chapter in the book: Progress in Relativity. / Publisher: IntechOpen Limited, in press / London, UNITED KINGDOM. 2019, рр.1-17. DOI: 10.5772/intechopen.86980.  https://www.intechopen.com/online-first/radiation-and-energy-flux-of-electromagnetic-fields-by-a-segment-of-relativistic-electron-beam-movin

Conferences Proceedings

  1. C. Wasserzier, A.G. Stove, K.A. Lukin. Verification of a Continuous Wave Noise Radar // IRS-2019 20th International Radar Symposium, 2019. p 1-10. https://ieeexplore.ieee.org/document/8767454/
  2. Kubilay Savci, Andrew G Stove, Ahmet Yasin Erdogan, Gaspare Galati, Konstantin A Lukin, Gabriele Pavan, Christoph Wasserzier. Trials of a Noise-Modulated Radar Demonstrator–First Results in a Marine Environment. // IRS-2019 20th International Radar Symposium, 2019. p 1-10. https://ieeexplore.ieee.org/document/8768194/
  3. Konstantin Lukin, Oleg Zemlyaniy. Chaos-based spectral keying technique for design of radar-communication systems. // Proc.of IEEE SPSympo-2019, Krakow area, 17-19 September 2019, p 55-60. DOI: 10.1109/SPS.2019.8881982
  4. Татьянко Д.М., Литвиненко А.С. Класифікація оптичних трап-детекторів. // VII Міжнародна науково-технічна конференція «Актуальні проблеми світлотехніки» 14-16 травня 2019 р. – C.79-81. https://sds.kname.edu.ua/images//LEDlight2015/LIGHT_FORUM_2019/Программа_Финиш_кор.pdf
  5. Lukin K.A., Zemlyaniy O.V., Tatyanko D.N. Secure data transmission via fiber-optic communication lines using chaos-based spectral keying technique of LED radiation. // VII Міжнародна науково-технічна конференція «Актуальні проблеми світлотехніки» 14-16 травня 2019 р. – P. 82-83. https://sds.kname.edu.ua/images//LEDlight2015/LIGHT_FORUM_2019/Программа_Финиш_кор.pdf
  6. Литвиненко А.С., Петченко Г.О., Татьянко Д.М. Світильники комбінованого освітлення на основі планарних світлопроводів. // VII Міжнародна науково-технічна конференція «Актуальні проблеми світлотехніки» 14-16 травня 2019 р. – C. https://sds.kname.edu.ua/images//LEDlight2015/LIGHT_FORUM_2019/Программа_Финиш_кор.pdf
  7. A.J. Nurmagambetov. Firewalls in Spinning Black Holes, International Bogolyubov Conference // Problems of Theoretical and Mathematical Physics, Russia, Moscow, September 9-13 2019. http://www.mathnet.ru/php/seminars.phtml?&presentid=24971&option_lang=eng
  8. A.J. Nurmagambetov. Do we really need quantum gravity from the SM perspectives? // French-CERN-Ukranian School of High Energy and Medical Physics, Kharkov, Ukraine, March 18-22 2019. https://www.univer.kharkov.ua/en/general/univer_today/news?news_id=5474
2018

Journal Papers

  1. E.M. Khutoryan, Yu. S. Kovshov, A.S. Likhachev, S.S. Ponomarenko, S.A. Kishko, K.A. Lukin, V.V. Zavertanniy, T.V. Kudinova, S.A. Vlasenko, A.N. Kuleshov, T. Idehara. Excitation of Hybrid Space-Surface Waves in Clinotrons with Non-uniform Grating. // Journal of Infrared, Millimeter, and Terahertz Waves, Springer US. March 2018, Volume 39, Issue 3, pp 236–249. https://doi.org/10.1007/s10762-017-0453-3.
  2. Лукин К. А. Возбуждение электромагнитных колебаний в открытых резонаторах внутренними источниками // Прикладная радиоэлектроника, 2018, Том 17, № 1, 2, с. 14-27. https://nure.ua/wp-content/uploads/2018/Scientific_editions/arepdf
  3. Прийменко С. Д., Лукин К. А. Поток электромагнитной энергии при наличии потенциальных электрических и магнитных полей // Прикладная радиоэлектроника, 2018, Том 17, № 1, 2, с. 28-34. https://nure.ua/wp-content/uploads/2018/Scientific_editions/arepdf
  4. Прийменко С. Д., Лонин Ю. Ф., Лукин К. А., Онищенко И. Н. Распределение спектральных компонент тока вдоль линейной антенны, возбуждаемой электронным релятивистским зарядом // Прикладная радиоэлектроника, 2018, Том 17, № 1, 2, с.35-41. https://nure.ua/wp-content/uploads/2018/Scientific_editions/arepdf
  5. Maksymov P.P. Scenario for transition to chaos through intermittency in avalanche generator diodes with an external signal / P.P. Maksymov // Telecommunications and Radio Engineering. – 2018. Vol. 77. No. 5, pp. 435-449. DOI: 10.1615/TelecomRadEng.v77.i5
  6. Yurchenko V.B., Ciydem M., Yurchenko L.V. Pulse-Mode Simulations of RTD-LD Circuits for Visible Light Communication // Applied Radio Electronics: Sci. Journal. – 2018. Vol. 17. № 1-2. – P. 66–71. https://nure.ua/wp-content/uploads/2018/Scientific_editions/are_2018_9.pdf
  7. A.M. Arslanaliev, A.J. Nurmagambetov. Price’s Theorem in Gauge/Gravity Duality // Springer, Phys. Part. Nucl., V. 49, 2018, pp. 879-883. DOI: 10.1134/S1063779618050039 https://link.springer.com/article
  8. A.J. Nurmagambetov, I.Y. Park. Quantum-induced trans-Planckian energy near horizon // Springer, JHEP, 2018, V. 05, p. 167(0-23). DOI: 10.1007/JHEP05(2018)167, https://link.springer.com/article/10.1007/JHEP05(2018)167

Monographs / Book Chapters

  1. O. Zemlyaniy, K. Lukin. Chaos-Based Spectral Keying Technique for Secure Communication and Covert Data Transmission between Radar Receivers over an Open Network Channel. // Book chapter in: “Telecommunication Networks: Trends and Developments”. Edited by: Dr. M. A. Matin, 2018, p.124., pp.63-79. DOI: 10.5772/intechopen.79027. Print ISBN: 978-1-78985-719-1, Online ISBN: 978-1-78985-720-7, DOI: 10.5772/intechopen.75287

Conferences Proceedings

  1. K.A. Lukin, S.K. Lukin, V. Pascazio, D.N. Tatyanko, O.V. Zemlyaniy. FPGA Implementation of Relay-Type Correlator for Noise Radar Applications // of the 22nd International Microwave and Radar Conference (MIKON), May 14-17, 2018, Poznań, Poland, pp.457-460. DOI: 10.1109/MSMW.2016.7538135
  2. S. Lukin, O. Zemlyaniy, V. Palamarchuk, D. Tatyanko, K. Lukin, V. Pascazio. Methods for Generation of Probing Signals in Software Defined Noise Radar // Proc. of the 19th International Radar Symposium (IRS-2018), Bonn, Germany, June 20-22, 2018, pp.1-9. DOI: 10.23919/IRS.2018.8448097
  3. S. Lukin, V. Pascazio, K. Lukin, D. Tatyanko, O. Zemlyaniy. Multiplier-less Correlator for Noise SAR Imaging // Proc. of the EuMW-2018(EURAD) – European microwave week, Ifema Feria de Madrid, Spain, September 23-28, 2018, pp.158-161. DOI:10.23919/EuRAD.2018.8546581
  4. Lukin. Contributions to Electromagnetic Theory, Radar and Communication Technologies by Dr. Henning F. Harmuth //  9th International Conference on Ultrawideband and Ultrashort Impulse. 2018, 4 – 7 September, Ukraine, Odessa. DOI: 10.1109/UWBUSIS.2018.8520119
  5. Yurchenko V.B., Yurchenko L.V., Ciydem M. Pulse-Mode Simulations of Time-Delay Resonant Tunneling and Laser Diode Circuits for Visible Light Communication // of the II International Scientific and Vocational Studies Congress – Engineering and Natural Sciences (BILMES CONGRESS 2018), 05-08 July, 2018. KIRIKKALE UNIVERSITY, Ürgüp, Nevşehir, Turkey, – P. 778. https://drive.google.com/file/d/1xkmVovO84kaEqxP8VNWGPuT0S8mSHnK3/view
  6. А.М. Арсланалиев, А.Ю. Нурмагамбетов. Нумерология кварк-глюонной плазмы в рамках AdS/nCFT соответствия // Тези конференційдокладов XVI конференции по физике высоких энергий, ядерной физике и ускорителям, Харьков, ННЦ ХФТИ, 20-23 марта 2018 г., С. 15-16. https://www.kipt.kharkov.ua/conferences/ihepnp/2018/ihepnp-2018-prog.pdf
  7. В.П. Березовой, М.И. Кончатный, А.Ю. Нурмагамбетов. Об особенностях туннелирования в системах с нарушенной отражательной симметрией // Тези конференційдокладов XVI конференции по физике высоких энергий, ядерной физике и ускорителям, Харьков, ННЦ ХФТИ, 20-23 марта 2018 г., С. 27. https://www.kipt.kharkov.ua/conferences/ihepnp/2018/ihepnp-2018-prog.pdf
  8. А.Ю. Нурмагамбетов. Квантово-индуцированный механизм возникновения “стен огня” вблизи горизонтов событий черных дыр // Конференция-семинар памяти П.И. Фомина, Киев. 19 июня 2018 г. http://bitp.kiev.ua/files/doc/news/2018/fomin_seminar_program_2018.pdf
  9. A.J. Nurmagambetov. Quantum-induced trans-Planckian energy near horizon, // International Conference on Particle Physics and Astrophysics, Moscow, Russia, October 22-26 2018. https://indico.particle.mephi.ru/event/22/contributions/1074/ https://indico.particle.mephi.ru/event/22/contributions/1074/attachments/752/855/4._Nurmagambetov_AJN-ICPP-2018.pdf
  10. K. Lukin, D. Tatyanko, V. Palamarchuk, P. Vyplavin, O. Zemlyaniy, S. Lukin, O. Mishchenko, Ya. Chistyakov. Noise Stepped-Frequency Radar for High Resolution 2D&3D Imaging // Proc. of the Advanced Research Workshop on Explosives Detection, Florence, Italy, October 17-18, 2018.
2017

Journal Papers

  1. Yurchenko L. V., Yurchenko V. B., Mehmet Çiydem, Marcin L. G MM-wave dielectric parameters of magnesium fluoride glass wafers // PIER M. – 2017, Vol.62, pp.89-98. http://www.jpier.org/PIERM/pierm62/09.17081805.pdf http://www.jpier.org/PIERM/pier.php?paper=17081805, журнал Q2
  2. K.A. Lukin, P. P. Maksymov. Synchronous Generation of Two Oscillations of Microwave and Terahertz Bands in Avalanche-Generator Diodes with External Signal // Telecommunications and Radio Engineering, 2017. V. 76, Issue 1, pp.35-47. DOI:10.1615/TelecomRadEng.v76.i1.30 http://www.dl.begellhouse.com/en/journals/0632a9d54950b268,2ad0fa6c43947779,0c2ea94b282fd05e.html
  3. K.A. Lukin, D.N. Tatyanko, A.B. Pikh, O.V. Zemlyaniy. Spectral interferometry in thickness measurements of optically transparent layered structures // Radioelectronics and Communications Systems. 2017, vol.76, No.13, pp. 1181-1192. DOI:10.1615/TelecomRadEng.v76.i13.60 (Переклад: Радиофизика и электроника. – 2017, Т 8(22), № 1. – СС. 77-85.)
  4. К. А. Лукин, Д. Н. Татьянко, А. Б. Пих, О. В. Земляный. Измерение толщин оптически прозрачных слоистых структур методом спектральной интерферометрии // Радиофизика и электроника. – 2017, Т 8(22), № 1. – СС. 77-85. DOI:15407/rej2017.01.077
  5. Maksymov P. Simulation of High-Power 8-mm Band Avalanche-Oscillator Diodes // Radioelectronics and Communications Systems, – 2017, Vol. 60, No. 8, pp. 375–381. (Переклад: Изв. Вуз. Радиоэлектроника. – 2017. 60. № 8 ‑ С. 480-488.) .) Vol. 60 No. 8 (2017) | Radioelectronics and Communications Systems (radioelektronika.org)
  6. К.А. Лукин, А.Е. Поединчук, С.К. Лукин. Численно – аналитический метод решения задач лучевой радиотомографии // Прикладная радиоэлектроника, 2017. Т. 16. № 3,4. – С. 166-169. https://nure.ua/wp-content/uploads/2018/Scientific_editions/arepdf
  7. Лукин К.А., Максимов П.П. Сценарий перехода к хаосу через перемежаемость в лавинно-генераторных диодах с внешним сигналом. // Прикладная радиоэлектроника, 2017. Т. 16. № 3,4. – С. 122-128. https://nure.ua/wp-content/uploads/2018/Scientific_editions/are_5_2.pdf
  8. T. M. Moskalets, A. J. Nurmagambetov, Static and Non-Static Black Holes with the Liouville Mode, // Springer, Phys.Part.Nucl.Lett., 2017. V. 14, pp. 365-367. https://doi.org/10.1134/S1547477117020224; https://link.springer.com/article/10.1134/S1547477117020224

Conferences Proceedings

  1. K. Lukin, ‘Contributions to Electromagnetic Theory and Telecommunications by Dr. Henning F. Harmuth’, 16th Conference on Computer Aided Systems Theory, Erocast2017, Las Palmas, Spain. Computer Aided Systems Theory – EUROCAST 2017: 16th International Conference, Las Palmas de Gran Canaria, Spain, February 19-24, 2017, Revised Selected Papers, Part I | SpringerLink, Doi:10.1007/978-3-319-74718-7
  2. K. Lukin, O. V. Zemlyaniy, D. Tatyanko, S. Lukin, V. Pascazio. Noise radar design based on FPGA technology: On-board digital waveform generation and real-time correlation processing // Proc. of the 18th International Radar Symposium (IRS2017), Prague, Czech Republic, June 28-30, 2017, pp. 1-7. DOI:10.23919/IRS.2017.8008223, https://ieeexplore.ieee.org/document/8008223
  3. V. Shcherbakov and K.Lukin. Generation of Binary Pseudo-Random Sequences with Quasi-Perfect Periodic and Inverse Periodic Autocorrelations for Radar Systems. Proceedings of the (IEEE Xplore) 18th International Radar Symposium (IRS 2017), Prague, Czech Republic, June 28-30, 2017, pp. 1-7. DOI: 10.23919/IRS.2017.8008136; https://ieeexplore.ieee.org/xpl/conhome/8001662/proceeding
  4. K.A. Lukin, D.N. Tatyanko, O. V. Zemlyaniy, A.B. Pikh. Noise waveform reflectometer based on LED and spectral interferometry technique // Proc. of the Signal Processing Symposium (SPSympo), Jachranka Village, Poland, September 12-14, 2017, pp. 254-259. DOI: 10.1109/SPS.2017.8053685
  5. Литвиненко А. С., Татьянко Д. Н., Тимофеев Е. П. Обзор детекторов оптического излучения со 100 % квантовой эффективностью // VІ Международная научно-техническая конференция «Актуальные проблемы светотехники». Conferences Proceedings докладов. – 2017. – CC. 27-28. https://sds.kname.edu.ua/images/LEDlight2015/Forum2017/тезАПС-_2017_1-21.pdf, https://sds.kname.edu.ua/images/LEDlight2015/Forum2017/тезАПС-_2017_22-35.pdf
  6. A.J. Nurmagambetov. Price’s theorem in Gauge/Gravity duality, Plenary Talk at International Workshop “Supersymmetries and Quantum Symmetries”, July 31-August 5 of 2017, JINR, Dubna, Russia. http://theor.jinr.ru/sqs17/
  7. K. Lukin. Quantum Radar’ Concept Implemented by Means of Classical Radar Technologies: Comparison with Noise Radar Concept // Proc. of Int. Signal Processing Symposium, SPSympo2017 Jachranka Village, Sept. 12 – 14, 2017, Poland.

Patents

  1. J.R. Moreira Neto [BR]; K.A. Lukin [UKR]. System and method for detecting and visualizing targets by airborne radar // BR20151029775 20151127; EC EP3173814 (A1); US2017153325 (A1). 2017. US Patent App. 15/361, 238. https://worldwide.espacenet.com/publicationDetails/biblio?CC=EP&NR=3173814A1&KC=A1&date=&FT=D&locale=en_EP; https://register.epo.org/application?number=EP16200904&lng=en&tab=mainhttps://worldwide.espacenet.com/publicationDetails/biblio?CC=EP&NR=3173814A1&KC=A1&date=&FT=D&locale=en_EP; https://register.epo.org/application?number=EP16200904&lng=en&tab=main
Previous publications
2016

Journal Papers

  1. Kudriashov V.V., Lukin K.A., Palamarchuk V.P., Lukin S.K., Garbar A.Yu. Mapping of Acoustic Noise and Microwave Radiation // Cybernetics and Information Technologies, 2016. V16, No1, pp. 126-134. Institute of Information and Communication Technologies, Bulgarian Academy of Sciences.
  2. Лукин К.А., Земляный О.В. Цифровая генерация широкополосного хаотического сигнала с гребенчатым спектром для систем связи на основе спектральной манипуляции // Известия высших учебных заведений. Радиоэлектроника, т. 59, №9, 2016, с.47-55.
  3. Лукин К.А., Максимов П. П. Эффект двойного расщепления слоя умножения и генерация двухчастотных автоколебаний лавинно-генераторных диодов // Радиофизика и электрон. – 2016, том 7(21), №2 – С. 59-65.
  4. Лукин К.А., Максимов П. П. Синхронная генерация двух колебаний микроволнового и терацерцевого диапазонов в лавинно-генераторных диодах с внешним сигналом // Радиофизика и электроника. – 2016, том 7(21), № 2 – С. 66-73.
  5. Максимов П. П. Режимы работы лавинно-генераторных диодов микроволнового диапазона // Радиофизика и электрон. – 2016, том 7(21), №1 – С. 55-60.
  6. Юрченко Л.В., Юрченко В.Б. Широкополосные автоколебания в микрополосковых соединениях диодов Ганна и изучение новых эффектов нелинейной динамики таких систем // Прикладная радиоэлектроника: науч.-техн. журнал. – 2016. Том15, № 4. – С. 342 – 349.
  7. Лукин К.А., Татьянко Д. Н., Земляный О. В., Пих А. Б. Измерение толщин тонких пленок методом спектральной интерферометрии // Прикладная радиоелектроника.: науч.-техн. Журнал. – 2016. Том .15, № 4, 2016, С. 350-354.
  8. Lukin K. A. Comparison of ‘Quantum Radar’ and Noise Radar Concepts // Прикладная радиоелектроника: науч.-техн. Журнал. – 2016. Том .15, № 4, 2016, С. 355-358.
  9. Карпов А.Н., Лукин К.А., Сивозализов Н.А., Хромюк И.Ф. Антенна для беспроводной сети внутри зданий // Прикладная радиоелектроника: науч.-техн. Журнал. – 2016. Том .15, № 4, 2016, С. 362-365.
  10. Moskalets T.M., Nurmagambetov A.J. Non-uniform horizons in Gauge/Gravity Duality // Springer, Phys.Atom.Nucl. –2016. – V. 79, №.11-12. – P. 1497-1499.
  11. O.V. Zemlyaniy. Keying of the broadband chaotic signal spectrum for data transmission // Telecommunications and Radio Engineering, vol.75, No.5, 2016, pp. 401-411. (Переклад: Радиофизика и электроника, т.6(20), №3, 2015, с.83-89.)
  12. Lukin K. A., Tatyanko D. N., Shiyan Yu. A., Yurchenko L. V., Bazakutsa A.V. Optical reflectometer based on the method of spectral interferometry // Telecommunications and Radio Engineering. – 2016. – V.75, №1. – P. 59-70. (Переклад: Радиофизика и электроника, T.6(20), №.2, 2015, С. 90-96.)
  13. Lukin K.A., Zemlyaniy O.V. Digital generation of wideband chaotic signal with the comb-shaped spectrum for communication systems based on spectral manipulation // Radioelectronics and Communications Systems, vol.59, No.9, 2016, pp. 417-422 (Переклад Известия высших учебных заведений. Радиоэлектроника, т. 59, №9, 2016, с.47-55.)
  14. Lukin K. A., Маksymov P.P. Volt-ampere characteristic and external inducted current in avalanche-generator diodes with reverse-based abrupt junction // Telecommunications and Radio Engineering, 2016, V.75, No.12, 1073-1086.
  15. Ходусов В.Д., Нурмагамбетов О.Ю. Загальна теорія відносності у Харківській фізичній школі. Огляд. ХНУ ім. В.Н. Каразіна, Газета “Харківський університет”. –2016. –№2. – С. 3
  16. Moskalets Tatiana, Nurmagambetov Alexei. Absorption cross-sections of small quasi-spherical black holes: the massless scalar case // Препринт: https://arxiv.org/abs/1607.08830

Conferences Proceedings

  1. Lukin K.A., Kudriashov V.V., Vyplavin P.L., Lukin Sergii, Palamarchuk V.P.. Ka-band Radiometric Imaging Using Antennas with Pattern Synthesis // 2016 URSI Asia-Pacific Radio Science Conference August 21-25, 2016 / Seoul, Korea, pp. 1007-1010.
  2. Lukin K. MIMO Noise Radars with Orthogonal and Temporal Divisions of Signals in Tx/Rx Channels // The 2016 China-Ukraine Forum on Science and Technology: int. forum, 5th-8th July, 2016: forum proc.  – Harbin, 2016. – pp. 116-117.
  3. Lukin K. A., Tatyanko D. N. Creation New Optical Devices Based on Low-Coherence Spectral Interferometry for Telecommunication and Distance Measurements // The 2016 China-Ukraine Forum on Science and Technology: int. forum, 5th-8th July, 2016: forum proc.  – Harbin, 2016. – pp. 151-152.
  4. Andy Stove, Gaspare Galati, Christoph Wasserzier, A.Yasin Erdogan, Kubilay Savci, Konstantin Lukin. Design of a Noise Radar Demonstrator // IRS 2016 – 17th International Radar Symposium, May 10-12, Krakow, Poland 2016, pp.1-6.
  5. Andy Stove, Konstantin Lukin, Gaspare Galati, Gabriele Pavan, Francesco De Palo, Krzysztof Kulpa, Janusz S. Kulpa, Łukasz Maślikowski. The NATO SET-184 Noise Radar Trials // IRS 2016 – 17th International Radar Symposium, May 10-12, Krakow, Poland 2016, pp.1-6.
  6. Llamas-Garro, K. Lukin, M.T. de Melo, J.M. Kim. Frequency and angular estimations of detected microwave source using unmanned aerial vehicles // IEEE MTT-S Latin America Microwave Conference (LAMC2016) Puerto Vallarta, Mexico; Dec. 12-14, 2016, pp.1-3.
  7. M.P. Jarabo-Amores, M. Rosa-Zurera, D. de la Mata-Moya, A. Capria, A.L. Saverino, C. Callegari, F. Berizzi, P. Samczyński, K. Kulpa, M. Ummenhofer, H. Kuschel, A. Meta, S. Placidi, K. Lukin, G. D’Amore. Distributed Physical Sensors Network for the Protection of Critical Infrastractures Against Physical Attacks // Proceedings of the 13th International Joint Conference on e-Business and Telecommunications (ICETE 2016) – Volume 1: DCNET, pages 139-150.
  8. Yu. Shkvarko, J. Lopez, K. Lukin, S. Santos, G. Garcia-Torales. Feature Enhanced Radar Imaging Via Neural Network Computing-Based Sensor Fusion // 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves, MSMW’2016, 21-24 June 2016, Kharkiv, Ukraine, G-30, pp-1-4.
  9. Yu. Shkvarko, G. Martin del Campo, K. Lukin, A. Reigber. SAR Tomography of Forested Areas: An APES-Based Virtual Beamforming Approach // 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves, MSMW’2016, 21-24 June 2016, Kharkiv, Ukraine, G-10, pp.1-4.
  10. Yu. Shkvarko, J. Amao, K. Lukin, G. Garcia-Torales. Multilevel Structured Experiment Design Regularization Approach for Computational Enhancement of Compressed Radar/SAR Imagery // 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves, MSMW’2016, 21-24 June 2016, Kharkiv, Ukraine, F-6, pp.1-4.
  11. Lukin K. Quantum Radar vs Noise Radar // 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves, MSMW’2016, 21-24 June 2016, Kharkiv, Ukraine, G-13, -1-4.
  12. K. Lukin, P. Vyplavin, V. Palamarchuk, V. Kudriashov, S. Lukin, P. Sushchenko, N. Zaets, L. Yurchenko, D. Tatyanko, A. Shelekhov, O. Zemlyaniy, Yu. Shyian. Millimeter-wave Noise Radar Tomography // Proceedings of the (IEEE) 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW), Kharkiv, Ukraine, June 20-24, 2016, INV.11, pp. 1-6.
  13. K. Lukin, O. Zemlyaniy, D. Tatyanko, S. Lukin, V. Pascazio. FPGA-based time-integrating multichannel correlator for Noise Radar applications // Proc. of the 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW’2016), Kharkiv, Ukraine, June 21-24, 2016, pp. G11, pp-1-5.
  14. D. Tatyanko, K. Lukin, A. Pikh. Application of Optical Spectral Interferometry for Thin Film Thickness Measurement // 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves, MSMW’2016, 21-24 June 2016, Kharkiv, Ukraine, F-7, pp.1-4.
  15. K.A. Lukin, V.Ye. Shcherbakov. New Method for Generation of Binary Pseudo- Random Sequences with Quasiperfect Autocorrelation // 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves, MSMW’2016, 21-24 June 2016, Kharkiv, Ukraine, G-37, pp.-1-5.
  16. R.V. Golovashchenko, N. K. Zaetz, Ye.M. Ostryzhnyi, A. S. Plevako, V. N. Derkach. Precision temperature measurement unit for the low temperature dielectrometer // 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves, MSMW’2016, 21-24 June 2016, Kharkiv, Ukraine, E-30,  pp.1-4.
2015

Journal Papers

  1. Khutoryan E., Sattorov M., Lukin K.A., Park Gun-Sik et al. Theory of Multimode Resonant Backward-Wave Oscillator with an Inclined Electron Beam // IEEE Trans.  Electron Devices, May – 62 (5) – pp.1628-1634.
  2. Lukin K.A., Kudriashov V.V., Vyplavin P.L., Palamarchuk V.P., Lukin S.K.. Coherent radiometric imaging using antennas with beam synthesizing // International Journal of Microwave and Wireless Technologies. Cambridge University 2015. V.7, Spec. Iss. 3-4, pp. 453 – 458.
  3. Khutoryan E., Sattorov M., Lukin K.A., Park Gun-Sik et al. Automodulation Processes in Clinotrons with Low-Focusing Magnetic Field // IEEE Transactions Electron Devices. May 2015 – 62 (5). – pp.1617-1621.
  4. Kudriashov V.V., Garbar A.Y., Lukin K.A., Maslikowski L., Samczynski P., Kulpa K.S. Fusion of Images Generated by Radiometric and Active Noise SAR // Cybernetics and Information Technologies, 2015, V15, No 7, pp. 58 – 66, Institute of Information and Communication Technologies, Bulgarian Academy of Sciences.
  5. Lukin K.A., Vyplavin P.L., Palamarchuk V.P., Kudriashov V.V., Kulpa K., Gajo Z., Misiurewicz J., Kulpa J. Phase Measurement Accuracy in Noise Waveform Synthetic Aperture Radar // IEEE Transactions on Aerospace and Electronic Systems. 2015, VOL. 51, NO. 4, pp.3364-3373.
  6. Лукин К.А., Татьянко Д.М., Юрченко Л.В., Шиян Ю.А., Базакуца А.В. Оптический рефлектометр на основе метода спектральной интерферометрии // Радиофизика и электроника. – 2015, T.6(20), №.2. – С. 90-96.
  7. Лукин К.А., Паламарчук В.П., Заец Н.К., Юрченко Л.В. Cканирующие антенны с синтезированием диаграммы направленности // Прикладная радиоэлектроника. – – 14, № 1. – С. 79-86
  8. Лукин К.А., Щербаков В.Е. MIMO-система передачи информации между автомобилями на автобане с пропускной способностью близкой к пределу Шеннона // Радиофизика и электроника. – –6(20), № 2. – С. 97-102.
  9. Земляный О.В. Передача информации на основе манипуляции спектром широкополосного хаотического сигнала // Радиофизика и электроника. – 2015. – Т.6(20), №  – C. 83-89.
  10. Земляный О.В. Спектральные характеристики хаотических автоколебаний в нелинейной системе с запаздыванием и инерционным звеном // Прикладная радиоэлектроника. – 2015. – Т.14, №  – C. 155–159.
  11. Лукин К. А., Максимов П.П. Динамика двухчастотных лавинно-генераторных диодов микроволнового диапазона // Радиофизика и Электроника. 2015. №4. том 6(20), №4 – С. 54-
  12. Максимов П. П. Интермодуляционные компоненты активного элемента свч смесителя на основе обратно смещенного резкого pnперехода // Прикладная радиоэлектроника, 2015, Том 14, № 3 С. 217-221.
  13. Лукин К. А., Максимов П.П. Вольтамперная характеристика и наведенный ток во внешней цепи лавинно-генераторных диодов на основе обратно смещенных резких pnпереходов // Радиофизика и Электроника. №4. С. 45-53.
  14. Лукин К. А., Максимов П.П. Отрицательная дифференциальная проводимость лавинно-генераторных диодов на основе обратно смещенных резких pnпереходов // Прикладная радиоэлектроника, 2015, Том 14, № 3. С. 210-216.
  15. Lukin K., Vyplavin P., Palamarchuk V., Lukin S., Shelekhov A., Zaets N., Vasyuta K. SAR Tomography for Short Range Applications using MIMO Ground Based Noise Waveform SAR // Прикладная радиоэлектроника, Том 14, № 3, 2015. с.257-261.
  16. Карпов О.І., Лукін К.О., Сивозалізов М.А. Широкосмугова антена для мобільного зв’язку // Прикладна радіоелектроніка: наук.-техн. журнал. — 2015. —Том 14. — № 3. — С. 253–256.
  17. Tatyanko D.N., Machekhin Yu.P., Lukin K.A. The influence of optical radiation polarization upon the photocurrent of different trap detector models // Telecommunications and Radio Engineering. – 2015. – V.74, №3. – P. 207-219.
  18. Lukin K.A., Shcherbakov V.Ye. Dedicated Short-Range Communication MIMO-system with Carrying Capacity close to Shannon’s Limit for Vehicle-to-Vehicle Data Transmission on Highway // Telecommunications and Radio Engineering, – 74, № 19, – pp. 1729-1736. ( Переклад: Радиофизика и электроника. – 2015. – 6(20), № 2. – С97-102).
  19. Nurmagambetov A., Moskalets T. Liouville mode in Gauge/Gravity Duality // The European Physics Journal. – 2015. – V. C75. – P. 551(1-15).
  20. Nurmagambetov A., Moskalets T. Non-uniform horizons in Gauge/Gravity Duality // [электронный ресурс] / 2015/ Режим доступа: https://arxiv.org/pdf/1506.01009v1.pdf
  21. Москалец Т. М., Нурмагамбетов А.Ю. Неоднородные горизонты в калибровочно / гравитационной дуальности // Ядерная физика и инжиниринг. – 2015. – № 7-8. – С. 416-419.
  22. Нурмагамбетов А.Ю., Сорокин Д.П. Дмитрий Васильевич Волков. К 90-летию со дня рождения // Огляд. ХНУ им. В.Н. Каразина, Universitatis. –2015. –№4. – С. 12-22. http://alumni.univer.kharkov.ua/wp-content/univerokukrcom/2015_4.pdf

Monographs / Book Chapters

  1. Лукин К.А. Отдел нелинейной динамики электронных систем. Зав. отд. проф. д.ф.-м.н. IEEE Fellow К.А. Лукин // К шестидесятилетию Института радиофизики и электроники им. А.Я.Усикова НАН Украины. 2005-2015 годы. розділ в монографії \ під ред. П.Н. Мележика. – Х. – НПП «Контраст», 2015. – 424с.  с. 79-94.

Conferences Proceedings

  1. K. Lukin, P. Vyplavin, V. Palamarchuk, S. Lukin, E.Mischenko, N. Zaets. Radar Tomography using MIMO Noise Radar with Signals Time-Division in Transmit/Receive Channels // IEEE National Radar Conference – Proceedings, 2015, May 10-15, Arlington, USA, 2015, pp. 1461-1463. 
  2. K. Lukin. Dedicated Applications of Noise Radars // Proceedings of the 16th International Radar Symposium (IRS 2015) Dresden, Germany on June 24-26, 2015, pp. 771–776.
  3. K. Lukin, P. Vyplavin, V. Palamarchuk, S. Lukin, P. Sushenko, N. Zaets. MIMO Noise Radar with Signals Time-Division in Receive Channels // Proceedings of the 12th European Radar Conference 9-11 Sept 2015, Paris, France, рр. 125-128.
  4. Lukin S., Zemlyaniy O., Lukin K. FPGA based Random Waveform Generators for Noise Radars // of the 16th International Radar Symposium (IRS 2015) Dresden, Germany, June 24-26, 2015, pp. 777–782.
  5. Lukin S., Zemlyaniy O., Lukin K. FPGA-based Devices for Random Waveform Generation and Stepped Delay Signal // Processing. Proc. Of Signal Processing Symposium, SPSympo-2015, 10-12 June 2015. Debe, Poland, 46-53.
  6. Lukin K., Vyplavin P., Palamarchuk V., Lukin S., Kudryiashov V., Mischenko E. Radar Tomography via Time-Division MIMO Noise Radar // Proceedings of Signal Processing Symposium (SPympo), 10-12 June 2015, Debe, Poland, pp.134-137.
  7. Lukin S., Zemlyaniy O., Lukin K. FPGA-based Devices for Random Waveform Generation and Stepped Delay Signal Processing // Signal Processing Symposium (SPSympo) 2015, 10-12 June 2015, Debe, Poland, pp. 127-133.
  8. Nurmagambetov A. Liouville mode in Gauge/Gravity Duality, Supersymmetries & Quantum Symmetries // Intern. Workshop, 3-8 August 2015, JINR, Dubna, Russia, pp.1-4.
  9. Lukin K. A., Vyplavin P. L., Moreira J., Cioqueta H., Beltrao G., Pompeo B., Pralon L. Use of noise radar in High PRF mode for far range surveillance // International Young Scientists Forum on Applied Physics (YSF), IEEE, 29 Sept.-2 Oct. 2015. Dnipropetrovsk, Ukraine. Electronic copy only. 
  10. Пих А.Б. Волоконно-оптический интерферометр для измерения малых расстояний // 19-й Международный Молодежный Форум «Радиоэлектроника и молодежь в ХХІ веке», Харьков, 20-22 апреля 2015. c. 1-2.
2014

Journal Papers

  1. Lukin K.A., Kudriashov V.V., Vyplavin P.L., Palamarchuk V.P. Coherent imaging in the range-azimuth plane using a bistatic radiometer based on antennas with beam synthesizing // IEEE Aerospace and Electronic Systems Magazine. July 2014. 29, Iss. 7, pp. 16-22.
  2. Yurchenko B., Yurchenko L.V. Bistability and hysteresis in the emergence of pulses in microstrip Gunn-diode circuits / AIP Advances. –2014. – Vol. 4, No. 12. – P. 127126 (12).
  3. Lukin K., Maksymov P., and Cerdeira H. Photoelectron Multiplier based on Avalanche PNIPN-structure // The European Physical Journal (EPJ). 2014. v. 223, p. 2989-2999
  4. Татьянко Д.Н., Мачехин Ю.П., Лукин К.А. Влияние поляризации оптического излучения на фототок различных моделей трап-детекторов // Радиотехника. – 2014. – № 176. – С. 172-180.
  5. Татьянко Д.Н., Мачехин Ю.П., Лукин К.А. Влияние условий проведения измерений на поляризационную зависимость и квантовую эффективность трап-детекторов // Прикладная радиоэлектроника. – 2014. – Т. 13, № 1. – С. 83-87.
  6. Лещенко С.П., Лукин К.А., Выплавин П.Л. Повышение точности азимутальных измерений аэродинамических целей обзорными радиолокационными станциями. Прикладная радиоэлектроника, 2014. – Т. 13, № 4. – С. 386-392.
  7. Yurchenko V., Yurchenko V. B. Тime-Domain Simulation of Power Combining by a Parallel Connection of Strip Lines vith Gunn Diodes // Telecommunications and Radio Engineering Volume 73, 2014 Issue 5, pр. 375-390.
  8. Zaetz M. K., Golovashchenko R. V., Derkach V. , Korzh V. G., Plevako A. S., Tarapov S. I. Control and Stabilization of Temperature (0.8÷300 K) in the Cryodielectrometer of a Gigahertz Frequency Band // Telecommunications and Radio Engineering, 2014, Vol 73, Issue 11, pр. 993-1003.
  9. Bolotin Yu.L., Vakulchik I.Yu., Lukin K.A., Cherkaskiy V.A. Mixed State in a Combined Annular Billiard. // Telecommunications and Radio Engineering, Volume 73, 2014, Issue 6, pр. 475-487.

Monographs / Book Chapters

  1. Зима В.Г., Нурмагамбетов О.Ю. Фізика частинок від атомів до кварків. Монографія (рос.мовою). Видавництво ХНУ ім. В.Н. Каразіна, 2014, 268с. http://www.univer.kharkov.ua/images/redactor/news/2015-02-02/ Zima.pdf

Conferences Proceedings

  1. Lukin K.A., Kudriashov V.V., Vyplavin P.L., Palamarchuk V.P. Coherent Radiometric Imaging In Range-Azimuth Plane Using Antennas With Beam Synthesizing // European Microwave Week 2014, EuRAD 2014, Conference proceedings. Fiera di Roma, Rome, Italy, 5-10 October, 2014. 45-48, DOI: 10.1109/EuRAD.2014.6991203.
  2. Lukin K., Vyplavin P., Kudriashov V., Lukin S., Palamarchuk V., Shkvarko Y., Sushenko P., Zaets N. Radar tomography using MIMO noise radar and antenna with beam synthesis // IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) May 4-9, 2014 – Florence, Italy, pp. 798–800.
  3. Lukin K. A., Vyplavin P. L., Palamarchuk V. P., Kudriashov V. V., Kulpa K., Gajo Z., Misiurewicz J., Kulpa J. Accuracy of phase measurements in noise radar // in 15th International Radar Symposium (IRS) 2014, Poland, Gdansk, June 16-18, pp. 1–4. DOI: 10.1109/IRS.2014.6869186.
  4. Lukin K., Vyplavin P., Palamarschuk V., Lukin S. Wideband noise radar tomography // 7th International Conference on Ultrawideband and Ultrashort Impulse Signals, UWBUSIS 2014, Kharkiv, Ukraine, Sept. 15-19, p. 35.

Ph.D Theses Abstracts

  1. Татьянко Д.М. Оптичні прилади на основі низько-когерентної спектральної інтерферометрії. автореф. дис. канд. фіз.-мат. наук: 01.04.01 «Фізика приладів, елементів і систем» / Дмитро Миколайович Татьянко; Ін-т радіофізики та електрон. ім. О.Я.Усикова НАН України. — Х., 2014. — 23 с. — укp.
2013

Journal Papers

  1. Sattorov M., Khutoryan E., Lukin K., Kwon O., Park G.S. Improved efficiency of backward-wave oscillator with an inclined electron beam // IEEE Transactions on Electron Devices, 2013, V.60 (1), 458-463
  2. Lukin K.A., Danailow M.B., Machekhin Yu.P., and Tatyanko D.N. Nano-distance measurements using spectral interferometry based on light-emitting diodes. // Applied radio electronics. – 2013. – V. 12, № 1. – P. 166-171.
  3. Yurchenko L.V., Yurchenko V.B. Time-Domain Simulation of Short-Pulse Oscillations in a Gunn Diode System With Time-Delay Microstrip Coupling // Applied Radioelectronics, 2013, Volume 12, No 1, pp.45-50.
  4. Lukin K.A., Scherbakov Ye. and Scherbakov D.V. New Method for Generation of Quasi-Orthogonal Chaotic Sequences // Applied Radio Electronic, 2013, Vol. 12, № 1, pp. 17-24.
  5. Lukin K.A., Vyplavin P.L. , Kudriashov V.V., Palamarchuk V.P., Lukin S.K., Jong-Min Lee, Jong-Soo Ha, Sun-Gu Sun, Youn-Sik Kang, Kyu-Gong Cho and Byung-Lae Cho. Tomographic imaging using noise radar and 2D aperture synthesis // Applied Radio Electronics. – 2013. – Vol. 12, No. 1. – P. 152–156.
  6. Zemlyaniy O.V., Lukin S.K. FPGA based design of random waveform generators for noise radars // Applied Radio Electronics, Vol. 12, No.1, 2013, pp.32-36.
  7. Lukin K.A., Moreira J.R., Vyplavin P.L., Lukin S.K., Zemlyaniy O.V. FPGA based software defined noise radar // Applied Radio Electronics, Vol. 12, No.1, 2013, pp.89-94.
  8. Vyplavin P.L. Integrated and maximal sidelobe levels of noise signal // Applied Radio Electronics, Vol. 12, No.1, 2013, pp.128-131.
  9. Lukin K.A., Kim J.P., Vyplavin P.L., Palamarchuk V.P. SAR imaging with stepped frequency noise radar.// Applied Radio Electronics, Vol. 12, No.1, 2013, pp.141-144.
  10. Lukin K.A., Stove A.G., Kulpa K., Calugi D., Palamarchuk V.P., Vyplavin P.L. Ka-band ground-based noise SAR trials in various conditions // Applied Radio Electronics, Vol. 12, No.1, 2013, pp.145-151.
  11. Lukin K.A., Kim J.P., Zemlyaniy O.V., Tatyanko D.N. Phase shift measurement of optical noise waveform modulation envelope // Applied Radio Electronics, Vol. 12, No.1, 2013, pp.175-179.
  12. Лукин К.А., Канцедал В.М. Сравнение помехоустойчивости широкополосных корреляционных приемников шумовых и ЛЧМ импульсных радаров при воздействии непрерывных активных помех // Прикладная радиоэлектроника, том 12, №3, 2013 г., с.323-334.
  13. Лукин К.А., Хуторян Э.М.,Пономаренко С.С., Кишко С.А., Кулешов А.Н.. Колебания в генераторе О-типа при возбуждении объемно-поверхностной моды резонатора с периодически неоднородной гребенкой // Изв. ВУЗов. Прикладная нелинейная динамика. – 2013. – Т. 21, № 2. – С. 9 – 19.
  14. Юрченко Л.В., Юрченко В.Б. Моделирование во временной области процессов суммирования мощности при параллельном соединении полосковых линий с диодами Ганна // Радиофизика и электроника 2013, T 4(18), No 3, pp.28-36.
  15. Лукин К.А., Васюта К.С., Зоц Ф.Ф., Выплавин П.Л., Кудряшев В.В., Озеров С.В., Паламарчук В.П., Сущенко П.Г., Лукин С.К. Получение радиолокационных портретов образцов военной техники с помощью наземного шумового радара с синтезированной апертурой // Системи озброєння і військова техніка. – 2013. – Т.4(36), стр. 87-92.
  16. Заец Н.К., Головащенко Р.В., Деркач В.Н., Корж В.Г., Плевако А.С., Тарапов С.И. Контроль и стабилизация температуры (0,8-300K) в криодиэлектрометре гигагерцевого диапазона частот Радиофизика и электроника.-2013, Т.4(18), №4,с.92-98 
  17. Lukin K.A., Maksymov P.P. Power characteristics of multifrequency millimeter and submillimeter wave self‑oscillators based on the pn-i-pn structures // Telecommunications and Radio Engineering, vol. 72 (5). 2013, pp. 421-434.
  18. Lukin K.A., Maksymov P.P., Shiyan Ju.A. Frequency conversion in pn-i-pn structure // Telecommunications and Radio Engineering, vol. 72 (16). 2013, pp. 1497-1508.
  19. Lukin K.A., Maksymov P.P. Power Characteristics of Millimetric and Submillimetric Oscillators Based on the Abrupt p-n-Junctions // Telecommunications and Radio Engineering. – 2013. vol. 72 (8) p.731 – 740.
  20. Lukin K.A., Maksymov P.P. Coherent power combining in avalanche-oscillator diodes // Telecommunications and Radio Engineering, vol. 72 (16). 2013, pp. 1509-1519.
  21. Kudryashov V., Lukin K., Palamarchuk V., Vyplavin P. Coherent radiometric imaging with a ka-band ground-based synthetic aperture noise radar // Telecommunications and Radio Engineering, 2013, vol. 72, no. 8,. р. 699 – 710
  22. Lukin K.A., Machekhin Yu.P., Tatyanko D.N., Danailov M.B. Metrological maintenance of standard optical frequency grid for WDM telecommunications // Telecommunications and Radio Engineering. – 2013. – 72 (18). –P. 1665-1676

Conferences Proceedings

  1. Lukin K.A., Palamarchuk V.P., Vyplavin P.L., Kudriashov V.V. Indoor radiometric coherent imaging in range-azimuth plane using ground based Ka-band noise waveform SAR equipment // Signal Processing Symposium (SPS-2013): int. symp., 5-7 June 2013: symp. proc. – Serock, Poland. – P. 1–5.
  2. Lukin K.A., Kudriashov V.V. Fusion of synthetic aperture radiometer and noise waveform SAR images // IX international conference on Antenna theory and techniques (ICATT’13): int. conf., 16-20 Sept. 2013: conf. proc. – Odessa, 2013. – P. 549–551.
  3. Lukin K.A., Vyplavin P.L., Kudriashov V.V., Palamarchuk V.P., Suschenko P.G., Zaets N.K. Radar tomography using noise waveform, antenna with beam synthesis and MIMO principle // IX international conference on Antenna theory and techniques (ICATT’13): int. conf., 16-20 Sept. 2013: conf. proc. – Odessa, 2013. – P. 190–192.
  4. Lukin K.A., Kudriashov V.V., Lukin S.K., Palamarchuk V.P. Potential and real capabilities of bistatic radiometers when forming an images // 13-th Kharkiv young scientists conference on radiophysics, electronics, photonics and biophysics: int. conf., 2-6 Dec. 2013: conf. proc. – Kharkiv, 2013.
  5. Lukin K.A., Kudriashov V.V., Lukin S.K., Palamarchuk V.P. The resolution cell size of the range-azimuth image formed by bistatic radiometer based on antenna with beam synthesis // 13-th Kharkiv young scientists conference on radiophysics, electronics, photonics and biophysics: int. conf., 2-6 Dec. 2013: conf. proc. – Kharkiv, 2013.
  6. Лукин К.А., Мачехин Ю.П., Татьянко Д.Н. Сетка стандартных оптических частот на базе волоконно-оптического интерферометра Фабри-Перо // 6-я Международная научная конференция “Функциональная база наноэлектроники”, Сборник научных трудов, 2013.
  7. Лукин К. А., Татьянко Д. Н. МачехинЮ. П., Данаилов М. Б. Источники излучения для сеток стандартных оптических частот в оптических телекоммуникациях // V Международная научно-техническая конференция «Современные тенденции развития светотехники» в рамках светотехнического международного форума «LEDLight ‘2013». – 2013. – C. 57-58.
  8. Литвиненко А.С., Татьянко Д.Н., Тимофеев Е.П. Новые конструкции трап-детекторов для высокоточных измерений // V Международная научно-техническая конференция «Современные тенденции развития светотехники» в рамках светотехнического международного форума «LEDLight ‘2013». – 2013. – C.69-70.
  9. Zaets N.K., Derkach V.N., Golovashchenko R.V., Korzh V.G., Plevako A.S., Tarapov S.I. Temperature controll and stabilization in the cryodielectrome-ter for temperatures 0.5-300K // Proceedings of the 2013 International Kharkov Symposium on Physics and Engineering of Microwawes, Millimeter and Submillimeter Wawes (MSMW’2013), 21-26 June 2013,Kharkov, Ukraine,Paper W-33

Ph.D Theses Abstracts

  1. Кудряшов В.В. Формування радіометричних зображень за допомогою бістатичного радіометра на основі антен із синтезованою діаграмою спрямованості: автореф. дис. … канд. фіз.-мат. наук: 01.04.03 «Радіофізика» / Володимир Вікторович Кудряшов; Ін-т радіофізики та електрон. ім. О.Я.Усикова НАН України. — Х., 2013. — 19 с. — укp.
2012

Journal Papers

  1. K.A. Lukin. Initial-boundary value problems for linear equations of electrodynamics with nonlinear boundary conditions // J. Phys.: Conf. Ser. 346 (2012), 012013.
  2. K.A. Lukin, V.D. Rusov. Quantum mechanical motion of classical particles. // J. Phys.: Conf. Ser. 361 (2012), 012040.
  3. K.A. Lukin, P.L. Vyplavin, O.V. Zemlyaniy, V.P. Palamarchuk, S.K. Lukin. High Resolution Noise Radar without fast ADC // International Journal of Electronics and Telecommunications (JET), 2012, Vol.58, No.2, pp.135-140.
  4. Kudriashov V.V., Lukin K.A., Palamarchuk V.P., Vyplavin P.L. Range-azimuth coherent radiometric imaging based on Ka-band antenna with beam synthesis // Applied Radio Electronics. – 2012. – Vol. 11, No. 3. – pр. 328-334.
  5. Lukin K.A., Kulpa K., Palamarchuk V.P., Vyplavin P.L., Kudryashov B.V., Kulpa Ya., L.V.Yurchenko. Experimental estimation of the accuracy of the object shifts measurement using differential SAR interferometry method. // Прикладная радиоэлектроника. – 2012, Vol.11, No. 3, pp.366-372
  6. Кудряшев В.В., Лукин К.А., Паламарчук В.П., Выплавин П.Л. Формирование когерентных радиоизображений в пассивном режиме работы наземного шумового РСА 8–мм диапазона длин волн // Радиофизика и электроника, 2012. – Т 3(17), № 3,  с.41-47.
  7. Выплавин П.Л., Кудряшев В. В., Паламарчук В.П., Лукин К.А. Экспериментальная оценка аппаратурной стабильности наземного шумового РСА для дифференциально-интерферометрических измерений // Прикладная радиоэлектроника, 2012. – Т 11, №1, с.48–53.
  8. Лукин К.А., Щербаков В.Е. Метод формирования квазиортогональных хаотических кодовых сигналов для системы передачи/ приема данных между транспортными средствами на автобане // Прикладная радиоэлектроника, – Т 11, №1, с.37–43.
  9. Лукин К.А., Коновалов В.М. Когерентная компенсация мощных мешающих отражений в локаторах с периодическими сигналами // Прикладная радиоэлектроника, – Т 11, №1, с.3–14.
  10. Лукин К.А., Максимов П.П. Исследование энергетических характеристик многочастотных автогенераторов миллиметровых и субмиллиметровых волн на основе pn–i–pn-структур // Радиофизика и электроника, – Т 3 (17), №1, с.92-99.
  11. Лукин К.А., Максимов П.П. Энергетические характеристики автогенераторов миллиметровых и субмиллиметровых волн на основе резких p–n-переходов // Радиофизика и электроника, – Т 3 (17), №3, с. 74-79. Лукин К.А., Максимов П. П. Когерентное сложение мощностей в лавинно-генераторных диодах // Радиофизика и электроника, 2012. – Т 3 (17), №4, с.70-75.
  12. Лукин К.А., Максимов П. П., Шиян Ю. А. Преобразование частоты в pn–i–pn-структурах // Радиофизика и электроника, – Т 3 (17), №2, с. 65-71.
  13. Лукин К.А., Канцедал В.М. Сравнение помехоустойчивости широкополосных корреляционных приемников шумовых и ЛЧМ импульсных радаров при воздействии непрерывных активных помех // Прикладная радиоэлектроника, – Т 11, №1, с.23-34.
  14. Lukin K.A, Kantsedal V.M., Kulik V.V., Konovalov V.M., Mogyla A.A., Palamarchuk V.P., Sushchenko P.G. Experimental Estimate of Noise Immunity for the Short–Range Noise Pulse Radar Subjected to the Action of Continuous Active Noises Telecommunications and Radio Engineering, –2012 Vol. 71, No 9 771 -790
  15. Mogyla A. Decision Statistics of Energy Detection Based upon Two-Parametric Expansion of Stochastic Signals Telecommunications and Radio Engineering, –2012 Vol. 71, No 11 1017-1033
  16. Моgyla A.A. Optimum Reception of the Stochastic Probing Signals under Conditions of Full a Priori Information Telecommunications and Radio Engineering, –2012 71, No 7 637 – 652.
  17. Rusov V.D., Lukin K.A., Zelentsova T., Linnik E.P., Beglaryan M.E., Smolyar V.P., Filippov M. and Vachev B. Can Resonant Oscillations of the Earth Ionosphere Inuence the Human Brain Biorhythm? [электронный ресурс] /2012/ Режим доступа: arXiv:1208.4970vl [physics.gen-ph] 23 Aug 2012.

Monographs / Book Chapters

  1. Могила А.А., Lukin K.A. Двухпараметрическое представление случайных сигналов: Модели и оценка статистических характеристик // Saarbrücken: LAP Lambert Academic Publishing, 2012. – 200 с. – ISBN 978-3-8383-9622-4.
  2. Harmuth H. F., Lukin K. A. Interstellar propagation of electromagnetic signals. Springer Science & Business Media, 2012, р.277.
  3. Лукин К.А. Мой Шеф. Розділ в монографії / Академик НАН Украины Виктор Петрович Шестопалов. Служение науке. // Харьков: ИПП «Контраст», 2012. – 423 с., с. 29-30.
  4. Лукин К.А. Воспоминание о моем учителе Викторе Петровиче Шестопалове. Розділ в монографії \ Академик НАН Украины Виктор Петрович Шестопалов. Служение науке. Харьков: ИПП «Контраст», 2012. – 423 с., с.102-111.

Conferences Proceedings

  1. Lukin K.A., Vyplavin P.L., Zemlyaniy O.V., Palamarchuk V.P., Kim J.Ph., Kim Ch.H.. Doppler Signal Detection Using Stepped Frequency Noise Radar // Proc. of the 13th International Radar Symposium (IRS 2012), Warsaw, Poland, May 23-25, 2012, pp.471-474.
  2. Lukin K.A., Vyplavin P. L., Kudryashev V.V, Palamarchuk V.P, Yarovoy S. Noise waveform SAR for 2D and 3D imaging // 9th European conference on Synthetic Aperture Radar (EUSAR), 2012.
  3. Lukin К., Palamarchuk V., Kudriashov V., Kulpa K., Gajo Z., Misiurewicz J., Kulpa J.. Precision of Target Shifts Detection Using Ka-band Ground Based Noise Waveform SAR // 13th International Radar Symposium IRS-2012, Warsaw, Poland, May 21-26, 2012, pp. 475-478.
  4. Lukin К., Vyplavin P. Integrated Sidelobe Ratio in Noise Radar Receiver // 13th International Radar Symposium IRS-2012, Warsaw, Poland, 21-26 May 2012.
  5. Lukin K., Vyplavin P., Palamarchuk V., Zemlyaniy O., Kudriashov V., Lukin S. Capabilities of noise radar in remote sensing applications // 2012 Tyrrhenian Workshop on Advances in Radar and Remote Sensing, (TyWRRS-2012), Napoli, Italy, Sept. 12-14, 2012. pp.10-17.
  6. Sattorov M. A, Khutoryan  E., Lukin K., Park G.-S., Bera A., Barik R., Kwon O.-J., Min S.-H., Sharma A., Tanwar A. Experimental analysis on 0.1 THz clinotron // 3rd Int. THz-Bio Workshop, Feb. 8-9, 2012, SNU, Seoul, Korea, p. P-3.
  7. Sattorov M. A, Khutoryan  E., Lukin K., Park G.-S., Bera A., Barik R., Kwon O.-J., Min S.-H., Sharma A., Tanwar A. Automodulation processes in BWO with inclined electron beam at low focusing magnetic fields // 3rd Int. THz-Bio Workshop, Feb. 8-9, 2012, SNU, Seoul, Korea, p. P-4.
  8. Sattorov M. A, Khutoryan  E., Lukin K., Park G.-S., Bera A., Barik R., Kwon O.-J., Min S.-H., Sharma A., Tanwar A.. Experimental study on 0.1 THz Clinotron // IEEE IVEC-IVESC,Monterey, USA, Apr. 24-26, 2012, p. 453.
  9. Sattorov M. A, Khutoryan  E., Lukin K., Park G.-S., Kwon O. Automodulation processes in THz resonant backward wave oscillator with low focusing magnetic field // 37th Int. Conf. IRMMW-THz, Wollongong (UOW), Australia, Sep. 23-28, 2012.
  10. Lukin K. Incoherent Antenna Array for Coherent Active and Radiometric 2D Imaging and Tomography // Proceedings of 3rd International Conference on Noise Radar Technology, Yalta, Ukraine, September 27-29, 2012.
  11. Lukin K.A., Vyplavin P.L. Integrated and maximal sidelobe levels in noise radar // Proceedings of 3rd International Conference on Noise Radar Technology, Yalta, Ukraine, September 27-29, 2012.
  12. Moreira Joao, Lukin Konstantin and Lukin Sergii. Software Defined Noise Radar Based on “SPOS” FPGA Board // Proceedings of 3rd International Conference on Noise Radar Technology, Yalta, Ukraine, September 27-29, 2012.
  13. Jong Phill Kim, Lukin, Vyplavin P., Palamarchuk V. SAR imaging with Stepped Frequency Noise Radar // Proceedings of 3rd International Conference on Noise Radar Technology, Yalta, Ukraine, September 27-29, 2012.
  14. Lukin K.A., Vyplavin P.L., Palamarchuk V.P., Kudriashov V.V. Kulpa K., Kulpa J. Precision of target shifts detection using Ka-band ground based noise waveform SAR // 3rd International conference on Noise Radar Technology, NRT-2012. Yalta, Crimea, Ukraine, September 27-29, 2012.
  15. Yurchenko V.B., Yurchenko L.V. Self-consistent time-domain simulation of short-pulse oscillations in a Gunn diode system with time-delay microstrip-line coupling // 3rd International Conference on Noise Radar Technology, NRT-2012, Yalta, Crimea, Ukraine, September 27-29, 2012.
  16. Narayanan R., Lukin K.A. Noise Radar History and Future Applications // Proceedings of 3rd International Conference on Noise Radar Technology, Yalta, Ukraine, September 27-29, 2012.
  17. Vyplavin P., Beltrao G., Moreira J., Lukin K.A. Noise Radar operating in High PRF Mode // Proceedings of 3rd International Conference on Noise Radar Technology, Yalta, Ukraine, September 27-29, 2012.
  18. Stove A., Vyplavin P., Kulpa K., Palamarchuk P. Ka-band Ground-Based Noise SAR Trials in Various Conditions // Proceedings of 3rd International Conference on Noise Radar Technology, Yalta, Ukraine, September 27-29, 2012.
  19. Kudriashov V.V., Lukin К.A, Vyplavin P., Palamarchuk P. Radiometric Coherent Imaging using Ka-band Noise Waveform SAR // Proceedings of 3rd International Conference on Noise Radar Technology, Yalta, Ukraine, September 27-29, 2012.
  20. Vyplavin P., Kudriashov V.V., Palamarchuk V.P., Zemlyaniy O.V., Lukin K. Microwave Indoor SAR Tomography with Noise Radar // Proceedings of 3rd International Conference on Noise Radar Technology, Yalta, Ukraine, September 27-29, 2012.
  21. Lukin K.A., Jin Sup Kim, P.Vyplavin, Yu. Shiyan, V.P. Palamarchuk. Doppler Noise Radar for Range Estimation // Proceedings of 3rd International Conference on Noise Radar Technology, Yalta, Ukraine, September 27-29, 2012.
  22. Lukin K.A., Scherbakov V.Ye.. The Generation Method of Quasi-Orthogonal Chaotic Sequences // Proc. of International Conference on Noise Radar Technology (NRT-2012), Yalta Hotel, Yalta, Crimea, Ukraine, September 27-29, 2012.
  23. Zemlyaniy O.V., Lukin S.K.. FPGA and AWG based Random Signal Generators // 3rd International Conference on Noise Radar Technology, NRT-2012, Yalta, Crimea, Ukraine, September 27-29, 2012.
  24. Vyplavin P.L., Palamarchuk V.P., Zemlyaniy O.V., Lukin S.K., P Suschenko. Noise MIMO Radar for 2D and 3D Aperture Synthesis // Proceedings of 3rd International Conference on Noise Radar Technology, Yalta, Ukraine, September 27-29, 2012.
  25. Kim J.P., Zemlyaniy O.V., Tatyanko D.N., Lukin K.A. Optical Noise Sensor for Phase Shift Detection of RF Modulating Signal // 3rd International Conference on Noise Radar Technology, NRT-2012, Yalta, Crimea, Ukraine, September 27-29, 2012.
  26. Lukin K.A., Danailov M.B., Machekhin Yu.P., Tatyanko D.N. Nano-distance measurements using spectrum interferometry and optical noise signals // Proceedings of 3rd International Conference on Noise Radar Technology, Yalta, Ukraine, September 27-29, 2012.
  27. Lukin K., Konovalov V., Vyplavin P., Lukin S. Methods for compensation of strong interference in noise radar for measurement of slow motions of small objects // Proceedings of 3rd International Conference on Noise Radar Technology, Yalta, Ukraine, September 27-29, 2012.
  28. Lukin K.A., Mogyla A.A., Palamarchuk V.P., Vyplavin P.L., Zemlyaniy O.V.,  Zayats  K. Ground-Based Noise Synthetic Aperture Radars developed in LNDES. // Proceedings of 3rd International Conference on Noise Radar Technology, Yalta, Ukraine, September 27-29, 2012.
  29. Zemlyaniy O.V., Lukin S.K. Software Defined Noise Sonar // 3rd International Conference on Noise Radar Technology, NRT-2012, Yalta, Crimea, Ukraine, September 27-29, 2012.
  30. Zemlyaniy O.V., Lukin S.K. FPGA and AWG based Random Signal Generators // Proceedings of 3rd International Conference on Noise Radar Technology, Yalta, Ukraine, September 27-29, 2012.
  31. Lukin K.A., Palamarchuk V.P., Vyplavin P.L., Kudriashov V.V. Range-azimuth radiometric imaging using Ka-band noise waveform synthetic aperture radar // Fifth world aviation congress. Kyiv, Ukraine, September 25-27, 2012. Radar methods and systems workshop, RMSW 2012. Proceedings, 1-5.
  32. Lukin K.A., Palamarchuk V.P., Vyplavin P.L., Kudriashov V.V. Range-azimuth radiometric imaging using Ka-band antenna with synthesized beam // Kharkiv Young Scientists Conference on Radiophysics, Electronics, Photonics and Biophysics, YSC-2012, Kharkiv, Ukraine, December 4-7, 2012., 1-5.
  33. Мачехин Ю.П., Лукин К.А., Татьянко Д.Н. Сцинтилляционные датчики на основе трап-детекторов. / // VIII Международная научно-техническая конференция «Метрология и измерительная техника» «Метрология-2012», Сборник научных трудов, Харків, 9–11 жовтня 2012. с. 323-326.
  34. Лукин К.А., Выплавин П.Л., Паламарчук В.П., Лукин С.К., Кожан Е.А., Нищук Л.А. Радиоголографический мониторинг памятников архитектуры – колокольни и собора Софии Киевской – с помощью наземного шумового РСА // Міжнародна наукова конференція «Методичні проблеми пам’яткоохоронних досліджень», 19-20 квітня 2012, м. Київ.
  35. Лукин К.А., Мачехин Ю.П., Данаилов М.Б., Татьянко Д.Н. Источники излучения для низко-когерентной оптической томографии. // 5-я Международная научная конференция “Функциональная база наноэлектроники”, Сборник научных трудов, Харьков-Кацивели, 30 сентября – 5 октября, 2012, С. 285-288.

Patents

  1. Сцинтиляційний детектор: патент на корисну модель № 73483 від 25.09.2012, Україна, МПК: G01T 1/20 (2006.01) / Мачехін Ю.П., Татьянко Д.М., Лукін К.О. – № u201202867; заявл. 12.03.2012; опубл. 25.09.2012, Бюл. № 18/2012.
2011

Journal Papers

  1. Konstantin A. Lukin, Volodymyr P. Palamarchuk, Pavlo L. Vyplavin and Volodymyr V. Kudriashov. Experimental Investigation of Factors Affecting Stability of Interferometric Measurements with Ground Based Noise Waveform SAR / // International Journal of Electronics and Telecommunications. – V. 57, No. 3. – 2011. – рр. 389-393.
  2. Лукин К.А., Канцедал В. М., Кулик В. В., Коновалов В. М., Могила А. А., Паламарчук В. П., Сущенко П. Г. Экспериментальная оценка помехоустойчивости шумового импульсного радиолокатора ближнего действия в условиях воздействия непрерывных активных помех // Радиофизика и электроника. – 2011. – Т.2(16), №2. –  с.77– 89.
  3. Лукин К. А., Мачехин Ю. П., Данаилов М. Б., Татьянко Д. Н. Применение метода спектральной интерферометрии для измерения микро- и нанорасстояний. // Радіофізика та електроніка. – 2011.-Т.2(16), №1. – с. 39-45.
  4. Лукин К.А., Мачехин Ю.П., Татьянко Д.Н. Создание сеток оптических частот на основе метода спектральной интерферометрии. // Светотехника и электроэнергетика. – № 3 (27). – 2011. – с. 26-30.
  5. Могила А.А. Оптимальный прием сигналов в условиях полной априорной информации при использовании стохастических зондирующих сигналов // Радиотехника: всеукраинский межведомственный научно-технический сборник. – Харьков, 2011. – Вып.164. – с. 11–20.
  6. Lukin K. A., Mogyla A.A., Palamarchuk V.P., Kravchuk A.V., Cherniy B.S. Noise radar with synthesizing a spectrum of sounding signal // Telecommunications and Radio Engineering, – Vol. 70(10). – 2011. – рр. 883–898.
  7. Lukin K., Zemlyaniy O., Vyplavin P., Palamarchuk V. Application of Arbitrary Waveform Generator for Noise Radar // Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2011, edited by Ryszard S. Romaniuk, Proceedings of SPIE Vol. 8008, pp. 80081W-1-4 (SPIE, Bellingham, WA, 2011).
  8. Lukin K., Vyplavin P., Savkovich E., Lukin S. Software Defined Noise Radar with Low Sampling Rate // Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2011, edited by Ryszard S. Romaniuk, Proceedings of SPIE Vol. 8008, pp. 80081S-1-4 (SPIE, Bellingham, WA, 2011).
  9. Lukin K.A., Zemlyaniy O., Vyplavin P.L., Lukin S.K., Palamarchuk V.P. High Resolution Noise Radar using slow ADC // Radar Sensor Technology XV, 2011, Orlando, Florida, USA. edited by Kenneth I. Ranney; Armin W. Doerry, SPIE vol.8021, 802114-1-4.

Conferences Proceedings

  1. Lukin K., Zemlyaniy O., Vyplavin P., Palamarchuk V. Application of Arbitrary Waveform Generator for Noise Radar // Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2011, 23-29 May, Wilga, Poland, Paper Id. 18.
  2. Lukin K., Vyplavin P., Savkovich E., Lukin S. Software Defined Noise Radar with Low Sampling Rate // Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2011, 23-29 May, Wilga, Poland, Paper Id. 38.
  3. Lukin K.A., Zemlyaniy O., Vyplavin P.L., Lukin S.K., Palamarchuk V.P. High Resolution Noise Radar using slow ADC // Int. Conf. on Radar Sensor Technology XV, 25-29 April 2011, Orlando, Florida, USA.
  4. Lukin K.A., Zemlyaniy O., Vyplavin P.L., Lukin S.K., Palamarchuk V.P. Advances in Noise Radar Design // International Radar Symposium (IRS 2011), Leipzig, Germany, September 7–9, 2011, pp.532-537.
  5. Лукин К.А., Татьянко Д.Н., Мачехин Ю.П. Создание сеток оптических частот на основе метода спектральной интерферометрии. // Сучасні проблеми світлотехніки та електроенергетики: матеріали IV міжнар. наук. – техн. конф., – Харків, – 13 – 14 квітня 2011 р. / Харк. нац. акад.. міськ. госп-ва. – Х.: ХНАМГ, 2011, с. 27-29.
  6. Лукин К.А., Татьянко Д.Н., Мачехин Ю.П. Измерения микро- и нанорасстояний методом спектральной интерферометрии. // Сучасні проблеми світлотехніки та електроенергетики: матеріали IV міжнар. наук. – техн. конф., – Харків, – 13 – 14 квітня 2011 р. / Харк. нац. акад.. міськ. госп-ва. – Х.: ХНАМГ, 2011, с. 42-44.
  7. Lukin K.A., Tatyanko D.N., Machekhin Yu.P. Grid of optical frequencies in a near infra-red range spectrum. // Proceedings of 15th International congress of metrology. – 2011.
  8. Лукин К.А., Мачехин Ю.П., Данаилов М.Б., Татьянко Д.Н. Сетка стандартных оптических частот для DWDM телекоммуникаций. / // Труды ІV-й Международной научной конференции «Функциональная база наноэлектроники» – 30 сентября – 3 октября 2011. – с. 47-50.
  9. Могила А.А. Характеристики когерентного обнаружения стохастических сигналов в условиях полной априорной информации // 4-й Международный радиоэлектронный форум «Прикладная радиоэлектроника. Состояние и перспективы развития»: тр. МРФ-2011., – 18–21 октября 2011, Харьков, Украина, ХНУРЭ, – Т.1, Конференция «Интегрированные информационные радиоэлектронные системы и технологии», – с.176–179.
  10. Лукин К. А., Канцедал В.М. Сравнение помехоустойчивости широкополосных корреляционных приемников шумовых и ЛЧМ импульсных радио-локаторов при воздействии синхронных импульсных активных помех // Сб. научных трудов 4-го Международного радиоэлектронного форума «Прикладная радиоэлектроника. Состояние и перспективы» (МРФ’2011). Том 1. Конференция «Интегрированные информационные радиоэлектронные системы и технологии». Часть 1. Харьков, 2011. – с. 132-135.
  11. M. A. Sattorov, A. Bera, R. K. Barik, O. Kwon, G.-S. Park, K. A. Lukin, A. S. Tishchenko. Thermal velocity effects in sheet-beam for THz devices // Proc. 2nd Int. THz-Bio Workshop, Jan. 19-20, 2011, SNU, Seoul, Korea, p. 52 (P-5).
  12. M. A. Sattorov, G.-S. Park, K. A. Lukin, M. V. Mil’cho. Beam-wave interaction in 0.1 THz Clinotron // Proc. 36th Int. Conf. IRMMW-THz, Houston, TX, USA, Oct. 2-7, 2011.
  13. Palamarchuk V.P., Vyplavin P.L., Kudriashov V.V. Experimental Investigation of Factors Affecting Stability of Interferometric Measurements with Ground Based Noise Waveform SAR // Signal Processing Symposium SPS-2011. Jun 8, 2011 – Jun 10, 2011. Jachranka, Poland. – Proceedings pp. 1-8.
  14. Lukin K., Vyplavin P, Yarovoy S., Kudriashov V., Palamarchuk V., Jong-Min Lee, Youn-Sik Kang, Kyu-Gong Cho, Jong-Soo Ha, Sun-Gu Sun, Byung-Lae Cho. 2D and 3D imaging using S-band noise waveform SAR // Synthetic Aperture Radar (AP SAR), 2011 3-rd International Asia-Pacific Conference on. Seoul, South Korea, September 26-30 2011. Conference Publications pp. 1-4. IEEE conference publications.
  15. Lukin S., Moreira J., Spielbauer R. Software defined noise radar on the basis of FPGA based SPOS board // Proc. Of the 3rd International Asia-Pacific Conference on Synthetic Aperture Radar (APSAR 2011), September 26-30, 2011, pp. 1-2. .
  16. Zemlyaniy O., Vyplavin P.  Lukin S., Palamarchuk V. High resolution and high dynamic range noise radar // Proc. of Microwaves, Radar and Remote Sensing Symposium (MRRS), 2011, pp. 247-250.

Patents

  1. Способ формирования экстремумов спектра оптических частот : патент 64484 Україна : МПК(2011.01): H04J 1/00 / Лукін К. О., Мачехін Ю. П., Татьянко Д. М., Меркулов Є. Г. – № u201104371 ; заявл. 11.04.2011 ; опубл. 10.11.2011, Бюл. № 21/2011.

Ph.D Theses Abstracts

  1. Виплавін П. Л. Формування когерентних зображень за допомогою наземних шумових радарів з синтезованою апертурою: автореф. дис. … канд. фіз.-мат. наук: 01.04.03 «Радіофізика» / Павло Леонідович Виплавін; НАН України, Ін-т радіофізики та електроніки ім. О Я. Усикова. — Х., 2011. — 20 с.: рис. — укp.
2010

Journal Papers

  1. Лукин К. А., Максимов П. П. Терагерцовые автоколебания в инжекционном pn-переходе с постоянным обратным смещением // Киевский политехнический институт. Изв. Вуз. Радиоэлектроника. ‑ 2010. 53. № 8 – с. 16-22.
  2. Лукин К. А. Сканирующие антенны с синтезированием диаграммы направленности // Киевский политехнический институт. Изв. Вуз. Радиоэлектроника. ‑ 2010. 53. №1.
  3. Лукин К.А., Мачехин Ю.П., Могила А.А., Татьянко Д.Н., Бабич В.М., Литвиненко А.С. Лазерный измеритель расстояний на основе метода спектральной интерферометрии. // Прикладная радиоэлектроника, 2010, Том 9, № 2, с. 240-245.
  4. Tarchi D., Lukin K., Fortuny-Guasch J., Mogila A. and Sieber A. Experimental Validation of Noise Radar Technology for Small Area Surveillance // IEEE Transactions on Aerospace and Electronic Systems, vol. 46, no.3, july 2010.
  5. Лукин К.А., Могила А.А., Паламарчук В.П., Кравчук А.В., Черний Б.С. Экспериментальные исследования шумового радиолокатора с синтезированием спектра зондирующего сигнала // Радиофизика и электроника, 2010. Т.15, №1. с.62-71.
  6. Tarchi D., Lukin K., Fortunay-Guasch J., Mogyla A., Vyplavin P., Siber A. SAR Imaging with Noise Radar // IEEE Transactions on Aerospace and Electronic Systems. – 2010. 46, No.3. – рр. 1214–1225.
  7. Лукин К.А. Хуторян Э.М. Взаимодействие мод в резонаторе поверхностной волны с электронным потоком // Радиофизика и электроника. – 2010. – Т.15, №  – с. 92-101.
  8. Мачехин Ю.П., Lukin K.А., Данаилов М.Б., Татьянко Д.Н. Применение метода спектральной интерферометрии для измерения микро- и нанорасстояний. // Радиофизика и электроника», 2010.

Patents

  1. Трап-детектор: патент на изобретение 2405129 Российская Федерация: МПК G01J 1/42 (2006.01) / Татьянко Д. Н. – № 2008137072/28; заявл. 15.09.2008; опубл. 27.11.2010, Бюл. № 33.

Conferences Proceedings

  1. Лукин К. А., Максимов П. П. Многочастотные автогенераторы на основе pnipnструктур с лавинным умножением зарядов // Сборник научных трудов III Международной научной конференции «Функциональная компонентная база. Микро-, опто и наноэлектроники» Харьков-Кацивели 2010г., с. 68-71.
  2. Лукин К.А., Мачехин Ю.П., Данаилов М.Б., Татьянко Д.Н. Измерения расстояния методом спектральной интерферометрии в микро- и нанометровом диапазоне // Труды 3-й Международной научной конференции “Функциональная компонентная база микро-, опто- и наноэлектроники”, Харьков-Кацивели, 2010, Сборник научных трудов, с. 72-75.
  3. Мачехин Ю.П., Татьянко Д.Н., Любинский В.Р. Особенности применения фотодетекторов в сцинтилляционных датчиках. // Труды 3-й Международной научной конференции “Функциональная компонентная база микро-, опто- и наноэлектроники”, Харьков-Кацивели, 2010, Сборник научных трудов, с. 87-90.
  4. Мачехин Ю.П., Татьянко Д.Н., Любинский В.Р. Применение оптических трап-детекторов в сцинтилляционных датчиках.// Труди VІI Міжнародної науково-технічної конференції “Метрологія та вимірювальна техніка (Метрологія–2010)”, Том 2, с. 30-33.
  5. Lukin K., Ram N. Narayanan. Fifty years of Noise Radar // Proc. 11th International Radar Symposium IRS-2010, Vilnius, June 16-18, 2010, Vol.2, pp. 210-211.
  6. Lukin K., Vyplavin P., Lukin S., Yarovoy S. Noise waveform SAR for 2D and 3D imaging // Proc. 11th International Radar Symposium IRS-2010, Vilnius, June 16-18, 2010, Vol.2, pp. 494-497.
  7. Lukin K.A., Konovalov V.M., Vyplavin P. Stepped Delay Noise Radar with High Dynamic Range // Proc. 11th International Radar Symposium IRS-2010, Vilnius, June 16-18, 2010, Vol.2, pp.501-503.
  8. Lukin K., Mogyla A., Palamarchuk V., Cherniy V., Kravchuk A. Stepped-Frequency Noise Radar with Short Switching Time and High Dynamic Range // Proc. International Radar Symposium IRS-2010, Vilnius, Lithuania, 16 – 18 June 2010, Vol.2, pp.344-346.
  9. Melnikova E., Vyplavin P., Lukin S. Real-time signal processing in noise radar // Proc. 11th International Radar Symposium IRS-2010, Vilnius, June 16-18, 2010, Vol.2, pp.504-506.
  10. Yurchenko L.V., Yurchenko B. Time-domain simulation of trains of oscillation pulses in a gunn diode system with a remote resonator // The 7-th International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW’10), Kharkov, June 21-26, 2010,Ukraine) session D-3.
2009

Journal Papers

  1. К.А. Лукин, А.А Могила, Ю.А.Александров, П.Л.Выплавин, В.П.Паламарчук, О.В.Земляный, Л.В.Юрченко, Ю.А.Шиян, В.М. Коновалов, В.М. Канцедал, В.В. Кулик, Е. Мельникова, С.К. Лукин. шумовая радарная технология // Прикладная радиоєлектроника. Спец. випуск, посвященный 90-летию Я.Д. Ширмана и его школе. – том 8, 2009, №4, с. 510-525.
  2. Лукин К. А., Максимов П. П. Моделирование лавинно-каскадного умножения первичных фотоэлектронов в обратносмещенной pn–i–pn-структуре // Киевский политехнический институт. Изв. Вуз. Радиоэлектроника. – 2009.. – 51. № 5 –  с. 34-44.
  3. Лукин К. А., Максимов П. П. Многочастотные автоколебания в полупроводниковых структурах с двумя связанными лавинными p-n переходами // Радиофизика и электроника. – Харьков: Ин-т радиофизики и электрон. НАН Украины. – 2009. – 14, № 1 с. 81-87.
  4. Щербаков В.Е., Лукин К.А. Моделирование системы передачи/приема данных между транспортными средствами на автобане // Радіоелектронні і компп’ютерні системи, №7(41), 2009, Харків «ХАЇ», с. 288–294.
  5. Юрченко Л.В., Юрченко В.Б. Хаотические режимы генерации в протяженной микрополосковой линии с цепочкой диодов Ганна // Радиоэлектроника и Информатика, № 3. с. 14-20.
  6. Юрченко Л.В., Юрченко В.Б. Моделирование процессов генерации серии импульсов диодами Ганна в линиях задержки с параллельным соединением // Сб. научн. тр.: Радиофизика и электроника. – Харьков: Ин-т радиофизики и электрон. НАН Украины. – 2009, № 3. – с. 371-377.
  7. Ильенко К.В., Яценко Т.Ю. Об аналитическом пре-дставлении электрического поля в точке нахождения нерелятивистски движущегося заряда, создаваемого зарядами, наводимыми им на стенках цилиндрической камеры дрейфа // Радиофизика и электроника, 2009, Т. 4, с. 300-3004.
  8. Konstantin Lukin, Anatoliy Mogila , Pavlo Vyplavin, Gaspare Galati and Gabriele Pavan. Novel concepts for surface movement radar design // International Journal of Microwave and Wireless Technologies(2009), 1 : 163-169 Cambridge University Press.
  9. Pavlo Vyplavin. Phase Errors due to Distortions in Synthetic Aperture Antenna Pattern of Noise Waveform d-InSAR // Proc. SPIE. ‑Vol. 7502, pp.750215-1-4, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2009. ‑ Ryszard S. Romaniuk. ‑ Ed. Aug. 2009 (Symposium on Photonics and Web Engineering Wilga-2009).

Conferences Proceedings

  1. Pavlo Vyplavin. Phase Errors due to Distortions in Synthetic Aperture Antenna Pattern of Noise Waveform d-InSAR // Symposium on Photonics and Web Engineering WILGA 2009, 25-31 May 2009, Wilga, Poland.
  2. Lukin К., Vyplavin P., and Yarovoy S. 3D Imaging using Noise Radar and 2D Aperture Synthesis // Proc. Signal Processing Symposium, Jachranka, Poland, 28-30 May 2009, paper Id 073.
  3. Кonstantin Lukin, Olena Melnykova, Pavlo Vyplavin, and Sergey Lukin. FPGA-based Correlator for Random Signal Processing in Noise Radar // Proc. Signal Processing Symposium, Jachranka, Poland, 28-30 May 2009, paper Id 072.
  4. Konstantin Lukin, Anatoliy Mogyla, Vladimir Palamarchuk, Pavlo Vyplavin, Evgeniy Kozhan and Sergey Lukin. Monitoring of St. Sophia Cathedral Interior Using Ka-band Ground Based Noise Waveform SAR // Proc. EuRAD, Rome, 28 Sept. – 2 Oct. 2009, Paper Id D12-2.
  5. Konstantin Lukin, Vladimyr Konovalov, Yulia Shiyan, Pavlo Vyplavin, Elena Melnikova, and Sergei Lukin. Software Defined Noise Radar with Low Sampling Rate // RTO/NATO,Symposium on Software Defined Radar, Lisbon, Portugal, June,
  6. Щербаков В.Е., Лукин К.А. Моделирование системы передачи/приема данных между транспортными средствами на автобане («Моделирование CARs-to-CARs системы») // Міжнародна науково-технічна конференція “Dependable Systems, Services & Technologies” (DeSSerT’09), Кіровоград, 22-25 квітня 2009 р.
  7. Борісов І.Д., Яценко Т.Ю. Малі хвильові рухи капілярної рідини, що намагнічується // Український математичний конгрес − 2009: м. Київ, Інститут математики НАН України, 27−29 серпня 2009 р.
  8. Ильенко К.В., Яценко Т.Ю. Использование квазистатических приближений при расчете динамики заряженных пучков // XIV Международная зимняя школа-семинар по электронике сверхвысоких частот и радиофизике, Саратов, 3–8 февраля 2009 г.
  9. Борисов И.Д., Яценко Т.Ю. Линейные и нелинейные колебания капиллярной намагничивающейся жидкости // Двадцята осіння математична школа симпозіум, Україна, Крим, Ласпі, 17­–29 вересня 2009.
  10. Lukin K., Mogyla A., Vyplavin P., Lukin S. Monitoring of Kiev St.Sophia Cathedral using Ka-band Ground Based Noise SAR // Proc. International Radar Symposium 2009, Hamburg, Germany, 09 – 11.
2008

Journal Papers

  1. Лукин К.А. Шумовая радиолокация миллиметрового диапазона // Сб. научн. тр.: Радиофизика и электроника, т 13, спец. Выпуск, Харьков 2008, с. 118-124.
  2. Kulpa K., Lukin K., Miceli W., Thayaparan T. Editorial: Signal Processing in Noise Radar Technology // IET Radar Sonar Navig.,2008, vol.2, No 4, pp. 229 – 232.
  3. Лукин К.А., Максимов П.П. Лавинно-каскадное усиление импульса в pn-i-pn структуре с обратно смещенными p-n переходами // Сб. научн. тр.: Радиофизика и электроника. – Харьков: Ин-т радиофизики и электрон. НАН Украины. – 2008.- 13, № 1. – с. 118-124.
  4. Лукин К.А., Максимов П.П. Режим автоколебаний в резких p-n переходах с постоянным обратным смещением // Сб. научн. тр.: Радиофизика и электроника. – Харьков: Ин-т радиофизики и электрон. НАН Украины. – 2008.- 13, № 2. – с. 232-238.
  5. Максимов П.П. Алгоритм решения уравнений диффузионно-дрейфовой модели полупроводниковых структур с лавинными p-n переходами // Сб. научн. тр.: Радиофизика и электроника. – Харьков: Ин-т радиофизики и электрон. НАН Украины. – 2008. – 13, № 3
  6. Максимов П.П. Моделирование СВЧ смесителей на основе резких p-n переходов // Сб. научн. тр.: Радиофизика и электроника. – Харьков: Ин-т радиофизики и электрон. НАН Украины. – 2008. – 13, №3.
  7. Земляный О.В., Лукин К.А. Влияние вариации задержки на хаотические режимы в системе с запаздывающей обратной связью и амплитудной нелинейностью // Электромагнитные волны и электронные системы, №1, т.13, 2008, с.14-20.
  8. Lukin K.A., Mogyla A А., Palamarchuk V.P., Vyplavin P. L., Zemlyaniy O.V., Shiyan Y.A., Zaets N. Ka-band Bistatic Ground Based Noise-Waveform-SAR for Short Range Applications // Radar, Sonar & Navigation, IET, Vol.2, Issue 4, August 2008, pp. 233-243.
  9. Лукин К.А., Могила А.А., Супрун Д.Ю. Моделирование импульсного шумового РСА // Всеукраинский межведомственный научно-технический сборник Радиотехника – 2008. – Вып.152, – с.184-192.
  10. Kulpa, Krzysztof ; Lukin, Konstantyn ; Mogyla, Anatoly; Misiurewicz, Jacek; Gajo, Zbigniew; Vyplavin, Pavel. Quality Enhancement of Image Generated with Bistatic Ground Based Noise Waveform SAR // IET Radar, Sonar & Navigation – 2008. – Vol.2, No.4. pp. 263-273. 02-Feb-2008.
  11. Лукин К.А., Шиян Ю.А. Уменьшение объема записываемых данных в шумовом радиолокаторе // Радиофизика и электроника. – Харьков: Ин-т радиофизики и электрон. НАН Украины. – 2008. – 13, №2. – С.271-278.
  12. Gorbik G.M., Ilyenko K.V., Yatsenko T.Yu. Calculation of Quasistatic Eigen-Field of a Charge, which Moves Arbitrarily in Cylindrical Drift Chamber // Telecommunications and Radio Engineering. 2008, Vol. 67. pp. 1177-1188.
  13. Balakirev V.A., Borodkin A.V., Tkach Yu.V., Yatsenko T.Yu. Theory of Microwaves Amplification and Generation in Coaxial Ubitrons // Electromagnetic Phenomena. – 2008. – Vol. 8, No 1(19). – pp. 26-39.
  14. Мачехин Ю.П., Тимофеев Е.П., Расчектаева А.И., Татьянко Д.Н. Оптические измерения в волоконно-оптических системах передачи информации. Принципы и задачи развития // Світлотехніка та електроенергетика. – 2008. – № 2. – с. 45-52.
  15. Lukin K.A., Mogyla A А., Vyplavin P. L., Palamarchuk V.P., Zemlyaniy O.V., Tarasenko V., Zaets N., Skresanov V., Shubniy A., Glamazdin V., Natarov M., Nechayev O. Ka-band Bistatic Ground-Based SAR using noise signals // Proc. of the SPIE, Vol. 6937, pp.69372X-1-5 (2008).
  16. Konstantin Lukin, Anatoliy Mogyla and Pavlo Vyplavin. Antenna Array with Synthetic Aperture // Proc. SPIE.6937, pp.69372Y-1-4 (2008). (Signal Processing Symposium, Jachranka, Poland, 2007).

Conferences Proceedings

  1. Lukin K.A, Mogyla A.A., Palamarchuk V.P., Vyplavin P.L., Zemlyaniy O.V., Lukin S.K., Zayats N.K. Ka-band Bistatic Ground Based Noise-Waveform-SAR // Proc. of International Radar Symposium, 21-23 May 2008, Wroclaw, Poland, 147-150.
  2. K.A. Lukin, Gun-Sik Park. Vacuum Microwave Integrated Circuits for Radar // Proc. of International Radar Symposium, 21-23 May 2008, Wroclaw, Poland, pp.147-150.
  3. Lukin K.A., Shiyan Ju.A. Sampling Rate Redaction in Software Noise Radar // Proc. of International Radar Symposium, 21-23 May 2008, Wroclaw, Poland, 147-150.
  4. Lukin K.A. Propagation of Sharp Electromagnetic Pulse through Conducting Media // Proc. of 4th International Conference on Ultrawideband and Ultrashot Impulse Signals, 15-19 September 2008, Sevastopol, Ukraine, pp.53-57.
  5. Lukin K.А., Mogyla A.А., Vyplavin P.L. Ground Based Nois-Waveform SAR with Static Antenna Array and Singl Chennel Receiver // Proc. of 7th European Conference on Synthetic Aperture Radar ( EUSAR 2008), June 2-5, 2008, Frirdrichshafen, Germany, Vol.3, 41-44.
  6. Lukin K.A., Mogyla A А., Vyplavin P. L., Palamarchuk V.P., Zaets N., Zemlyaniy O.V. Reconfigurable Ground Based Noise-Waveform-SAR for Short Range Applications // Proc. of 7th European Conference on Synthetic Aperture Radar (EUSAR 2008), June 2-5, 2008, Friedrichshafen, Germany, Vol. 3, 45-48.
  7. Лукин К.А. Достижения и проблемы современной шумовой радиолокации // Труды 3-го Международного радиоэлектронного Форума «ПРИКЛАДНАЯ РАДИОЭЛЕКТРОНИКА. СОСТОЯНИЕ И ПЕРСПЕКТИВЫ РАЗВИТИЯ» (МРФ-2008). Т.1, Современные и перспективные системы радиолокации, радиоастрономии и спутниковой навигации. Ч.1, 22-24 октября 2008, Харьков, Украина, – С.52-55.
  8. Лукин К.А., Могила А.А., Паламарчук В.П., Выплавин П.Л., Кожан Е.А. Контроль состояния колокольни Софиевского собора с помощью наземного шумового РСА 8 ММ диапазона // Труды 3-го Международного радиоэлектронного Форума «Прикладная радиоэлектроника.  Состояние и перспективы развития» (МРФ-2008). Т.1, Современные и перспективные системы радиолокации, радиоастрономии и спутниковой навигации. Ч.1, 22-24 октября 2008, Харьков, Украина, – с.197-199.
  9. Lukin K., Mogyla A., Palamarchuk V., Vyplavin P., Kozhan E. Measurement of Shifts in Bell Tower of Sophia Cathedral Using Ka-band Noise Waveform SAR // MRRS-2008 Symposium Proceedings. Kiev, Ukraine, September 22-24, 2008.
  10. Yurchenko V.B., Yurchenko L.V. Self-Consistent Time-Domain Modeling of Short-Pulse Oscillations and Multiple Switching in a Dispersive Transmission-Line Network of Active Devices // Proc. 5th Int. Workshop on Electromagnetic Wave Scattering (EWS’2008), 22-25 October, 2008, Antalya, Turkey, pp. 1-9 – 1-15.
  11. Бабич В.М., Татьянко Д.Н., Мачехин Ю.П. Фотоприемное устройство измерителя абсолютного расстояния для гетеродинного преобразования оптических частот // Электронная компонентная база. Состояние и перспективы развития: 1-я Междунар. конф., 30 сент. – 3 окт. 2008 г.: сб. науч. тр.– Харьков, Судак, 2008. – Том 3 – с. 233-236.
  12. Татьянко Д.Н. Трап-детектор для измерения мощности лазерного излучения // Электронная компонентная база. Состояние и перспективы развития, 1-я Междунар. конф., 30 сент. – 3 окт. 2008 г.: cб. науч. тр. – Харьков, Судак, 2008. – Том 3. – с. 293-295.
  13. Татьянко Д.Н. Исследование пространственных характеристик лазерного излучения выходящего из оптического волокна // Электронная компонентная база. Состояние и перспективы развития: 1-я Междунар. конф., 30 сент. – 3 окт. 2008 г.: cб. науч. тр. – Харьков, Судак, 2008. – Том 3. – с. 298-300.
  14. Расчектаева А.И., Грищенко Л.В., Татьянко Д.Н., Тимофеев Е.П. Модернизация государственного первичного эталона единицы мощности слабых импульсных световых потоков излучения // Метрология и измерительная техника» (Метрология–2008). VІ Междунар. науч.-техн. конф., 14-16 окт., 2008 г.: тр. конф. – Харьков, 2008. – с. 9-12.
  15. Татьянко Д.Н., Грищенко Л.В. Прецизионное измерение оптической мощности на основе аналого-цифрового преобразования сигналов // Метрология и измерительная техника (Метрология–2008): VІ Междунар. науч.-техн. конф., 14-16 окт. 2008 г.: тр. конф. – Харьков, 2008. – с. 13-16.

Ph.D Theses Abstracts

  1. Земляний О.В. Хаотичні автоколивання в широкосмугових генераторах із затримкою та амплітудною нелінійністю: автореф. дис. … канд. фіз.-мат. наук: 01.04.03 «Радіофізика» / Олег Васильович Земляний; Ін-т радіофізики та електрон. ім. О.Я.Усикова НАН України. — Х., 2008. — 20 с. — укp.
2007

Journal Papers

  1. Lukin K. Editorial // Electromagnetic Phenomena. – 2007. – V. 7, N 1(18). – р. 4-6.
  2. Lukin K. On The Description Of Electromagnetic Signal Propagation Through Conducting Media // Electromagnetic Phenomena. – 2007. – V. 7, N 1(18). – р. 174-179.
  3. Юрченко Л.В., Юрченко В.Б. Моделирование автоколебаний при последовательном включении диодов Ганна в микрополосковую линию // Прикладная радиоэлектроника. Vol.6, No.4, с .555-560.
  4. Лукин К.А., Сердейра A. Максимов П.П. Моделирование импульсного фотоумножителя на основе pn-i-pn структуры с лавинными p-n переходами // Радиофизика и электроника. -2007.- 12, № 2.-с. 444 – 451.
  5. Лукин К.А., Могила А.А., Выплавин П.Л. Получение изображений с помощью неподвижной антенной решетки, шумовых сигналов и методасинтезированной апертуры // Радиофизика и электроника.– 2007. – 12, № – с.526-531.
  6. Лукин К.А., Щербаков В.Е., Коновалов В.М., Брид Д.С. Метод построения самоорганизующейся системы связи между транспортными средствами на автобане // Радіоелектронні і компп’ютерні системи, №6(25), 2007, Харків «ХАЇ», с. 238–244.
  7. Юрченко Л.В., Юрченко В.Б. Генерация многочастотных колебаний в микрополоско-вых линиях передачи с диадами Ганна // Радиоэлектроника и информатика. 2007. № 2. с. 24-29.

Conferences Proceedings

  1. Lukin K.A, Maksymov P.P. Terahertz Self-oscilations in Reverse Blased P-N Junctions // The Sixth International Kharkov Symposium on Physics and Engineering of Microvfwes, Millimeter and submillimeter waves and Workshop on Terahetz Technologies (MSMW’07), Symposium Proceeding, Kharkov, Ukraine, June 25-30. 2007, vol. pp.201-203.
  2. Lukin K.A., Cerdeira H. A., Maksymov P P. Terahertz Self-oscilations in Avalanche P-N Junctions with DC Current Injection // MSMW’07 Symposium Proceeding, Kharkov, Ukraine, June 25-30. 2007, vol. pp. 204-206.
  3. Lukin K.A., Cerdeira H. A.,. Maksymov P P. Modeling of Impulse Photomultiplier on Basis of PN-I-HN Structure with Avalanche P-N Junctions // MSMW’07 Symposium Proceeding, Kharkov, Ukraine, June 25-30. 2007, 1. pp. 375-377.
  4. Lukin K.A., Mogyla A.A., Vyplavin P.L. Ground-based Noise Waveform SAR and Differential Interferometry for Remote Monitoring of large Objects // MSMW’07, Kharkov, Ukraine, June 25-30, 2007, Symposium Proceedings, pp.445-447.
  5. Tarchi D., Lukin K.A., Mogyla А.А., Leva D., Fortuni J., Vyplavin P.L., Sieber A. Implementation of Noise Radar Technology in Ground Based SAR for Short Range Application // MSMW’07, Kharkov, Ukraine, June 25-30, 2007, Symposium Proceedings, pp.442-444.
  6. Lukin K.A., Mogyla A.A., Vyplavin P.L., Palamarchuk V.P., Zemlyaniy O.V., Shiyan Yu., Zaets N.K., Skresanov V.N., Shubniy A.I., Glamazdin V., Natarov M.P., Nechayev O.G. Ka-band Ground-based Noise Waveform SAR // MSMW’07, Kharkov, Ukraine, June 25-30, 2007, Symposium Proceedings, pp.159-164.
  7. Lukin K.A., Kantsedal V.M., Mogyla A.A., Kulyk V.V., Konovalov V.M., Palamarchuk V.P., Suschenko P.G. Results of Laboratory Test of Immunity of Correlator Affected by Active Continuos Interferences at the Processing of Wideband Noise Pulses Sequences // MSMW’07, Kharkov, Ukraine, June 25-30, 2007. Symposium Proceedings, Vol. 1, pp. 484-486.
  8. Lukin K.A, Kantsedal V.M., Kulyk V.V., Konovalov V.M., Suschenko P.G. Results of Computer Imitation Modeling of Immunity of Correlator Affected by Active Continuos Interferences at the Processing of Wideband Noise or LFM Sequences of Pulses // MSMW’07,. Kharkov, Ukraine, June 25-30, 2007. Symposium Proceedings Vol. 1,  487-489.
  9. Lukin K.A., Konovalov V.M., Scherbakov V.Ye. To the Question About Estimation of Residual Fluctuation of Signal on Output of Correlation Receiver of Noise Radar // MSMW’07, Kharkov, Ukraine, June 25–30, 2007, Symposium Proceedings Vol. 1, 452 – 454.
  10. Yurchenko L. V., Yurchenko B. Complex Dynamics of Gunn Diode Circuits with Time-Delay Microstrip-Line Coupling // MSMW’07, Kharkov, Ukraine, June 25-30, 2007, Symposium Proceedings, pp.608-610.
  11. Yurchenko E. V., Yurchenko B. Dual -layer Frequency-Selective Subwavelength-Grid Polarizers for THz Applications // MSMW’07, Kharkov, Ukraine, June 25-30, 2007, Symposium Proceedings, pp.222-224.
  12. Lukin K.A., Mogyla A.A, Vyplavin P.L. SAR imaging based upon nonswitchable antenna array and noise signals // Proc. of 6th International Conference on Antenna Theory and Techniques (ICATT’07), 17-21 September2007, Sevastopol, Ukraine, 2007, pp.360-362.
  13. Лукин К.А., Щербаков В.Е., Коновалов В.М., Брид Д.С. Метод построения самоорганизующейся системы связи между транспортными средствами на автобане // Міжнародна науково-технічна конференція «Dependable Systems, Services & Technologies», Кіровоград, 25–27 квітня, 2007.
  14. Lukin K.A., Mogyla А.А., Vyplavin P.L. Antenna Array with Aperture Synthesizing for Random Signal // Proc. of IRS-2007, International Radar Symposium, 05-07 September 2007, Cologne, Germany, 2007, pp.791-796.
  15. Konstantin Lukin, Anatoliy Mogyla and Pavlo Vyplavin. Antenna Array with Synthetic Aperture // Signal Processing Symposium, Jachranka, Poland, 2007.
  16. Lukin К., Mogyla А., Vyplavin P., Palamarchuk V., Zemlyaniy О. and Zaets N. Ka-band Bistatic Ground-Based SAR Using Noise Signals // Signal Processing Symposium, Jachranka, Poland, 2007.
  17. Lukin K.A., Shcherbakov V.Ye., Konovalov V.M., Breed S. New Concept of Multiplex Broadband Wireless Communication for Vehicle-to-Vehicle Data Transmission on Highways // MSMW’07, Proceeding of the Sixth International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves, Kharkov, Ukraine, June 25-30, 2007, Vol. 2, pp. 852 – 854.
  18. Лукин К.А., Могила А.А., Кудряшов В.В. Моделювання пасивного радіолокатора з синтезованою апертурою // Третя наукова конференція Харківського університету Повітряних Сил імені Івана Кожедуба. Матеріали конференції.- Х.: ХУПС, 2007.- 208с., стр. 124.
2006

Journal Papers

  1. Коновалов В.М., Щербаков В.Е., Коновалов В.И. Расширение полосы рабочих частот цифровых линий задержки //Науково-технічний журнал «Радіоелектронні і комп’ютерні системи», № 5 (17), Харків «ХАІ», 2006, С.205 – 210.
  2. Выплавин П.Л., Лукин К.А., Колчигин И.Н. Получение изображений в ближней зоне излучателя // Радиофизика и электроника. – Харьков: Ин-т радиофизики и электроники НАН Украины. – 2006. – 11, № – С.404-408.
  3. Yurchenko V. B., Yurchenko E. V. Reciprocity in Simulations of Bolometric Detectors in Transmitting Mode // J. Infrared and Millimeter Waves, 2006, Vol. 27, No. 3, рр. 355-371.
  4. Lukin K.A., Mogyla А.A. Two-parametric representation of nonstationary random signals with finite energy // Proc. Of SPIE Vol.6159 pp. 615919-1-4 Photonics Applications in Astronomy, Communica­tions, Industry, and High-Energy Physics Experiments IV; Ryszard S. Romaniuk; Ed Feb 2006 (Signal Processing Symposium Wilga-2005).
  5. Mogyla A.A., Shiyan Yu. Simulation of adaptive two-parametric filtration // Of SPIE Vol.6159 pp. 61594F-1-4 Photonics Applications in Astronomy, Communica­tions, Industry, and High-Energy Physics Experiments IV; Ryszard S. Romaniuk; Ed Feb 2006 (Signal Processing Symposium Wilga-2005).
  6. Lukin K.A., Mogila A.A., Vyplavin P. Phase Errors in Noise Waveform D-InSAR due to Trajectory Distortions in Synthetic Aperture Sliding Antenna // SPIE. ‑Vol. 6159. ‑ pp. 61591N-1-4. Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments IV. ‑ Ryszard S. Romaniuk. ‑ Ed. Feb 2006 (Signal Processing Symposium Wilga-2005).
  7. Kotenkov A, Lukin K.A. Noise Waveform SAR image quality assessment via simulation of the SAR acquisition process // Proc. Of SPIE. – Vol. 6159 – pp. 6159J1-1-4. Photonics Applications in Astronomy, Communica­tions, Industry, and High-Energy Physics Experiments IV; Ryszard S. Romaniuk; Ed Feb 2006 (Signal Processing Sympo­sium Wilga-2005).
  8. Земляный О.В. Экспериментальное исследование генератора хаотических колебаний радиодиапазона // Радиофизика и Электроника, т.11, №2, 2006, с.298-304.

Conferences Proceedings

  1. Lukin K.A., Mogyla A.A. Noise Waveform-SAR and Differential Interferometer for Detection of Structural Changes in Chernobyl Sarcophagus // Proc. of EUSAR-2006, 6th European Conference on Synthetic Aperture Radar, 16-18 May 2006, Dresden, Germany, 2006, p. 249.
  2. Коновалов В.М., Щербаков В.Є, Коновалов В.І. Розширення смуги робочих частот цифрових ліній затримки // Перша міжнародна науково-технічна конференція “Dependable Systems, Services & Technologies”, Полтава, 25-28 квітня 2006 р.
  3. Mogyla A.A., Suprun D.Yu. Simulation algorithm for noise waveform SAR with arbitrary motion trajectory of antenna phase center // of RS-2006, International Radar Symposium, 24-26 May 2006, Krakow, Poland, 2006, pp.433-436.
  4. Mogyla A.A., Lukin K.A. Optimum Reception of Incoherent Noises Signals // of IRS-2006, International Radar Symposium, 24-26 May 2006, Krakow, Poland, 2006, pp.577-580.
  5. Lukin K.A., Mogyla A., Palamarchuk V.P. Ka-band Noise Waveform Intrusion Detector on the Basis of Aoutodyne Effect in Chaotic Signal Generator // Proc. of IRS-2006, International Radar Symposium, 24-26 May 2006, Krakow, Poland, 2006, pp.569-572.
  6. Mogyla A.A, Vyplavin P.V. Experimental Estimation of Measurement Precision in Radial Shifts Detection Using X-band Noise Waveform d-InSAR // of IRS-2006, International Radar Symposium, 24-26 May 2006, Krakow, Poland, 2006, pp.581-584.
  7. Lukin K.A., Mogyla A.A. Static Nonswitchable Antenna Array for Ground-Based Noise Waveform SAR: a Novel Concept for SAR Imaging // of IRS-2006, International Radar Symposium, 24-26 May 2006, Krakow, Poland, 2006, pp.469-472.
  8. Lukin K.A., Kantsedal V.M. Covert Operation of Surveillance Noise Radar // Proceedings of International Radar Symposium IRS 2006, 24-26 May, Krakow, Poland. 477-480.
  9. Kantsedal V.M. Estimation of Mutual Interferences at the Receiver Input of Noise radars Operating Simultaneously as Electronic Facility Group // Proceedings of International Radar Symposium IRS 2006, 24-26 May, Krakow, Poland. 565-568.
  10. Zemlyaniy O.V. Experimental investigation of chaotic waveform generator for Ultra Wide Band Noise Rada // Proc. of International Radar Symposium (IRS 2006), Krakow, Poland, May 22-26, 2006, pp.437-440.
  11. Lukin K.A., Zemlyaniy O.V. Chaotic Signals for Noise Radars: Direct Generation and Chaotic Modulation Techniques // Workshop on the Transmission of Chaotic Signals, University of Bristol, 1st – 3rd August 2006.
  12. Konstantin Lukin, Valery Scherbakov, Vladimyr Konovalov, Ryan Breed. Dedicated Short-Range Communication System for Vehicle-to-Vehicle Data Transmission on the Basis of Chaotic Waveform codes (DSRC-VVDT) // Proceedings of 16 International Conference on Microwaves, Radar and Wireless Communications, MIKON-2006, Krakow, Poland, May 22-24, 2006, pp. 583 – 586.
  13. Могила А.А., Лукин К.А., Выплавин П.Л. Дифференциально-интерферометрическая РСА для дистанционного мониторинга состояния саркофага Чорнобыль-ской АЭС // Междунар. научн. семинар «Радиоэкология Чернобыльской зоны», 27-29 сентября 2006, Славутич, Украина, 2006, с.190-193.
  14. Гламаздин В.В., Скресанов В.Н., Лукин К.А. Снижение боковых лепестков РСА-изображения методом компарирования // 16-я Международная Крымская конференция “СВЧ техника и телекоммуникационные технологии (КрыМиКо2006). Севастополь, 11-15 сентября 2006 г.: Материалы конф. -Севастополь: Вебер, 2006. с.741-742.
  15. Yurchenko V. B., Yurchenko E. V. Exact Reciprocal Formulation for Rigorous Modeling of Broadband Waveguide Bolometric Systems in Transmitting Mode // 16th Int. Crimean Conference “Microwave & Telecommunication Technology” (CriMiCo’2006). 11-15 September 2006, Sevastopol, Crimea, Ukraine, Vol. 2, pp. 793-794, 2006.
  16. Yurchenko V. B., Yurchenko E. V. Exact Reversal of a Multi-Mode Waveguide Bolometer Problem for Transmitting Mode Simulations of Broadband Detector Systems (UWBUSIS’2006). 18-22 September 2006, Sevastopol, Crimea, Ukraine, pp. 311-313, 2006.
  17. Lukin K., Kolchigin N., Vyplavin P. Noise Waveform SAR Imaging in Antenna Near Zone // Proc. IRS 2006, International Radar Symposium. ‑ Krakow (Poland), 2006. ‑ P. 303-306.
  18. Lukin K., Konovalov V.M. Through wall detection of human beings using noise radar sensors // Proceedings of International Radar Symposium IRS 2006, 24-26 May, Krakow, Poland.
  19. Shiyan Yu.A. Influence of an energy distribution parameters of a sounding noise signal on the basic performances of its ambiguity function // Proc. of IRS 2006, International Radar Symposium 2006, Krakow, Poland, May 24-26, pp.585-588.
  20. Machekhin Yu.P., Tatyanko D.N., Zub I. Taking into account of spectral characteristics of semiconductor photodiodes when measuring optical power in fiber-optic communication lines // 8th International Conference on Laser and Fiber-Optical Networks Modeling (LFNM‘2006): int. conf., 29 June – 1 July 2006: conf. proc. – Kharkiv, Ukraine, 2006. – с. 338-340.
  21. Мачехин Ю.П., Татьянко Д.Н., Расчектаева А.И. Структурная схема модернизируемого государственного специального эталона единицы мощности слабых импульсных световых потоков излучения // Метрологiя та Вимiрювальна Технiка (Метрологія-2006): V Міжнар. наук.-техн. конф., 10–12 жовт. 2006 р.: тр. конф. – Харків, 2006. – Т. 2. – с. 13-16.
  22. Мешков С.Н., Кудряшов В.В. Система для теплового неразрушающего контроля элементов авиационных двигателей с жаропрочными покрытиями // Материалы 10-го юбилейного международного молодежного форума «Радиоэлектроника и молодежь в XXI веке» 2006. –Х.:ХНУРЭ, 716 стр., стр. 77.
  23. Vyplavin P.  Phase errors in noise waveform d-in-sar due to antennatrajectory distortions and receiver noise // Proc. of IRS 2006, International Radar Symposium 2006, Krakow, Poland, May 24-26, pp. 425–428.
2005

Journal Papers

  1. Lukin K.A. Noise radar technology: the principles and short overview // Journal of Applied Radio Electronics Kharkov, KNURE, 4, No. 1, 2005. – pp. 4 – 13.
  2. Lukin K.A., Konovalov V.M., Mogyla А.A., Scherbakov V.E. Comparative analysis of conventional radar and noise radar performance // Applied Radio Electronics.- Vol. 4, No. 1, pp.31 – 36.
  3. Kantsedal V., Lukin K. Methods for estimating of operational energy security for ground-based surveillance wideband noise radars // Applied Radio Electronics.- Vol. 4, No. 1, pp. 37-41.
  4. Lukin K.A., Mogyla А.A., Alexandrov Yu.А., Shiyan Yu. noise radar sensor for collision warning system // Applied Radio Electronics.- Vol. 4, No. 1, pp.47 – 53.
  5. Mogyla А.A. Experimental estimation of an ambiguity function of noise signals // Applied Radio Electronics.- Vol. 4, No. 1, pp.59 – 63.
  6. Konovalov V.M., Scherbakov V.E. Doubling of the working frequency bandwidth of digital delay lines // Applied Radio Electronics. – Vol. 4, No. 1,. – pp. 64 – 68.
  7. Lukin K.A., Kulik V.V., Zemlyaniy O.V. Random Waveform Generators for Noise Radar // Applied Radio Electronics.- Vol. 4, No. 1, pp.74-79.
  8. Yurchenko L.V., Yurchenko V.V. Chaos in a cavity with active microwave devices // Applied Radio Electronics. – 2005. 4, No. 1, pp. 80 – 84.
  9. Lukin K.A. Sliding antennas for noise waveform SAR // Applied Radio Electronics.- Vol. 4, No. 1, pp.103 – 106.
  10. Afanas’ev V.I. Control of the bandwidth end power of noise oscillations excited by turbulent electron beam in BWO’s // Applied Radio Electronics.- Vol. 4, No. 1, pp.120 – 123.
  11. Иванов В.К., Лановой В.Н., Шаляпин Л.А., Егоровна Л.А., Васильев А.С., Могила А.А. Распространение ультракоротких волн на морских трассах в южных широтах // Известия вузов. Радиофизика. – 2005. – Т.68, № 7, с.47 -53.
  12. Гламаздин В.В., Лукин К.А., Скресанов В.Н. Улучшение основных характеристик синтезированных диаграмм направленности методом компарирования // Радиофизика и электроника. Харьков, Ин-т радиофизики и электроники НАНУ, 2005, Том 10, № 1, с. 77-84.
  13. Лукин К.А., Максимов П.П. Метод расчета лавинных p-n переходов в режиме автогенерации // Радиофизика и электроника. -2005. Том 10, № 1, с. 109-115.
  14. Юрченко Л.В., Юрченко В.Б. Нелинейная динамика баллистических электронов в сверхрешетках при сильном свч возбуждении // Радиоэлектроника и информатика.- 2005. № 2, – с. 23-28.
  15. Юрченко Л.В., Юрченко В.Б. Генерация ультракоротких импульсов в резонаторе с активным слоем и диэлектрическим зеркалом // Радиоэлектроника и информатика.- 2005. № 2, – с. 195-200.
  16. Земляный О.В., Лукин К.А. Фрактальная размерность аттрактора динамической системы с запаздыванием и кусочно-линейным унимодальным отображением // Радиоэлектроника и информатика. – 2005. – № 3. – с.8-15.
  17. Кулик В.В. Автодинний ефект в НВЧ генераторах хаотичних коливань та його застосування: Автореферат дисертації на здобуття наукового ступеня кандидата фізико-математичних наук за спеціальністю радіофізика. Харків. 2005.-16 с.

Conferences Proceedings

  1. Лукин К.А., Земляный О.В. Генератор гиперхаоса на основе системы с запаздывающей обратной связью // Сборник научных трудов 2-го международного радиоэлектронного форума “Прикладная радиоэлектроника. Состояние и перспективы развития”, Том 5. Международная конференция “СВЧ и оптоэлектроника”, Харьков, Украина, 19-23 сентября 2005, с.108-111.
  2. Лукин К.А., Могила А.А., Паламарчук В.П. Шумовий доплеровський датчик виявлення вторгнень 8-мм діапазону довжин радіохвиль, на основі автодинного ефекту // Сборник научных трудов 2-го международного радиоэлектронного форума «Прикладная радиоэлектроника. Состояние и перспективы». Том 5. Международная конференция «СВЧ и оптоэлектроника». Харьков, Украина, 19-23 сентября 2005, с.112-115.
  3. Лукин К.А., Могила А.А., Выплавин П.Л. Оцінка фазових помилок, викликаних траєкторною нестабільністю РСА наземного базування // Сборник научных трудов 2-го международного радиоэлектронного форума «Прикладная радиоэлектроника. Состояние и перспективы». Том 2. Международная конференция «Системы локации и навигации». Харьков, Украина, 19-23 сентября 2005, с. 282-285.
  4. Лукин К.А., Канцедал В.М. Особенности обеспечения скрытности излучения в наземной обзорной широкополосной импульсной шумовой РЛС. // Сборник научных трудов 2-го международного радиоэлектронного форума «Прикладная радиоэлектроника. Состояние и перспективы». Том 2. Международная конференция «Системы локации и навигации». Харьков, Украина, 19-23 сентября 2005, с. 320-324.
  5. Glamazdin V.V., Lukin K.A., Moreira J., M.P.Natarov, Seleznyov D.G., Skresanov V.N. 2D Tape Scanner for Microwave Holography // 5th Int. Conf. on Antenna Theory and Techniques. – Kyiv, 24 – 27 may, 2005, pp. 335 – 338.
  6. Merphy J.A., Yurchenko E. Simulation of Quasi Optical Banch with Dielectric Lanz for the PLANK HFI Horn Testinng // 28ISA Antenna Workshop on Space Antenna System and Technologies, 31May-3June 2005 ESTEC, Noordwijk, the Netherland.
  7. Yurchenko E., Yurchenko V. Reciprosity in the Modelling of Bolometric Detectors in Transmitting Mode // 28ISA Antenna Workshop on Space Antenna System and Technologies, 31May-3June 2005 ESTEC, Noordwijk, the Netherland, pp/ 879-886.
  8. Yurchenko E., Yurchenko V. Reciprocal Formulation of the Bolometer-Transmitter Problem in the ISA PLANK HFI Modeling for Radio Astronomical Observation // The Second Int. Radioelectr. Forum, Sept.19-23, 2005, KNURE, Kharkov, Ukraine, V1.1, pp. 203-206.
  9. Лукин К.А., Могила А.А., Шиян Ю.А. Simulation of adaptive two-parametric filtration // Конференція «Signal Processing Symposium Wilga-2005», Poland, Warsaw, June 3-5 2005.
  10. Lukin K.A. Ground Based Noise-Waveform-SAR for Monitoring of Chernobyl Sarcophagus // IRS-2005, Berlin, Germany, 5-9 Sept, 2005.
  11. Lukin K.A. Photo-Electron Multiplier on the Basis of Multilayered Semiconductor Structure // RTA/NATO SENSORS & ELECTRONICS TECHNOLOGY PANEL SYMPOSIUM on Emerging Electro-Optic Phenomenology &Technology, 2005.
  12. Lukin K.A., Mogyla А.A.Two-parametric representation of no stationary random signals with finite energy // Proc. Of the International Society for Optical Engineering. 30 May- 5June 2005,Wilga, Poland, pp.- 1J-1 – 1J-6.
  13. Kotenkov A., Lukin K.A. Noise Waveform SAR image quality assessment via simulation of the SAR acquisition process // Proc. Of the International Society for Optical Engineering. 30 May-5 June 2005,Wilga, Poland, pp.- 19-1 – 19-4.
  14. Mogyla A.A., Shiyan Yu.А. Simulation of adaptive two-parametric filtration // Of the International Society for Optical Engineering. 30 May-5 June 2005, Wilga, Poland, pp. -4F-1 – 4F-4.
  15. Lukin K.A., Mogyla А.A., Vyplavin L. Phase Errors in Noise Waveform D-InSAR due to Trajectory Distortions in Synthetic Aperture Sliding Antenna // Proc. Of the International Society for Optical Engineering. 30 May-5 June 2005,Wilga, Poland, pp. -4N-1 – 4F-6.

Ph.D Theses Abstracts

  1. Кулик В.В. Автодинний ефект в НВЧ генераторах хаотичних коливань: автореф. дис. … канд. фіз.-мат. наук: 01.04.03 «Радіофізика» / Володимир Васильович Кулик; НАН України, Ін-т радіофізики та електроніки ім. О Я. Усикова. — Х., 2005. — 16 с.: рис. — укp.

Staff

Name

Job Title

Degree, Academic Title

 

e-mail

Phone

Room

 

Lukin

Kostyantyn Oleksandrovych

 

 

Head of Department

 

DSc., PhD,

Professor

IEEE Fellow

 

lukin.konstantin@

gmail.com

+38-057-7634-349

Main Build., floor 2. room #49

Tatyanko

Dmytro Mykolayovych

Vice

Head of Department

PhD

tatyanko@ukr.net

+38-057-7634-371

 

Main Build., floor 2. room #36

 

 

Yurchenko

Lidiya Valeriivna

Senior Research

Scientist.

 

PhD,

Senior Research Fellow

 

lyur@i.ua

+38-057-7634-349

Main Build., floor 2. room #49

Zemlyaniy

Оleg Vasylyovych

Senior Research

Scientist

 

PhD, Senior Research Fellow

 

zolvas@ukr.net

+38-057-7634-371

Main Build., floor 2. room #36

Nurmagambetov O. J. 

Senior Research

Scientist

 

DSc., PhD,

Senior Research Fellow

 

a.j.nurmagambetov@gmail.com

+38-057-7634-371

Main Build., floor 2. room #48

Kudryashov V. E. 

Senior Research

Scientist

PhD, Senior Research Fellow

victor.e.kudryashov@gmail.com

+38-057-7634-371

 

Main Build., floor 2. room #48

 

Ponomarenko S. S.

Research

Scientist

PhD, Senior Researcher

sergyponomarenko@gmail.com

+38-057-7634-371

 

Main Build., floor 2. room #48

 

Maksymov

Pavlo Pavlovych

Senior Research

Scientist

PhD

maksymov.pvl@

ukr.net

+38-057-7634-371

 

Main Build., floor 2. room #36

 

Shiyan

Yuliya Andriyovna

Junior Research

Scientist

 

shiyan_julia@ukr.net

+38-057-7634-371

 

Main Build., floor 2. room #36

 

 

Shelehov

Andriy Oleksandrovych

 

Junior Research

Scientist

 

 

 

andrii.shelekhov@

ukr.net

+38-057-7634-371

 

Main Build., floor 2. room #48

 

Palamarchuk

Volodymyr Petrovych

Chief Engineer of Department

 

palamarchuk48@i.ua

+38-057-7634-371

 

Main Build., floor 2. room #48

 

Zaets

Mykola Kuzmich

Leading Engineer

 

znk503@gmail.com

+38-057-7634-371

 

Build.6-a, floor 5. room #18

 

Konovalov

Volodymyr Mykhaylovych

Leading Engineer

 

kvm.kharkov@gmail.com

+38-057-7634-371

 

Build.6-a, floor 5. room #19

 

Scherbakov

Valeriy Evgenyovych

Leading Engineer

 

valery.scherbakov@

gmail.com

+38-057-7634-371

 

Build.6-a, floor 5. room #16

 

Suschenko

Petro Grygorovych

Engineer

 

new.peter.1965@

gmail.com

+38-057-7634-371

 

Main Build., floor 2. room #48

 

Pyrozhenko S. P. 

laboratory assistan

 

serejka.pirojenko.2015@gmail.com

+38-057-7634-371

 

Main Build., floor 2. room #48

 

Developments

Scientific and technical developments

The Department #17 team is successfully developing a promising area of applied radiophysics – modern Noise Radar or Noise Radar Technology.

The idea of Noise Radar has been known for a long time and consists in the use of continuous or pulsed noise (random) signals (NS) as probing signals and coherent reception of their reflections. The first experiments at the beginning of the last century on radio detection of metal objects were carried out using noise (random) signals, but with their incoherent reception: G. Hülschmaer in Germany created and patented the first tele-metal-detector in a monostatic design, while A. S. Popov in Russia a little earlier proposed and tested in Sevastopol an installation with a similar purpose, but in a bistatic version.

The methods for chaotization of electronic systems and methods for digital-analog processing of random signals, developed in the Department #17, made it possible to create a number of generators of chaotic oscillations and controlled delay lines, on the basis of which samples of modern Noise Radars of mm– and microwave ranges were developed and tested and, thereby, laid the foundations of modern Noise Radar Technology (NRT).

 The NRT has three main components:

1) development and research of chaotic BL generators based on the developed methods for chaotizing oscillations in electronic systems of the microwave and mm bands;

2) development of broadband digital-analog correlators;

3) development of Noise Radars and remote sensing systems for multiple applications.

Provided that coherent reception of radar reflections is ensured, Noise Waveform can be considered as the most suitable radar signal, which makes it possible in the simplest way to ensure such important operational characteristics of the radar as interference immunity, electromagnetic compatibility, covert operation, small dimensions, etc. These performances of Noise Radars are due to the unique properties of optimal reception of random signals in a correlation receiver.

Several new Noise Radars, Ground Noise Synthetic Aperture Radar (SAR) and microwave sensors have been developed and tested in the Department #17:

  1. The world’s first Ka-band bistatic Ground Noise SAR has been developed, manufactured and tested, using a new type of antenna developed by us – antennas with radiation pattern synthesis, with digital signal processing & SAR image formation. It was developed within the framework of the STCU Project for monitoring the Sarcophagus of the Chernobyl Nuclear Power Plant.The developed Noise SAR has a wide range of applications, and in most cases, it is intended for monitoring large engineering structures: buildings, hangars, bridges, television towers, dams, etc., in order to record structural changes invisible to the eye and, therefore, either to confirm their stability, or to detect their pre-catastrophic The developed Ground Noise SARs can also be used to monitor transport areas: highways, railway junctions, seaports, and airport runways.
  2. The world’s first X-band Pulse-Coherent surveillance Noise SAR with coherent processing of the radar returns was developed, manufactured and tested. This Noise Radar can operate in two modes: Surveillance mode and Arc-SAR mode. It was developed and supplied for DSTA, Singapore.
  3. W-band CW Noise Radar for Car Collision Warning Radar.
  4. W-band Doppler Noise Radar for investigation of radar signal scattering by sea surface.
  5. X-band pulse coherent linear and circular SARs.
  6. Ka-band Intrusion Detection sensor.
  7. C-band Stepped Frequency/Frequency Hopping Noise Radar L-band Ground and Wall Penetrating Noise Radars.
  8. Software Defined Noise Radar.
  9. Bistatic Noise Radar with L-shaped Antenna Arrays for SAR Tomography – 3D Imaging Noise Radar.
  10. Ku-band Microwave Video camera Demonstrator on the basis of Noise Stepped Frequency Radar.

Cooperation

The Department for Nonlinear Dynamics of Electronic Systems conducts successful international cooperation with scientists from many countries of the world in the field of modern Noise Radar, spatio-temporal dynamic chaos, generation and processing of random signals, SAR tomography, formation and processing of SAR images, precision monitoring, as well as the theory of multilayer semiconductor structures and semiconductor photoelectronic devices; research of self-oscillations in semiconductor and vacuum devices in the microwave and terahertz ranges; research of “Quantum Radar” Sensors and some issues of modern relativistic theory and general theory of relativity.

 

Scientific research in the field of Noise Radar was supported by the NATO Scientific Council for Sensor and Electronic Technologies (SET Panel, RTO NATO), which offered K.O. Lukin lead the Problem Group, SET-101, on the development of the basics of Noise Radar in NATO and partner countries (RTO/NATO SET-101/RTG57/RFT (2006-2010)). In 2010, this group was transformed into SET-184: “Potential capabilities of Noise Radars”, which was extended for the period 2015 – 2017 as  SET-225 “Noise Radars with spatial and temporal variation of probing signals”, as well as SET-287 – “Characteristics of Noise Radars” for the period 2018 – 2024.

The Department #17 has repeatedly won competitions for joint projects of the National Academy of Sciences and the Ministry of Education and Science of Ukraine, participated in the implementation of several international contracts and conducted joint research with leading scientific organizations, namely:

The following NATO SPS projects were carried out within the framework of the “Science for Peace and Security” program:

  • G5395 “Curtain that forms microwave images”, (2018 – 2022);
  • G5465 “Noise Radar Imaging Network for Airspace and Maritime Border Security (NORMA)” (2018-2021);
  • G4809 “Compact sensor systems for unmanned aerial vehicles”, (2015 – 2018) – jointly with scientists from the Catalan Center for Telecommunication Technologies, Barcelona, Spain and Jeonbuk National University, South Korea; in 2019, this project was recognized as the best innovative project of the 10th anniversary of the NATO Science for Peace program.
image002Prof. K. Lukin and his “namesake” cafe opposite the UCL building (University College London)
  • Within the framework of the Seventh European Framework Program FP-7, a European Project was implemented in cooperation with scientists from Italy, Spain, Germany, Poland and Holland: “MultiTech security system for interconnected space control ground stations”, FP-7 – “SCOUT”, (2015-2018);
  • In cooperation with the Turkish scientists of the Technical University of Electronics and Communication (Yildiz, Istanbul, Turkey), the joint competition of the National Academy of Sciences of Ukraine and the Scientific and Technical Research Council of Turkey was won and the Research Project “Active and passive sensors of the millimeter range for a smart security system” was implemented (2015-2017).

In previous years, the following international contracts were executed by the Department #17:

  • “Development of a high-resolution radar system based on random noise signals with stepped frequency tuning”, Research Project “LISTVA”, Chung Ang University, Seoul, South Korea, (2009-2011);
  • “Development of a radar sensor to prevent crane collisions”, Research Project “SENSOR”, Korea Institute of Electronic Technology, South Korea, (2009);
  • “Manufacturing and testing of a combined experimental prototype of an surveillance radar and a ground-based short-range synthetic aperture radar (SAR) based on chaotic X-band signals”, Research Project “TIGER”, Defense Technology Agency (DTA), Republic of Singapore , (2007-2009);
  • “Development of laboratory prototypes of a surveillance radar and ground-based short-range SAR based on chaotic signals”, Research Project “LION”, Defense Technology Agency (DTA), Republic of Singapore, (2003-2004).

International projects of the Science and Technology Center in Ukraine (STCU):

  • # 3377 “New laser system for absolute measurement of distances”, (2006-2008);
  • # 1954 “Microwave method and equipment for precise monitoring of the Sarcophagus of the Chornobyl NPP” (2004-2005);
  • # R-050 “Car radar for collision avoidance”, (2002);
  • # 1232 “New microwave method of accurate remote measurement of distances and technological gaps” (1999-2000);
  • #365 “Development of wideband millimeter wave Noise Radar for design of highly informative short-range radar systems for civilian applications” (1999-2000).

 Joint research projects and developments with the following organizations:

  • SPE “Optel”: “Conceptual design of a radio reflectometer based on signals with random and pseudo-random modulation”, Research Project “Reflect”, (SPE “Optel”, Kharkiv), (2012-2014);
  • Kharkiv Air Force University named after I. Kozhedub: Joint experiments on obtaining SAR images of objects of complex shape – various samples of military equipment (I. Kozhedub AFU, Kharkiv), (2013);
  • Kharkov National University of Radio Electronics, PFEE Department: Research and development of new measurement methods for design of optical devices based on low-coherence spectral interferometry, (NURE, Kharkiv), (2011);
  • The National Scientific Center “Kharkov Institute of Physics and Technology” (KIPT) within the framework of the state program on the problem of the use of nuclear materials and nuclear technologies for 2004-2010:

“Methods and radiation-resistant equipment for precise monitoring of the condition of structures and equipment outside and inside the facility “Ukryttya””, Research Project “Sarcophagus 2“, (NSC KIPT, Kharkiv), (2007-2008);

“Microwave method and equipment for precision monitoring of the main equipment and pipelines of the Nuclear Power Plant (Using the SAR-interferometry method and Noise Radars)”, Research Project “Sarcophagus”, (NSC KIPT, Kharkiv), (2005-2006).

Scientific cooperation and active interaction with scientists of Ukrainian research institutes and universities also contributed to the successful development of the Department’s scientific directions: SPE “Orion”; OJSC “UkrNIIproektstalkonstruktionsia named after V. M. Szymanovsky”; STF “Lekis” (Kyiv); Karazin University; NSC “Metrology”; Institute of Mathematics, NAS of Ukraine.

The Department of Nonlinear Dynamics of Electronic Systems has cooperated with research organizations of many countries in Europe, North and South Americas, and Asia over the years:

  • Joint Research Center of the European Commission (JRC EC-Ispra), Ispra, Italy – ground noise SAR, differential interferometry;
  • International Center for Theoretical Physics (ICTP), Trieste, Italy – dynamic chaos in semiconductor multilayer structures;
  • National Institute for High Energy Physics (INFN), Trieste, Italy – new photodetectors and spectral interferometry of optical noise signals;
  • Tor Vergata University, Rome, Italy – a new concept for design of surface movement radars for traffic monitoring at airfields;
  • University of São Paulo, Brazil – a new semiconductor photomultiplier;
  • Synchrotron Laser Laboratory “Elettra”, Trieste, Italy;
  • Warsaw University of Technology, Poland – signal processing in Noise Radars and Ground Radars;
  • Chung-Ang University, Seoul, South Korea – stepped frequency Noise Radars;
  • Seoul National University, South Korea – theory of multimode regimes in DRG and Clinotron;
  • University of Pennsylvania, USA ( State University, USA) – Noise Radars, history of Noise Radar;
  • NT firm ATI-ITI, Inc., Detroit, USA – novel systems for car-to-car communication on autobahns;
  • University of California at Berkeley, USA;Institute of Plasma Physics, Nieuwhein, Holland;
  • Technical University of Hamburg-Harburg, Germany;
  • Technical University of Dresden, Germany;
  • “Centro de Investigaciуn y de Estudios Avanzados del Instituto Politécnico Nacional” (Superior Education and Research Center of the National Polytechnic Institute of Mexico City), Guadalajara, Mexico;
  • ‘AeroSensing Radar Systeme’, GmbH, Munich, Germany;
  • Within the framework of the grant “Science Foundation Ireland Investigator Program” and the project “EOARD” (European Agency for Aerospace Research and Development) No. FA8655-04-1-3027, the scientist of the Department #17, Ph.D, D.Sc V.B. Yurchenko, a long-term program of joint research in the field of creating compact generators of the terahertz range was organized at the National University of Ireland, Maynooth, Ireland (NUI Maynuth, Ireland).

For 16 years, K. A. Lukin was an associate senior researcher at the International Center for Theoretical Physics (The Abdus Salam International Center for Theoretical Physics “ICTP”, Trieste, Italy). He organized internships for young employees of the Department in European and other scientific centers:

  • O.V. Melnikova, P. L. Vyplavin and D. Yu. Suprun – at the Joint Research Center of the European Union, Ispra, Italy (“JRC EC-Ispra”, Italy);
  • D. M. Tatyanko, S. K. Lukin, P. L. Vyplavin and A. E. Horobets – in “ICTP”, Trieste, Italy;
  • P. L. Vyplavin and S. K. Lukin – at the “BRADAR” company, Brazil;
  • V.V. Kudryashov – Institute of Informatics and Telecommunications of the Bulgarian Academy of Sciences;
  • H.P. Kovalenko at “AeroSensing Radar Systeme”, GmbH, Munich, Germany.

image004

Youth of the Department #17, from left to right: S. Lukin, O. Kamenskyi, O. Melnykova,V. Kudryashov, D. Roenko, T. Anoshko, D. Tatyanko

The Department #17 provides continuous training for young highly qualified scientists who are in demand not only in Ukraine, but also in leading scientific organizations in the world. After acquiring the necessary qualification in the Department #17 and in “JRC-EC-Ispra” O.V. Melnikova enrolled in postgraduate studies at one of the universities in Germany. After an internship and participation in the “STEP” (Sandwich Training Educational Program) program, implemented by the International Center for Theoretical Physics “ICTP”, Trieste, Italy, in cooperation with the Synchrotron Laser Laboratory (“Elettra”, Trieste, Italy) and the Department #17 – D. M. Tatyanko successfully defended his candidate’s thesis under the supervision of K. O. Lukin. P.L. Vyplavin, after defending his PhD thesis at the IRE NASU, was invited to work at the radar branch of Embraer,  – a world-famous aircraft manufacturing company in Brazil. S.K. Lukin, after completing his diploma in the Department #17 and several years of work on the creation of digital generators of radar signals and algorithms for their digital processing based on modern Field-Programmable Gate Array (FPGA), became PhD student at the University of Naples “Parthenope”. After successfully defending his PhD thesis, he won a competition to participate in the European project for the ‘development of passive SAR systems for traffic monitoring on highways’ at the University of Alcala de Henares (Madrid) Spain. V.V. Kudryashov, after defending his PhD thesis, was invited to carry out a European project at Sofia University (Bulgaria), and then won a competition to participate in the justification of a large project of the European Space Agency – “Event Horizon Imaging Experiment of a supermassive Black Hole”  in the center of our galaxy (Milky Way Galaxy – Sagittarius A*). V. V. Kudryashov continues to work on this project at ESTEC – the main technical center of the European Space Agency – ESA.

In recent years, the Department #17 has organized the reception of more than 40 foreign delegations of scientists from different countries of the world.

image006

The exhibition of the achievements of the IRE of the National Academy of Sciences was visited by the members of the NTO / NATO Problem Group on Noise Radar Technology SET-184, from left to right: K.O. Lukin, David Calugi (Galileo Avionica), Andy Stove (Thales UK), Krzysztof Kulpa (WUT) – June 2008

The researchers of the Department #17 take an active part in the work of many international conferences on dynamic chaos and nonlinear physics, radar, radars with aperture synthesis, microwave physics, signal processing, vacuum electronics, terahertz and infrared waves, fundamental problems of quantum physics, etc. In the period 2005-2023, they made more than 390 reports at prestigious international conferences in Europe, the USA, Canada, Russia, Brazil, Mexico and Asia.

Thanks to the efforts of the Staff of the Department #17, 3 international conferences on Noise Radar Technology were held, which received a high international evaluation:

  • “NRTW-2002, The First Int. Workshop on the Noise Radar Technology “(2002, Yalta, Ukraine),
  • NRT-2003, Noise Radar Technology” (2003, Kharkiv, Ukraine),
  • International conference on Noisy Radar Technology, NRT-2012, (2012, Yalta, Ukraine),

in which scientists from Ukraine, England, Brazil, Canada, Germany, Iran, Italy, Russia, the USA and Turkey took part. The participants of the conference were shown the operation of the 8-mm ground Noise Radar and other sensors based on noise radars developed in the Department #17.

 

image008

Participants of the Third International Conference on Noise Radar Technology, NRT-2012, Yalta, Crimea, Ukraine

In addition, K.A. Lukin was the organizer of Sections on Noise Radar at many International Conferences (IRS-2006 – IRS-2015; APSAR-2013; EUSAR, MSMW), and is also a member of the Program Committees of many International Conferences on Noise Radar and Signal Processing : APSAR-2 015; EUSAR, MSMW.

Awards

The scientific results obtained by the Staff of the Department #17 have been recognized by a number of awards and prizes:

  • 2019Award of the NATO SPS program “Science for Peace and Security” for the best innovative SPS Project in the last 10 years (2008-2018).
  • 2018 K. O. LukinCertificate of Honor of the Kharkiv Regional State Administration in connection with the 100th anniversary of the founding of the National Academy of Sciences of Ukraine.
  • 2018 – B. Yurchenko – was a co-recipient of the 2018 Gruber Cosmology Prize as a Team Member of the ESA “Planck” Project. He contributed (2000 – 2007) to the design of the ESA PLANCK sub-mm-wave radio-telescope for the Cosmic Microwave Background mapping. https://gruber.yale.edu/prize/2018-gruber-cosmology-prize
  • 2009K. O. Lukin was elected an IEEE Fellow (AES) for significant contributions to the development of radars with chaotic and Noisy Signals.
  • 2008K. O. Lukin Gold medal of the Academy of Applied Radio Electronics of Ukraine – for outstanding contributions to the development of Noise Radars and Ground Noise SAR.
  • 2006 – K. A. Lukin, V. E. Shcherbakov and V. M. Konovalov – laureates of the All-Ukrainian competition of innovative and technical projects “IDEAS – into LIFE! “, Ukraine, 2006 for the project “Method and equipment for multiplex broadband communication for the transmission of information between cars on autobahns”

 Personalized scholarships

  • 2010 – P. L. Vyplavin – was awarded a scholarship of the NAS of Ukraine “Scholarship of the National Academy of Sciences of Ukraine”
  • 2012 – V.V. Kudryashov – was awarded a scholarship of the NAS of Ukraine “Scholarship of the National Academy of Sciences of Ukraine”.

 Diplomas for prize-winning places in the international conferences

  • 2014 – P. L. Vyplavin – first prize for the best scientific report at the international conference “7th International Conference on Ultrawideband and Ultrashort Impulse Signals”, UWBUSIS-2014, Kharkiv, Ukraine, September 15-19, 2014.
  • 2013 – V.V. Kudryashov – first prize for the best scientific report at the international symposium “Signal Processing Symposium, SPS-2013”, Jachranka, Poland, 5-7 June 2013.
  • 2013 – V.V. Kudryashov – second prize for the best scientific report at session “Radioengineering systems and radio communication facilities” at conference “Modern Problems of Radioengineering” within the framework of the 17th International Youth Forum “Radioelectronics and Youth in XXI century “, Kharkiv, Ukraine, April 24, 2013.
  • 2012 – V.V. Kudryashov – second prize for the best scientific report at session “Passive Radars” at conference “12th Kharkiv Young Scientists Conference on Radiophysics, Electronics, Photonics and Biophysics” for “Range-Azimuth Radiometric Imaging Using Ka -Band Antenna With Synthesized Beam”, Kharkiv, Ukraine, December 07, 2012.
  • 2009 – P. L. Vyplavin – the first prize for the best scientific report at the international symposium “Signal Processing Symposium, SPS-2009”, Jachranka, Poland, May 28-30, 2009.
  • 2008- P. L. Vyplavin – second prize for the best scientific report at the international symposium “MRRS-2008”, Kyiv, Ukraine, September 22-24, 2008.

Personel training

The head of the Department #17, Professor Kostyantyn Lukin has been supervising bachelors, masters, Ph.D and Doctoral (D.Sc) students.

He has supervised:

11 PhD and 2 D.Sc theses at the IRE NANU; 21 specialist diploma theses at the V. N. Karazin Kharkiv National University (Karazin University) and Kharkiv National University of Radio Electronics (NURE), 3 master’s degree theses: (1) at ICTP, Trieste, Italy (1997) and (2) at the Karazin University (2023).

10 Ph.D Degree in Physics and Mathematics Sciences has been conferred on the Department Staff members under his supervision, including: V. О. Rakityansky (1990), A. B. Lebedev (1991), V. S. Korostelev (1993), A. A. Mogyla (1998), V.I. Afanasyev (2002), V.V. Kulyk (2005), O. V. Zemlyaniy (2009), P. L. Vyplavin (2011), V. V. Kudryashov (2013), D. M. Tatyanko (2014).

History

The Department for Nonlinear Dynamics of Electronic Systems (#17) was officially established on February 18, 1992 by the decision of the Presidium of the Academy of Sciences of the Ukrainian SSR. The Department was created in 1989 on the initiative of Doctor of Sciences K. A. Lukin, with the active and substantial support of academician V. P. Shestopalov, who was then the director of IRE, as well as the deputy director of academician V. M. Yakovenko and the first director of IRE academician O. Ya. Usikov, after whose our Institute named today. These were the time of changes, so-called “Perestroika” of the USSR, and by 1989, the ideas of democratization penetrated into all spheres of the country’s life, and, in particular, into the process of selecting managers at various levels. Namely, it became typical not to appoint, but to elect leaders, regardless of their party affiliation. A competition was organized at the institute in connection with the filling of the vacant position of scientific supervisor of the State Research Project which became vacant in May 1989 after the unexpected death of prof. M. S. Zinchenko, head of the Electronic Optics Department. Three IRE scientists took part in this competition. After the applicants presented their scientific programs and discussed them, the scientific council of IRE gave preference to K.O. Lukin – at that time still a young, non-party Doctor of Sciences, who, however, already had the experience of leading a scientific research group, having worked for the past 12 years in the Department of Diffraction Theory and Diffraction Electronics, which at that time was headed by Academician V.P. Shestopalov.

The material base for the Department #17 was the laboratory rooms and some part of the equipment of the former Department of Electron Optics. The scientific team of the Department #17 was formed partly from some researchers of Prof. M. S. Zinchenko’s Department, and the research group from the Department of Diffraction Theory and Diffraction Electronics, which carried out scientific research under the leadership of K. O. Lukin in the field of the theory of nonlinear non-stationary processes in the generators of diffraction radiation (GDR) and other vacuum mm range devices. In addition, experimental studies of chaotic self-oscillations in generators based on the backward wave (BWT) lamp and the development of self-generators of chaotic oscillations, which were carried out jointly by K. O. Lukin and V. O. Rakityanskyi at the experimental base of the SDTB IRE Academy of Sciences of Ukraine, made the necessary scientific addition.

Academician O. Ya. Usikov expressed his wish for the future head of the Department #17 to preserve and develop the achievements of IRE in the field of high-permeability electronic optics. We tried to do this, continuing the work started by Prof. M. S. Zinchenko research, as well as using new methods of designing powerful electronic guns and looking for new areas of their application.

Back in 1955-1989 under the leadership of prof. M. S. Zinchenko, various experimental and theoretical studies in the field of electronic optics was carried out at IRE. In particular, the theory of electron-optical systems with longitudinal compression was developed and a whole series of three-electrode guns with output power from units of milliwatts to hundreds of kilowatts in continuous operation was manufactured. These guns made it possible to effectively and independently manage the energy and density of the electron flow with very little expenditure of control power. They are widely used in the development of such technological processes as vacuum melting, deposition and welding of metals everywhere, including cosmic space (in collaboration with the Paton Institute of Electric Welding, Academy of Sciences of Ukraine), the separation of isotopes, as well as creation of controlled sources of soft X-rays.

Many researchers who had started to work in the Department of Electron Optics, had got their PhD degrees and continue to work successfully in the different departments of the Institute and other scientific organizations of  Kharkiv now. One of them, PhD A. S. Tishchenko, became the Head of Department of Vacuum Electronics (Department #16, IRE NASU).

The creation and first years of the Department existence occurred on 1990-s, when the economic situation in the Soviet Union became worse and worse, and, finally, the Soviet Union 1992 collapsed like unified State. This had negative effects for funding of fundamental and applied science in Ukraine. Many developments were not demanded even there were ideas not only neither create new departments and laboratories nor develop new research areas, but reduce old ones as well. Under these difficult economic conditions, we managed not only to maintain the newly-created research department, but also to develop successfully the new research directions in the field of radiophysics and electronics. In some areas like Modern Noise Radar we got a leading position in the world. All of then had been able to do thanks our active international cooperation, which had been realized only after Ukraine became as independent State.

 image001  image003
Professor K. A. Lukin tells President of NASU B. E. Paton about Noise Radar Systems (2005) “The 50 years of Noise Radar”. K. A. Lukin report at the conference in the I. Kozhedub Kharkiv Air Force University (2013)

Thus, a new Department appeared in the structure of IRE with the actual area of research in the field of nonlinear dynamics and dynamical chaos in active and passive systems of millimeter, microwave (MW) and radio wavebands of electromagnetic radiation appeared in the IRE NASU. Under new circumstances in addition to studying fundamental properties of dynamic chaos the practical using of this phenomenon became very actual, i.e. search of possible applications, useful for solving important scientific and technical problems

In the following years, we managed not only to maintain the focus of research, but also to expand the areas of application of the obtained results, specifying and deepening certain directions, in particular, remote sensing and diagnostics of engineering structures using Ground Noise Synthesized Aperture Radar (SAR), or more precisely – differential SAR interferometry. In addition, a new direction in radiometry in the MM wavelength range is proposed: formation of coherent radiometric images in the “range-azimuth” plane using interferometer geometry and synthesis of the antennas patterns when the range does not exceed the base of this radiometer.

A new direction in radar is under intense development – Software Defined Radar, based on the use of digital signal generation and processing in FPGA, which does not require changing the hardware part of the radar when the type of sounding signal is changed. Previously proposed by K.O. Lukin’s method of solving problems with nonlinear boundary conditions, made it possible to develop a new direction in the physics of semiconductor devices with avalanche multiplication of charge carriers and to propose an Avalanche Generator Diode (LGD), a promising generator of the microwave and Terahertz ranges.

Currently, the topics of modern research of Department #17 have significantly expanded.

Now it’s:

  • Dynamic chaos in microwave resonators with non-integrated boundaries and/or nonlinear reflecting surfaces;
  • Chaotic and regular dynamics of charge carriers in semiconductor multilayer structures with impact ionization (avalanche multiplication of charges);
  • New current instabilities in reverse-biased multilayer semiconductor structures for generation of periodic and random oscillations in the microwave and terahertz frequency ranges;
  • Digital generation and coherent processing of random signals in real time. Development of FPGA-based signal processors for Noise Radar Sensors and microwave “video cameras”;
  • New antennas with pattern synthesis;
  • Noise Radar Systems;
  • SAR tomography; radiometric imaging using on Ground Noise SAR hardware;
  • Development of methods and systems for forming and processing SAR images;
  • Optical noise reflectometers based on LED sources of random optical radiation and spectral interferometry methods for measuring micro- and nano-distances;
  • New methods of wireless vehicle communication, e.g. communication between cars on autobahns;
  • New methods in quantum theory and modeling of “Quantum Radars”;
  • Microwave and THz vacuum electronics;
  • New methods in modern relativistic theory.

Currently, there are 16 Staff members in the Department for Nonlinear Dynamics of Electronic Systems: 1 Professor, DSc, PhD. (K. O. Lukin), , 1 Senior Research Fellow DSc, PhD. (O. J. Nurmagambetov); 5 Senior Research Fellow, Ph.D. (P.P. Maksymov, L.V. Yurchenko, O.V. Zemlianiy, D.M. Tatyanko, V. E. Kudryashov,); 1 Researcher, Ph.D (S. S. Ponomarenko), 2 Junior Researcher (Yu. A. Shiyan, A. O. Shelekhov), 1 Chief Engineer of the Department (V. P. Palamarchuk), 3 Leading Engineers (M. K. Zaets, V. E. Shcherbakov, V. M. Konovalov), 1 Engineer (P. G. Sushchenko), and 1 Laboratory assistant (S. P. Pyrozhenko).

 image006
The Staff of Department #17 – left to right – standing: P. P. Maximov, O. V. Zemlyaniy, L. V. Yurchenko, K. O. Lukin, M. K. Zaets, V. P. Palamarchuk, P. G. Suschenko, V. E. Scherbakov, A. O. Shelehov, V. M. Konovalov; sitting: O. A. Mischenko, D. M. Tatyanko, Yu. A. Shiyan, N. S. Fedoseeva (2015)

At various times the following employees were among the staff of the Department #17 and took an active part in actual research: Senior Research Fellow, DSc, PhD: V. B. Yurchenko and S. P. Leshchenko; Senior Research Fellow, PhD: A. A. Mogyla, V. M. Kantsedal, V. M. Bolotov and V. O. Rakityansky; Research Fellow, PhD: P. L. Vyplavin, V. V. Kudryashov, V. I. Afanasyev, V. V. Kulyk, V. С. Korostylev and A .B. Lebedev; Junior Research Fellow S. K. Lukin and A. V. Sugak; Leading Engineer: Yu. O. Оleksandrov, V. L. Virchenko, P. M. Torchun, A. I. Karpov, T. Yu. Yatsenko and A. S. Bogach; Engineer: O. A. Mishchenko, A. B. Pikh, N. S. Fedoseeva , D. Yu. Suprun, S. M. Yarovoj, O. V. Melnikova, O. A. Kamensky, D. O. Royenko, V. E. Korzh, V. V. Tarasenko, N. P. Kovalenko, R. P. Kovalenko, T. K. Lukina, E. V. Yurchenko, A. E. Gorobets, G. S. Bezrodnaya, L. I. Kirichenko, T. Yu. Latinskaya, М. А. Тopchiy, R. I. Cechmistro, Z. F .Sviridova; Laboratory assistants: K. S. Svichko, Y. R. Chistyakov; Locksmith of higher category: S. M. Ryzhenko, M. I. Semenyak.

Many specialists, who received qualifications in the Department #17, successfully continue their scientific activities in a number of countries of the European Union and the USA (V. V. Kudryashov, S. K. Lukin, V. O. Rakityanskyi, O. V. Melnikova , A. E. Horobets, O. P. Kotenkov), private firms (P. L. Vyplavin), in other scientific Departments of the O. Ya. Usykov IRE NAS of Ukraine (A. A. Mohyla, T. Yu. Yatsenko) and Kharkiv universities (L. I. Kirichenko, R. I. Tsekhmistro).