image002
Керівник: Олександр Йосипович Носич
г.н.с.,професор, д. ф.-м. н. з радіофізики
IEEE Fellow, OSA Senior Member
Тел. +380-57-7634-382
E-mail: anosich@yahoo.com

Портфоліо


Тематика наукових досліджень

Історія відділу

Веб-сайт лабораторії

Рік організації лабораторії: 2010, до цього - автономна група у складі відділу № 12.

Основним напрямком наукових досліджень ІРЕ НАНУ довгий час було розв’язання проблем радіофізики та електроніки міліметрових і субміліметрових хвиль. У зв’язку зі стрімким розвитком мікро і нано технологій, з початку 2000-х років НАНУ і Уряд України визначили нанотехнології і наноматеріали як найважливіші напрямки наукових досліджень.

Підставою для порушення питання щодо утворення лабораторії мікро і нано оптики в ІРЕ НАНУ послугували наступні обставини, що склалися в 2010 році:

  • Постанова Президії про можливість утворення лабораторій як структурних одиниць в інститутах НАНУ
  • Успішне виконання в 2007-2009 конкурсного проекту «Мікро і нано-вимірне електродинамічне моделювання оптичних полів в резонаторах з активними зонами у вигляді квантових шарів, ниток і точок» в рамках Програми фундаментальних досліджень НАНУ «Наноструктурні системи, наноматеріали, нанотехнології», а також міжнародних проектів «Поглиблене моделювання поодиноких і періодичних активних діелектричних резонаторів для мікролазерів» (Університет Ноттінгем і Королівське товариство, Великобританія) і «Електродинамічне моделювання та проектування діелектричних резонаторів і лінз для нових застосувань в фотоніці і терагерцах» (Університет Рен-1 і Міністерство європейських і закордонних справ, Франція)
  • Ухвалення, на конкурсі проектів Державної цільової програми «Нанотехнології та наноматеріали» на 2010-2014, запиту на проект «Фундаментальне математичне та чисельне дослідження оптичних електромагнітних полів поодиноких і пов’язаних мікрорезонаторних лазерів з нанорозмірними активними шарами, нитками і стрічками»

Співробітниками лабораторії в 2010-2015 виконано понад 10 конкурсних проектів з нанотематики, опубліковано 35 статей в провідних світових наукових журналах, а також захищено 4 кандидатських і 1 докторська дисертація. Дослідження і розробки виконуються за програмами Національної академії наук України, Міністерства науки і освіти України та міжнародних наукових організацій. У 2011 році проект, що виконувався в лабораторії, було визнано одним з чотирьох найкращих (з загальної кількості 120) за Державною цільовою програмою «Нанотехнології та наноматеріали».

Склад лабораторії на червень 2015: 7 науковців (в тому числі 2 на 0.5 ст.). З них 1 д. ф.-м. н., 4 к. ф.-м. н. і 2 здобувачів (в 2015-2016 роках проходили службу в Збройних силах України).

image002

Лабораторія святкує своє утворення в поході осінньою Турцією, жовтень 2010. Маяк мису Айя.

image004

Ми та Арнольд Зоммерфельд на конференції з оптичних мереж в Мюнхені, Німеччина, 2010.

image006

Семінар лабораторії на лижній горі «Харківська Швейцарія», березень 2011.

image008

В поході весняною Турцією, 2011. Сходження на вулкан Хасан-Даг, 3268 м.

image010

Н.с. Олена Смотрова та аспірант Денис Натаров на конференції по плазмоніці в м. Сан-Себастьян, Іспанія, 2012

image012

М.н.с. Оля Шаповал та Конфуцій на симпозіумі по антенам та розповсюженню, Токіо, Японія, 2012.

image014

Пурпурний колір відповідає точним наукам. Президент університету Рен-1 прикріплює «епітогу» (стрічку з тканини такого ж кольору, як тога, зі смужками з білого хутра) до лівого плеча почесного доктора - керівника лабораторії, м Рен, Франція, 2015.

image016

Медаль, котру вручають почесному доктору університету у Франції.

Основні результати відділу за весь час

  • Методи. Розроблено методи граничних інтегральних рівнянь, в поєднанні з аналітичною регуляризацією або методом Найстрьома, для аналізу довільних двовимірних діелектричних тіл і тонких стрічок, тривимірних тонких дисків і ідеально провідних довільних екранів обертання, в частотній області, а також методу сингулярних розкладань в тимчасовій області (М.В. Балабан, В.С. Булигін, О.Й. Носич, Н.К. Сахненко, О.І. Смотрова, О.В. Шаповал)
  • Резонатори. Досліджено природу та характеристики граткових резонансів в двовимірному розсіянні і поглинанні хвиль періодичними структурами зі скінченної та нескінченної кількості пласких діелектричних і металевих стрічок і з ниток кругового перетину, плазмонних мод металевих стрічок і ниток, а також мод шепочучої галереї в тонкому тривимірному діелектричному диску (М. В. Балабан, Д.М. Натаров, А.Й. Носич, О.В. Шаповал)
  • Лазери. Досліджено моди двовимірного мікролазера у вигляді активного тіла в формі кайта і спіралі, нескінченної гратки з активних ниток, бінарної гратки з активних і металевих ниток, а також нанолазер на основі металевої нитки з активною оболонкою (Д.М. Натаров, А.І. Носич , О.І. Смотрова)
  • Графен. Розпочато дослідження плазмонних резонансів в розсіянні і поглинанні терагерцових хвиль стрічками і дисками з графену, а також гратками з таких стрічок, у вільному просторі (М.В. Балабан, А.Й. Носич, О.В. Шаповал)
  • Сенсори. Досліджено чутливості наносенсорів показника заломлення у вигляді металевої нанотрубки і ножової гратки з нанострічок (О.В. Шаповал)
  • Антени. Досліджено тривимірні квазіоптичні антени у вигляді ідеально провідного параболоїда обертання, параболоїда з конічним щитом, і тонкого резистивного або діелектричного диска (М.В. Балабан, В.С. Булигін, О.Й. Носич)
  • Процеси. Досліджено процеси трансформації електромагнітних полів в відкритих резонаторах, матеріальні властивості яких змінюються стрибком в часі, а також при їх порушенні імпульсними джерелами (Н.К. Сахненко)
  • Історія мікрохвиль. Уточнено обставини розробки магнетронів і радіолокаторів дм-діапазону в УФТІ в 1930-і роки, подано запит в IEEE History Committee й одержано позитивне рішення щодо статусу IEEE Milestone для радіолокатора «Зеніт» (О.Й. Носич)

Основні публікації

1. Метод аналитической регуляризации и метод Найстрема

  • 1.1. A.I. Nosich, "Excitation of a 2-D open resonator containing a diffraction grating," Doklady Akademii Nauk Ukrainskoi SSR, ser. A, no 3, pp. 51-55, 1985 (in Russian).
  • 1.2. A.I. Nosich, "Accurate solution of wave diffraction problems for nonclosed circular screens in stratified dielectric medium," Doklady Akademii Nauk Ukrainskoi SSR, ser. A, no 10, pp. 47-51, 1986 (in Russian).
  • 1.3. A.I. Nosich, "Green's function - dual series approach in wave scattering from combined resonant scatterers," in M. Hashimoto, M. Idemen and O.A. Tretyakov (Eds.), Analytical and Numerical Methods in Electromagnetic Wave Theory, Tokyo: Science House Publ., pp. 419-469, 1993.
  • 1.4. A.I. Nosich, "Method of Analytical Regularization in wave-scattering and eigenvalue problems: foundations and review of solutions," IEEE Antennas and Propagation Magazine, vol. 42, no 3, pp. 34-49, 1999.
  • 1.5. A. Altintas, A.I. Nosich, "The method of regularization and its application to some electromagnetic problems," in N.K. Uzunoglu, K.S. Nikita, D.I. Kaklamani (Eds.), Applied Computational Electromagnetics, NATO-ASI Series F, Berlin: Springer, pp. 409-423, 2000.
  • 1.6. A.I. Nosich, "Method of analytical regularization based on the static part inversion in wave scattering by imperfect thin screens," J. Telecommunications and Information Technology, Warsaw: NIT Press, no 3, pp. 72-79, 2001.
  • 1.7. S.V. Boriskina, P. Sewell, T.M. Benson, A.I. Nosich, "Accurate simulation of 2D optical microcavities with uniquely solvable boundary integral equations and trigonometric Galerkin discretization," J. Optical Society of America A, vol. 21, no 3, pp. 393-402, 2004. [pdf]
  • 1.8. M.V. Balaban, R. Sauleau, T.M. Benson, A.I. Nosich, "Dual integral equations technique in electromagnetic wave scattering by a thin disk," Progress in Electromagnetic Research B, vol. 16, pp. 107-126, 2009.
  • 1.9. V.S. Bulygin, A.I. Nosich, Y.V. Gandel, "Nystrom-type method in three-dimensional electromagnetic diffraction by a finite PEC rotationally symmetric surface," IEEE Trans. Antennas and Propagation, vol. 60, no 10, pp. 4710-4718, 2012.
  • 1.10. M.V. Balaban, E.I. Smotrova, O.V. Shapoval, V.S. Bulygin, A.I. Nosich, "Nystrom-type techniques for solving electromagnetics integral equations with smooth and singular kernels," Int. J. Numerical Modeling: Electronic Networks, Devices and Fields, vol. 25, no 5-6, pp. 490-511, 2012. Special Issue on Nontraditional Differential and Integral Equation Discretization Schemes
  • 1.11. I.O. Sukharevsky, O.V. Shapoval, A.I. Nosich, A. Altintas, "Validity and limitations of the median-line integral equation technique in the scattering by material strips of sub-wavelength thickness," IEEE Trans. Antennas and Propagation, vol. 62, no 7, pp. 3623-3631, 2014.
2. Микро и нано-резонаторные лазеры
  • 2.1. E.I. Smotrova, A.I. Nosich, "Mathematical study of the two-dimensional lasing problem for the whispering-gallery modes in a circular dielectric microcavity," Optical and Quantum Electronics, vol. 36, no 1-3, pp. 213-221, 2004.
  • 2.2. E.I. Smotrova, A.I. Nosich, T.M. Benson, P. Sewell, "Cold-cavity thresholds of microdisks with uniform and non-uniform gain: quasi-3D modeling with accurate 2D analysis," IEEE J. Selected Topics in Quantum Electronics, vol. 11, no 5, pp. 1135-1142, 2005. [pdf] Special Issue on Semiconductor Lasers
  • 2.3. E.I. Smotrova, A.I. Nosich, T.M. Benson, P. Sewell, "Optical coupling of whispering gallery modes of two identical microdisks and its effect on the lasing spectra and thresholds," IEEE J. Selected Topics in Quantum Electronics, vol. 12, no 1, pp. 78-85, 2006. [pdf with comment] Special Issue on Microresonators
  • 2.4. E.I. Smotrova, A.I. Nosich, T.M. Benson, P. Sewell, "Threshold reduction in a cyclic photonic molecule laser composed of identical microdisks with whispering-gallery modes, " Optics Letters, vol. 31, no 7, pp. 921-923, 2006. 2.5. E.I. Smotrova, A.I. Nosich, T.M. Benson, P. Sewell, "Ultralow lasing thresholds of the pi-type supermodes in cyclic photonic molecules composed of sub-micron disks with monopole and dipole modes," IEEE Photonics Technology Letters, vol. 18, no 19, pp. 1993-1995, 2006.
  • 2.6. V.O. Byelobrov, A.I. Nosich, "Mathematical analysis of the lasing eigenvalue problem for the optical modes in a layered dielectric microcavity with a quantum well and distributed Bragg reflectors," Optical and Quantum Electronics, vol. 39, no 10-11, pp. 927-937, 2007.
  • 2.7. A.I. Nosich, E.I. Smotrova, S.V. Boriskina, T.M. Benson, P. Sewell, "Trends in microdisk laser research and linear optical modeling," Optical and Quantum Electronics, vol. 39, no 15, pp. 1253-1272, 2007. Invited paper 2.8. T. Benson, A. Nosich, E. Smotrova, M. Balaban, P. Sewell, "Laser eigenvalue problems: The electromagnetic modelling of microlasers," Proc. SPIE, vol. 6452, pp. 64520L/8, 2007. Special Issue: Laser Resonators and Beam Control
  • 2.9. E.I. Smotrova, T.M. Benson, P. Sewell, J. Ctyroky, A.I. Nosich, "Lasing frequencies and thresholds of the dipole-type supermodes in an active microdisk concentrically coupled with a passive microring," J. Optical Society America A, vol. 25, no 11, pp. 2884-2892, 2008.
  • 2.10. E.I. Smotrova, T.M. Benson, P. Sewell, J. Ctyroky, R. Sauleau, A.I. Nosich, "Optical fields of the lowest modes in a uniformly active thin sub-wavelength spiral microcavity," Optics Letters, vol. 34, no 24, pp. 3773-3775, 2009. 2.11. V.O. Byelobrov, J. Ctyroky, T.M. Benson, R. Sauleau, A. Altintas, A.I. Nosich, "Low-threshold lasing eigenmodes of an infinite periodic chain of quantum wires," Optics Letters, vol. 35, no 21, pp. 3634-3636, 2010. [pdf]
  • 2.12. E.I. Smotrova, V.O. Byelobrov, T.M. Benson, J. Ctyroky, R. Sauleau, A.I. Nosich, "Optical theorem helps understand thresholds of lasing in microcavities with active regions," IEEE J. Quantum Electronics, vol. 47, no 1, pp. 20-30, 2011.
  • 2.13. R. I. Shekhter, A.M. Kadigrobov, M. Jonson, E.I. Smotrova, A.I. Nosich, V. Korenivski, "Sub-wavelength terahertz spin-flip laser based on a magnetic point-contact array," Optics Letters, vol. 36, no 12, pp. 2381-2383, 2011.
  • 2.14. V.O. Byelobrov, T.M. Benson, A.I. Nosich, "Binary grating of sub-wavelength silver and quantum wires as a photonic-plasmonic lasing platform with nanoscale elements," IEEE J. Selected Topics in Quantum Electronics, vol. 18, no 6, pp. 1839-1846, 2012. Special Issue on Quantum and Nanoscale Photonics
  • 2.15. E.I. Smotrova, V. Tsvirkun, I. Gozhyk, C. Lafargue, C. Ulysse, M. Lebental, A.I. Nosich, "Spectra, thresholds and modal fields of a kite-shaped microcavity laser," J. Optical Society America B, vol. 40, no 6, pp. 1732-1742, 2013.
  • 2.16. E.I. Smotrova, A.I. Nosich, "Optical coupling of an active microdisk to a passive one: effect on the lasing thresholds of the whispering-gallery supermodes," Optics Letters, vol. 38, no 12, pp. 2059-2061, 2013.
  • 2.17. D.M. Natarov, "Modes of a core-shell silver wire plasmonic nanolaser beyond the Drude formula," IOP J. of Optics, vol. 16, vol. 16, no 7, pp. 075002/6, 2014.
3. Плазмонные и периодические наносенсоры – рассеяние и поглощение
  • 3.1 D.M. Natarov, V.O. Byelobrov, R. Sauleau, T.M. Benson, A.I. Nosich, "Periodicity-induced effects in the scattering and absorption of light by infinite and finite gratings of circular silver nanowires," Optics Express, vol. 19, no 22, pp. 22176-22190, 2011. Focus Issue “Collective phenomena in photonic, plasmonic and hybrid structures”
  • 3.2 D.M. Natarov, R. Sauleau, A.I. Nosich, "Periodicity-enhanced plasmon resonances in the scattering of light by sparse finite gratings of circular silver nanowires," IEEE Photonics Technology Letters, vol. 24, no 1, pp. 43-45, 2012.
  • 3.3 O.V. Shapoval, R. Sauleau, A.I. Nosich, "Grating and plasmon resonances in the scattering of light by finite silver nanostrip gratings," Int. J. Semiconductor Physics, Quantum Electronics, and Optoelectronics, Kiev, ISP NASU Press, vol. 15, no, 3, pp. 200-203, 2012.
  • 3.4 D.M. Natarov, R. Sauleau, A.I. Nosich, "Resonance scattering and absorption of light by finite two-period gratings of circular silver nanowires," Int. J. Semiconductor Physics, Quantum Electronics, and Optoelectronics, Kiev, ISP NASU Press, vol. 15, no 3, pp. 204-208, 2012.
  • 3.5 O.V. Shapoval, A.I. Nosich, "Finite gratings of many thin silver nanostrips: optical resonances and role of periodicity," AIP Advances, vol. 3, no 4, pp. 042120/13, 2013.
  • 3.6 O.V. Shapoval, R. Sauleau, A.I. Nosich, "Modeling of plasmon resonances of multiple flat noble-metal nanostrips with a median-line integral equation technique," IEEE Trans. Nanotechnology, vol. 12, no 3, pp. 442-449, 2013.
  • 3.7 T.L. Zinenko, M. Marciniak, A.I. Nosich, "Accurate analysis of light scattering and absorption by an infinite flat grating of thin silver nanostrips in free space using the method of analytical regularization," IEEE J. Selected Topics in Quantum Electronics, vol. 19, no 3, pp. 9000108/8, 2013. Special Issue on Nanoplasmonics
  • 3.8 O.V. Shapoval, J. Ctyroky, A.I. Nosich, "Resonance effects in the optical antennas shaped as finite comb-like gratings of noble-metal nanostrips," Proc. SPIE, vol. 8781, pp. 87810U/8, 2013. Special Issue on Integrated Optics: Physics and Simulation
  • 3.9 E.A. Velichko, A.I. Nosich, "Refractive-index sensitivities of hybrid surface-plasmon resonances for a core-shell circular silver nanotube sensor," Optics Letters, vol. 38, no 23, pp. 4978-4981, 2013.
  • 3.10 D.M. Natarov, R. Sauleau, M. Marciniak, A.I. Nosich, "Effect of periodicity in the resonant scattering of light by finite sparse configurations of many silver nanowires," Plasmonics, vol. 9, no 2, pp. 389-407, 2014.
  • 3.11 D.M. Natarov, M. Marciniak, R. Sauleau, A.I. Nosich, "Seeing the order in a mess: optical signature of periodicity in a cloud of plasmonic nanowires," Optics Express, vol. 22, no. 23, pp. 28190–28198, 2014.
  • 3.12 O.V. Shapoval, "Comparison of bulk refractive-index sensitivities of optical-mode resonances of a finite comb-like grating of silver nanostrips," IEEE J. of Quantum Electronics, vol. 51, no 4, art. no. 7200108, 2015.
  • 3.13 O.V. Shapoval, "Scattering of light waves by finite metal nanostrip gratings: Nystrom-type method and resonance effects," Radioelectronics and Communications Systems, Kiev, NTU KPI Press, vol. 58, no 5, pp. 201-211, 2015.
  • 3.14 T.L. Zinenko, V.O. Byelobrov, M. Marciniak, J. Ctyroky, A.I. Nosich, "Grating resonances on periodic arrays of sub-wavelength wires and strips: from discoveries to photonic device applications," in O.V. Shulika, I.A. Sukhoivanov (Eds.), Contemporary Optoelectronics: From (Meta)Materials to Device Applications, Springer Series in Optical Sciences, 2015, will be published.
4. Терагерцевые антенны и сенсоры на основе графена – рассеяние и поглощение
  • 4.1. O.V. Shapoval, J. S. Gomez-Diaz, J. Perruisseau-Carrier, J. Mosig, A.I. Nosich, "Integral equation analysis of plane wave scattering by coplanar graphene-strip gratings in the THz range," IEEE Trans. Terahertz Science and Technology, vol. 3, no 5, pp. 666-673, 2013.
  • 4.2. M.V. Balaban, O.V. Shapoval, A.I. Nosich, "THz wave scattering by a graphene strip and a disk in the free space: integral equation analysis and surface plasmon resonances," IOP J. of Optics, vol. 15, no 11, pp. 114007/9, 2013. Special Issue on Graphene Nanophotonics
5. Диэлектрические экраны, линзы, призмы и оболочки - рассеяние и поглощение
  • 5.1. A.V. Boriskin, A.I. Nosich, "Whispering-gallery and Luneburg lens effects in a beam-fed circularly-layered dielectric cylinder," IEEE Trans. Antennas and Propagation, vol. 50, no 9, pp. 1245-1249, 2002.
  • 5.2. A.V. Boriskin, A.I. Nosich, S.V. Boriskina, P. Sewell, T.M. Benson, A. Altintas, "Lens or resonator? - Electromagnetic behavior of an extended hemielliptic lens antenna for a sub-mm wave receiver," Microwave and Optical Technology Lett., vol. 43, no 6, pp. 515-518, 2004.
  • 5.3. A.V. Boriskin, G. Godi, A. Rolland, R. Sauleau, A.I. Nosich, "Comparative research of the adequacy of GO/PO, FDTD, and IE-based numerical algorithms for analyzing compact dielectric lenses in mm and sub-mm integrated antennas," Radio Physics and Electronics, Kharkiv, IRE NASU Press, vol. 12, no 2, pp. 306-318, 2007 (in Russian). Translated to English in Telecommunications and Radio Engineering, Begell House Publ., 2009, vol. 68, no 1, pp. 1-26.
  • 5.4. A.V. Boriskin, G. Godi, R. Sauleau, A.I. Nosich, "Small hemielliptic dielectric lens antenna analysis: boundary integral equations versus geometrical and physical optics", IEEE Trans. Antennas and Propagation, vol. 56, no 2, pp. 485-492, 2008.
  • 5.5. A.V. Boriskin, A. Rolland, R. Sauleau, A.I. Nosich, "Assessment of FDTD accuracy in the compact hemielliptic dielectric lens antenna analysis," IEEE Trans. Antennas and Propagation, vol. 56, no 3, pp. 758-764, 2008.
  • 5.6. A.V. Boriskin, S.V. Boriskina, A. Rolland, R. Sauleau, A.I. Nosich, "Test of the FDTD accuracy in the analysis of the scattering resonances associated with high-Q whispering-gallery modes of a circular cylinder," J. Optical Society of America A, vol. 25, no 5, pp. 1169-1173, 2008.
  • 5.7. A.V. Boriskin, R. Sauleau, A.I. Nosich, "Exact off-resonance near fields of small-size extended hemielliptic lenses illuminated by plane waves," J. Optical Society of America A, vol. 26, no 2, pp. 259-264, 2009.
  • 5.8. A.V. Boriskin, R. Sauleau, A.I. Nosich, "Performance of hemielliptic dielectric lens antennas with optimal edge illumination," IEEE Trans. Antennas and Propagation, vol. 57, no 7, pp. 2193-2198, 2009.
  • 5.9. M.V. Balaban, R. Sauleau, T.M. Benson, A.I. Nosich, "Accurate quantification of the Purcell effect in the presence of a dielectric microdisk of nanoscale thickness," IET Micro and Nano Letters, vol. 6, no 6, pp. 393-396, 2011.
  • 5.10. O.V. Shapoval, R. Sauleau, A.I. Nosich, "Scattering and absorption of waves by flat material strips analyzed using generalized boundary conditions and Nystrom-type algorithm," IEEE Trans. Antennas and Propagation, vol. 59 no 9, pp. 3339-3346, 2011.
  • 5.11. N.L. Tsitsas, C.A. Valagiannopoulos, A.I. Nosich, "Scattering and absorption of a complex source point beam by a grounded lossy dielectric slab with a superstrate," IOP J. of Optics, vol. 16, no 10, pp. 105712/10, 2014.
  • 5.12. I.O. Sukharevsky, A.I. Nosich, A. Altintas, "Manipulation of backscattering from a dielectric cylinder of triangular cross-section using the interplay of GO-like ray effects and resonances," IEEE Trans. Antennas and Propagation, vol. 63, no 5, pp. 2162-2169, 2015.
6. Диэлектрические открытые резонаторы – задачи на собственные частоты
  • 6.1. S.V. Boriskina, T.M. Benson, P. Sewell, A.I. Nosich, "Effect of a layered environment on the complex natural frequencies of 2D WG-mode dielectric-ring resonators", IEEE/OSA J. Lightwave Technology, vol. 20, no 8, pp. 1563-1572, 2002.
  • 6.2. S.V. Boriskina, T.M. Benson, P. Sewell, A.I. Nosich, "Highly efficient design of spectrally engineered whispering-gallery-mode microlaser resonators", Optical and Quantum Electronics, vol. 35, no 4, pp. 545-559, 2003.
  • 6.3. S.V. Boriskina, T.M. Benson, P. Sewell, A.I. Nosich, "Spectral shift and Q-change of circular and square-shaped optical microcavity modes due to periodic sidewall surface roughness", J. Optical Society of America B, vol. 21, no 10, pp. 1792-1796, 2004.
  • 6.4. S.V. Boriskina, T.M. Benson, P. Sewell, A.I. Nosich, "Optical modes in imperfect square and triangular microcavities," IEEE J. Quantum Electronics, vol. 41, no 6, pp. 857-864, 2005.
  • 6.5. T.M. Benson, S.V. Boriskina, P. Sewell, A. Vukovic, S. Greedy, A.I. Nosich, "Micro-optical resonators for microlasers and integrated optoelectronics," in S. Janz, J. Ctyroky and S. Tanev (Eds.), Frontiers of Planar Lightwave Circuit Technology: Design, Simulation and Fabrication, Berlin, Springer Publ., pp. 40-70, 2005.
  • 6.6. S.V. Boriskina, T.M. Benson, P. Sewell, A.I. Nosich, "Q factor and emission pattern control of the WG modes in notched microdisk resonators," IEEE J. Selected Topics in Quantum Electronics, vol. 12, no 1, pp. 52-58, 2006. Special Issue on Microresonators
  • 6.7. S.V. Boriskina, T.M. Benson, P. Sewell, A.I. Nosich, "Directional emission, increased free spectral range, and mode Q-factors of 2-D wavelength-scale optical microcavity structures", IEEE J. Selected Topics in Quantum Electronics, vol. 12, no 6, pp. 1175-1182, 2006. Special Issue on Nanophotonics
  • 6.8. V.S. Bulygin, Y.V. Gandel, A. Vukovic, T.M. Benson, P. Sewell, A.I. Nosich, "Nystrom method for the Muller boundary integral equations on a dielectric body of revolution: axially symmetric problem", IET Microwaves, Antennas and Propagation,, vol. 9, no 5, 2015, will be published.
7. Открытые волноводы - рассеяние и поглощение
  • 7.1. A.I. Nosich, V.P. Shestopalov, "Excitation of a partially shielded dielectric rod by lumped sources," Soviet Physics - Technical Physics, vol. 28, no 12, pp. 1421-1426, 1983.
  • 7.2. A.I. Nosich, V.P. Shestopalov, "Self-consistent solution of the problem of diffraction by a discontinuity in an open waveguide", Soviet Physics Doklady, vol. 30, no 9, pp. 773-775, 1985.
  • 7.3. A.I. Nosich, "Scattering of the surface wave of an open impedance waveguide by an unclosed cylindrical screen," Soviet Physics - Technical Physics, vol. 31, no 8, pp. 883-889, 1986.
  • 7.4. A.I. Nosich, "Radiation conditions for open waveguides," Soviet Physics Doklady , vol. 32, no 9, pp. 720-722, 1987.
  • 7.5. A.I. Nosich, V.P. Shestopalov, "Radiation conditions and uniqueness theorems for open waveguides", Soviet J. Communications Technology and Electronics , vol. 34, no 2, pp. 107-115, 1989.
  • 7.6. A.S. Andrenko, A.I. Nosich, "Scattering of dielectric slab modes from resonant inhomogeneities," Doklady Akademii Nauk Ukrainskoi SSR, ser. A, no 4, pp. 51-55, 1989 (in Russian).
  • 7.7. A.S. Andrenko, A.I. Nosich, V.P. Shestopalov, "Reciprocity theorem in problems concerning the scattering of waves by irregularities in open planar waveguides," Soviet Physics Doklady, vol. 35, no 4, pp. 366-368, 1990.
  • 7.8. A.S. Andrenko, V.V. Kryzhanovsky, A.I. Nosich, V.P. Shestopalov, "Rejection filter," USSR Patent, 1990, no 1569981.
  • 7.9. A.S. Andrenko, A.I. Nosich, "H-scattering of thin-film modes from periodic gratings of finite extent," Microwave and Optical Technology Lett., vol. 5, no 7, pp. 333-337, 1992.
  • 7.10. A.I. Nosich, A.S. Andrenko, "Scattering and mode conversion by a screen-like inhomogeneity inside a dielectric-slab waveguide," IEEE Trans. Microwave Theory and Techniques, vol. MTT-42, no 2, pp. 298-307, 1994.
  • 7.11. A.I. Nosich, "Radiation conditions, limiting absorption principle, and general relations in open waveguide scattering," J. Electromagn. Waves and Applications, vol. 8, no 3, pp. 329-353, 1994.
  • 7.12. S.V. Boriskina, A.I. Nosich, "Numerical simulation of surface-wave band-stop filters," Microwave and Optical Technology Lett., vol. 13, no 3, pp. 169-173, 1996.
  • 7.13. S.V. Boriskina, A.I. Nosich, "CAD-oriented numerical analysis of the surface wave bandstop filters based on a whispering-gallery-mode dielectric resonator and a slotted metallic cavity resonator", Radio Physics and Radio Astronomy, Kharkiv, IRA NASU Press, vol. 2, no 3, pp. 333-341, 1997. Re-published in Telecommunications and Radio Engineering, Begell House Publ., vol. 51, no 2-3, pp. 103-111, 1997.
  • 7.14. S.V. Boriskina, A.I. Nosich, "Radiation and absorption losses of the whispering-gallery-mode dielectric resonator excited by a dielectric waveguide," IEEE Trans. Microwave Theory and Techniques, vol. MTT-47, no 2, pp. 224-231, 1999.
  • 7.15. S.V. Boriskina, T.M. Benson, P. Sewell, A.I. Nosich, "Tuning of elliptic whispering-gallery-mode microdisk waveguide filters", IEEE/OSA J. Lightwave Technology, vol. 21, no 9, pp. 1987-1995, 2003.
8. Открытые волноводы – задачи на собственные волны
  • 8.1. E.I. Veliev, A.I. Nosich, V.P. Shestopalov, "On the theory of the slot mode", Doklady Akademii Nauk Ukrainskoi SSR, ser. A, no 10, pp. 928-931, 1976 (in Russian).
  • 8.2. E.I. Veliev, A.I. Nosich, V.P. Shestopalov, "Propagation of electromagnetic waves in a cylindrical waveguide with a longitudinal slit", Radio Engn. Electronic Physics, vol. 22, pp. 29-35, 1977.
  • 8.3. A.I. Nosich, V.P. Shestopalov, "A slotted circular microwave guide", Soviet Physics Doklady, vol. 23, no 7, pp. 505-506, 1978.
  • 8.4. A.I. Nosich, V.P. Shestopalov, "Slot line", USSR Patent, 1979, no 698085.
  • 8.5. A.I. Nosich, V.P. Shestopalov, "Waveguiding properties of open metallized dielectric transmission lines of the cylindrical type", Radio Engn. Electronic Physics, vol. 24, pp. 1-9, 1979.
  • 8.6. A.I. Nosich, V.P. Shestopalov, "Ohmic losses in transmission lines with thin conductors," Soviet Physics Doklady, vol. 25, no 2, pp. 127-128, 1980.
  • 8.7. A.I. Nosich, V.P. Shestopalov, "Characteristic impedance and energy losses in a cylindrical slotted transmission line", Radio Engn. and Electronic Physics, vol. 28, no 4, pp. 51-56, 1983.
  • 8.8. S.D. Andrenko, V.V. Kryzhanovsky, A.I. Nosich, V.P. Shestopalov, "Experimental investigation of the propagation of electromagnetic waves in a cylindrical slotted line," Radio Engn. and Electronic Physics, vol. 28, no 5, pp. 60-65, 1983.
  • 8.9. G.I. Komar, A.I. Nosich, V.P. Shestopalov, "Waveguiding properties of slotted image transmission lines," Soviet J. Communication Technology and Electronics , vol. 30, no 2, pp. (211-217), 1985.
  • 8.10. A.I. Nosich, A.Y. Poedinchuk, V.P. Shestopalov, "Discrete spectrum of the characteristic waves in open partially screened dielectric core," Soviet Physics Doklady, vol. 30, no 8, pp. 669-671, 1985.
  • 8.11. A.I. Nosich, A.Y. Svezhentsev, V.P. Shestopalov, "Spectrum of quasi-TEM waves in a partially screened dielectric core", Soviet Physics Doklady, vol. 31, no 7, pp. 559-561, 1986.
  • 8.12. V.V. Kryzhanovsky, A.I. Nosich, A.Y. Svezhentsev, V.P. Shestopalov, "Theoretical and experimental investigation of cylindrical microstrip line modes", Doklady Akademii Nauk Ukrainskoi SSR, ser. A, no 10, pp. 43-46, 1986 (in Russian).
  • 8.13. A.I. Nosich, A.Y. Poedinchuk, V.P. Shestopalov, "Existence of discrete spectrum and singular types of waves in an open waveguide", Soviet Physics Doklady , vol. 32, no 3, pp. 216-218, 1987.
  • 8.14. V.V. Kryzhanovsky, A.I. Nosich, A.Y. Svezhentsev, V.P. Shestopalov, "Microstrip transmission line", USSR Patent, 1988, no 1453481
  • 8.15. A.I. Nosich, A.Y. Svezhentsev, V.P. Shestopalov, "Electrodynamic analysis of the discrete spectrum of characteristic modes of a partially screened dielectric rod", Soviet J. Communication Technology and Electronics , vol. 33, no 3, pp. 18-26, 1988.
  • 8.16. A.I. Nosich, A.Y. Svezhentsev, V.P. Shestoplalov, "Attenuation of the slot and quasi-H11 modes in a cylindrical slot line", Doklady Akademii Nauk Ukrainskoi SSR, ser. A, no 3, pp. 45-49, 1988 (in Russian).
  • 8.17. A.I. Nosich, A.Y. Svezhentsev, "Spectral theory of principal and higher order modes in open circular cylindrical slot and strip lines", Proc. URSI-B Int. Symp. Electromagnetic Theory, Stockholm, 1989, pp. 536-538.
  • 8.18. A.I. Nosich, A.Y. Svezhentsev, "On the effect of cross-sectional compactness on modes behaviour in microstrip and slot lines", Proc. Asia-Pacific Microwave Conf. (APMC-90), Tokyo, 1990, pp. 1015-1018.
  • 8.19. A.I. Nosich, A.Y. Svezhentsev, "Physical features of wave propagation in cylindrical slot and strip lines", Soviet J. Communications Technology and Electronics , vol. 35, no 1, pp. 51-59, 1990.
  • 8.20. A.I. Nosich, A.Y. Svezhentsev, "Accurate computation of mode characteristics for open-layered circular cylindrical microstrip and slot lines," Microwave and Optical Technology Lett., vol. 4, no 7, pp. 274-277, 1991.
  • 8.21. A.I. Nosich, A.Y. Svezhentsev, "Principal and higher order modes of microstrip and slot lines on a cylindrical substrate," Electromagnetics, vol. 13, no 1, pp. 85-94, 1993.
  • 8.22. L. Richard, A.I. Nosich, J.-P. Daniel, "Revisiting the waves on a coated cylinder by using surface-impedance model", IEEE Trans. Antennas and Propagation, vol. AP-47, no 8, pp. 1374-1375, 1999.
  • 8.23. A.I. Nosich, "Foundations of the theory of open waveguides", J. Telecommunications and Information Technology, Warsaw: NIT Press, no 1-2, pp.42-45, 2000.
  • 8.24. Y.M. Kartchevskii, A.I. Nosich, S.I. Solovyov, "Eigenmodes of dielectric waveguides with non-sharp boundaries," Trudy Matematicheskogo Tsentra (Proc. of the Mathematics Center), Kazan: Kazan State University Press, vol. 6, pp.79-114, 2000 (in Russian).
  • 8.25. S.V. Boriskina, T.M. Benson, P. Sewell, A.I. Nosich, "Highly efficient full-vectorial integral equation solution for the bound, leaky, and complex modes of dielectric waveguides", IEEE J. on Selected Topics in Quantum Electronics, vol. 8, no 6, pp. 1225-1232, 2002.
  • 8.26. Y.M. Kartchevskii, A.I. Nosich, G.W. Hanson, "Mathematical analysis of the generalized natural modes of an inhomogeneous optical fiber," SIAM J. Applied Mathematics, vol. 65, no 6, pp. 2033-2048, 2005.
9. Решетки - рассеяние и поглощение
  • 9.1. E.I. Veliev, A.I. Nosich, V.P. Shestopalov, "Radiation of an electron flux moving over a grating consisting of cylinders with longitudinal slots", Radiophysics and Quantum Electronics , vol. 20, no 3, pp. 306-313, 1977.
  • 9.2. T.L. Zinenko, A.I. Nosich, Y. Okuno, "Plane wave scattering and absorption by resistive-strip and dielectric-strip periodic gratings," IEEE Trans. Antennas and Propagation, vol. 46, no 10, pp. 1498-1505, 1998.
  • 9.3. T.L. Zinenko, A.I. Nosich, "Plane wave scattering and absorption by flat gratings of impedance strips," IEEE Trans. Antennas and Propagation, vol. 54, no 7, pp. 2088-2095, 2006.
  • 9.4. V.O. Byelobrov, T.M. Benson, "Extraordinary high-Q resonances in the scattering by a dielectric slab containing a grating of circular cylinders," Int. J. Semiconductor Physics, Quantum Electronics, and Optoelectronics, Kiev, ISP NASU Press, vol. 17, no 1, pp. 100-105, 2014.
  • 9.5. V.O. Byelobrov, T.L. Zinenko, K. Kobayashi, A.I. Nosich, "Periodicity matters: grating or lattice resonances in the scattering by sparse arrays of sub-wavelength strips and wires," IEEE Antennas and Propagation Magazine, vol. 57, no 4, 2015, will be published.
10. Идеально проводящие и резистивные экраны и резонаторы - рассеяние и поглощение
  • 10.1. A.I. Nosich, V.P. Shestopalov, "An electromagnetic analog of a Helmholtz resonator", Soviet Physics Doklady, vol. 22, no 4, pp. 251-253, 1977.
  • 10.2. A.I. Nosich, "On the effect of resonances on the scattering characteristics of a nonclosed cylinder," Radiotekhnika i Elektronika, vol. 23, no 8, pp. 1733-1737, 1978 (in Russian).
  • 10.3. A.I. Nosich, V.P. Shestopalov, "Resonant ponderomotive effects in the scattering and emission of electromagnetic waves," Soviet Physics Doklady, vol. 24, no 9, pp. 730-732, 1979.
  • 10.4. A.I. Nosich, "Diffraction radiation which accompanies the motion of charged particles near an open resonator," Radiophysics and Quantum Electronics, vol. 24, no 8, pp. 1014-1021, 1981.
  • 10.5. E.I. Veliev, V.V. Veremey, A.I. Nosich, V.P. Shestopalov, "Trapping effect for an open screen illuminated by a fixed source," Radiophysics and Quantum Electronics, vol. 25, no 4, pp. 298-305, 1982.
  • 10.6. E.I. Veliev, V.V. Veremey, A.I. Nosich, V.P. Shestopalov, "Radar target," USSR Patent, 1985, no 1358022.
  • 10.7. N.V. Veremey, A.I. Nosich, "Electrodymanic modelling of open resonators with diffraction gratings," Radiophysics and Quantum Electronics, vol. 32, no 2, pp. 166-172, 1989.
  • 10.8. N.V. Veremey, A.I. Nosich, V.V. Veremey, "TE excitation of an unclosed circular cylinder at the planar penetrable interface," Electromagnetics, vol. 13, no 2, pp. 169-186, 1993.
  • 10.9. D. Colak, A.I. Nosich, A. Altintas, "Radar cross section study of cylindrical cavity-backed apertures with outer or inner material coating: the case of E-polarization," IEEE Trans. Antennas and Propagation, vol. 41, no 11, pp. 1551-1559, 1993.
  • 10.10. A.I. Nosich, "On the theory of the two-dimensional Helmholtz resonator with a circular impedance surface," Acoustics of Non-Homogeneous Media, Novosibirsk: IHD Press, no 109, pp. 127-132, 1994 (in Russian).
  • 10.11. D. Colak, A.I. Nosich, A. Altintas, "Radar cross section study of cylindrical cavity-backed apertures with inner or outer material coating: the case of H-polarization," IEEE Trans. Antennas and Propagation, vol. 43, no 5, pp. 440-447, 1995.
  • 10.12. K. Kobayashi, A.I. Nosich, "Radar cross section analysis of 2-D, canonical material-loaded cavity-backed apertures of rectangular and circular cross-section," Annales des Telecommunications, vol. 50, no 5-6, pp. 517-522, 1995. [pdf] Special Issue on Radar Cross Section of Complex Objects
  • 10.13. A.I. Nosich, Y. Okuno, T. Shiraishi, "Scattering and absorption of E and H-polarized plane waves by a circularly curved resistive strip," Radio Science, vol. 31, no 6, pp. 1733-1742, 1996.
  • 10.14. S. Koshikawa, D. Colak, A. Altintas, K. Kobayashi, A.I. Nosich, "A comparative study of RCS predictions of canonical rectangular and circular cavities with double-layer material loading," IEICE Trans. Electronics - Japan, vol. E80-C, no 11, pp. 1457-1466, 1997. [pdf] Special Issue on Electromagnetic Theory
  • 10.15. A.E. Serebryannikov, A.I. Nosich, "TE-case RCS analysis of finite-thickness slotted circular cylinder loaded with lossy filling," IEEE Trans. Antennas and Propagation, vol. 53, no 4, pp. 1426-1434, 2005.
  • 10.16. A.E. Serebryannikov, A.I. Nosich, "TE-wave penetration into finite-thickness slotted circular cylinder with lossy and lossless inner coatings," IEEE Trans. Electromagnetic Compatibility, vol. 47, no 4, pp. 709-716, 2005.
  • 10.17. M.V. Balaban, "Mathematical model of electromagnetic wave diffraction by a resistive disk," Radio Physics and Electronics, Kharkiv, IRE NASU Press, vol. 10, no 1, pp. 45-50, 2005 (in Russian). Translated to English in Telecommunications and Radio Engineering, Begell House Publ., vol. 65, no 11, pp. 967-976, 2006.
  • 10.18. M.V. Balaban, A.I. Nosich, "Radiation of complex electric and magnetic dipoles in the presence of a perfectly conducting disk," Radio Physics and Electronics, Kharkiv, IRE NASU Press, vol. 15, no 3, pp. 4-10, 2010 (in Russian). Translated to English in Telecommunications and Radio Engineering, Begell House Publ., vol. 72, no 10, pp. 841-852, 2013.
11. Идеально проводящие и резистивные рефлекторные антенны - рассеяние и поглощение
  • 11.1. T. Oguzer, A. Altintas, A.I. Nosich, "Accurate simulation of reflector antennas by complex source - dual series approach", IEEE Trans. Antennas and Propagation, vol. 43, no 8, pp. 793-801, 1995.
  • 11.2. A.I. Nosich, V.B. Yurchenko, A. Altintas, "Numerically exact analysis of 2-D variable-resistivity reflector fed by a complex-point source", IEEE Trans. Antennas and Propagation, vol. 45, no 11, pp. 1592-1601, 1997.
  • 11.3. S.V. Boriskina, "Numerical analysis of radiation properties of a reflector antenna near Earth's surface", Kharkov State University Herald, 1998, no 405, pp. 71-74 (in Russian). Translated to English in Telecommunications and Radio Engineering, Begell House Publ., vol. 53, no 7-8, pp. 39-42, 1999.
  • 11.4. V.B. Yurchenko, A. Altintas, A.I. Nosich, "Numerical optimization of a cylindrical reflector-in-radome antenna system", IEEE Trans. Antennas and Propagation, vol. 47, no 4, pp. 668-673, 1999.
  • 11.5. S.V. Boriskina, A.I. Nosich, A. Altintas, "Effect of the imperfect flat earth on the vertically-polarized radiation of a cylindrical reflector antenna", IEEE Trans. Antennas and Propagation, vol. 48, no 2, pp. 285-292, 2000. 11.6. S.S. Vinogradov, E.D. Vinogradova, A.I. Nosich, A. Altintas, "Analytical regularization based analysis of a spherical reflector symmetrically illuminated by an acoustic beam", J. Acoustical Society America, vol. 107, no 6, pp. 2999-3005, 2000.
  • 11.7. T. Oguzer, A.I. Nosich, A. Altintas, "E-polarized beam scattering by an open cylindrical PEC strip having arbitrary "conical-section" profile", Microwave and Optical Technology Lett., vol. 31, no 6, pp. 480-484, 2001.
  • 11.8. T. Oguzer, A.I. Nosich, A. Altintas, "Analysis of arbitrary conic section profile cylindrical reflector antenna, H-polarization case", IEEE Trans. Antennas and Propagation, vol. 52, no. 11, pp. 3156-3162, 2004.
  • 11.9. T. Oguzer, A. Altintas, A.I. Nosich, "Integral equation analysis of an arbitrary-profile and variable-resistivity cylindrical reflector illuminated by an E-polarized complex-source-point beam," J. Optical Society of America A, vol. 26, no 7, pp. 1525-1533, 2009.
  • 11.10. T. Oguzer, A. Altintas, A.I. Nosich, "Analysis of the elliptic profile cylindrical reflector with a non-uniform resistivity using the complex source and dual series approach: H-polarization case," Optical and Quantum Electronics, vol. 45, no 8, pp. 797-812, 2013.
  • 11.11. V.S. Bulygin, T.M. Benson, Y.V. Gandel, A.I. Nosich, "Full-wave analysis and optimization of a TARA-like shield-assisted paraboloidal reflector antenna using a Nystrom-type method," IEEE Trans. Antennas and Propagation, vol. 61, no 10, pp. 4981-4989, 2013.
12.  Идеально проводящие и резистивные печатные и конформные антенны - рассеяние и поглощение
  • 12.1 N.Y. Bliznyuk, A.I. Nosich, "Basic properties of the fields excited by VED and HMD located in a dielectric substrate backed by a perfectly conducting ground plane", Microwave and Optical Technology Lett., vol. 15, no 5, pp. 316-320, 1997.
  • 12.2 L. Richard, A.I. Nosich, J.-P. Daniel, "Dielectric coating influence on the radiation of a narrow slot on a metallic cylinder", Automatika, Zagreb, vol. 39, no 1-2, pp. 17-21, 1998.
  • 12.3 N.Y. Bliznyuk, "Numerical simulation of a microstrip disk antenna with axially-symmetric excitation", Radio Physics and Radio Astronomy, Kharkiv, IRA NASU Press, vol. 3, no 1, pp. 92-98, 1998 (in Russian). Translated to English in Telecommunications and Radio Engineering, Begell House Publ., vol. 51, no 9, pp. 6-14, 1997.
  • 12.4 N.Y. Bliznyuk, A.I. Nosich, "Numerical analysis of a lossy circular microstrip antenna", Radio Physics and Electronics, Kharkiv, IRE NASU Press, vol. 4, no 3, pp. 125-128, 1999. Translated to English in Telecommunications and Radio Engineering, Begell House Publ., vol. 55, no 8, pp. 15-23, 2001.
  • 12.5 N.Y. Bliznyuk, A.I. Nosich, A.N. Khizhnyak, "Accurate computation of a circular-disk printed antenna axysimmetrically excited by an electric dipole", Microwave and Optical Technology Lett., vol. 25, no 3, pp. 211-216, 2000.
  • 12.6 V.V. Radchenko, A.I. Nosich, J.-P. Daniel, S.S. Vinogradov, "A conformal spherical-circular microstrip antenna: axisymmetric excitation by an electric dipole", Microwave and Optical Technology Lett., vol. 26, no 3, pp. 176-182, 2000.
  • 12.7 V.V. Radchenko, A.I. Nosich, J.-P. Daniel, S.S. Vinogradov, "Radiation of a dipole antenna on the surface of a partially screened layered sphere, axially symmetric case", Radio Physics and Electronics, Kharkiv, IRE NASU Press, vol. 5, no 1, pp. 42-48, 2000 (in Russian). Translated to English in Telecommunications and Radio Engineering, Begell House Publ., vol. 55, no 4, pp. 40-49, 2001.
  • 12.8 N.Y. Bliznyuk, A.I. Nosich, "Numerical analysis of a dielectric disk antenna", Radio Physics and Electronics, Kharkiv, IRE NASU Press, vol. 5, no 1, pp. 49-54, 2000 (in Russian). Translated to English in Telecommunications and Radio Engineering, Begell House Publ., vol. 61, no 4, pp. 273-284, 2004.
  • 12.9 V.V. Radchenko, "Radiation from a spherical-circular microstrip patch antenna excited by a slot", Radio Physics and Electronics, Kharkiv, IRE NASU Press, vol. 7, pp. 259-264, 2002 (in Russian). Translated to English in Telecommunications and Radio Engineering, Begell House Publ., vol. 59, no 7-9, pp. 42-56, 2003.
  • 12.10 S. Rondineau, A.I. Nosich, S.S. Vinogradov, J.-P. Daniel, M. Himdi, "MAR-based analysis of a spherical-circular printed antenna with a finite ground excited by an axially-symmetric probe", IEEE Trans. Antennas and Propagation, vol. 52, no 5, pp. 1270-1280, 2004.
  • 12.11 V.V. Radchenko, R. Sauleau, A.I. Nosich, "Radiation and absorption of waves emitted by a radial dipole in the presence a layered dielectric sphere with a spherical screen," IET Microwaves, Antennas and Propagation, vol. 6, no 9, pp. 1063-1069, 2012.
13.  История микроволн
  • 13.1 A.A. Kostenko, A.I. Nosich, I.A. Tishchenko, "Development of the first Soviet 3-coordinate L-band pulsed radar in Kharkov before WWII," IEEE Antennas and Propagation Magazine, vol. 44, no. 3, pp. 28-49, 2001.
  • 13.2 A.I. Nosich, Y.M. Poplavko, D.M. Vavriv, F.J. Yanovsky, "Microwaves in Ukraine," IEEE Microwave Magazine, vol. 2, no. 4, pp. 82-90, 2002.
  • 13.3 I.A. Tishchenko, A.I. Nosich, "Early quasi-optics of mm and sub-mm waves in IRE-Kharkov, Ukraine: from ideas to the Microwave Pioneer Award," IEEE Microwave Magazine, vol. 3, no. 4, pp. 32-44, 2003.
  • 13.4 A.A. Kostenko, A.I. Nosich, I.A. Tishchenko, "Magnetron and radar drama in Kharkov, Ukraine in the 1920-1930s," in H. Rohling (Ed.), 101 Years of Radar, Bonn: German Institute of Navigation, pp. 123-132, 2005.
  • 13.5 A.A. Kostenko, A.I. Nosich, P.F. Goldsmith, "Historical background and development of Soviet quasioptics at near-millimeter and sub-millimeter wavelengths," Ch. 15 in T. Sarkar (Ed.), History of Wireless, New York: Wiley, pp. 473-542, 2006.
  • 13.6 A.I. Nosich, A.A. Kostenko, "In the labor people's name: development of 60-kW magnetrons in the artificial famine plagued Ukraine in the early 1930s," Proc. Int. Conf. Origins and Evolution of the Cavity Magnetron (CAVMAG-2010), Bournemouth, 2010, pp. 82-88.

Нагороди

Співпраця

Міжнародне співробітництво 2005-2015 Лабораторія приймала участь в таких державних наукових програмах та конкурсах:

  • 2014-2016, співробітництво НАНУ з Академією Наук Чеської республіки, проект «Оптичні резонанси багатоелементних плазмонних структур для наносенсорів: електродинамічне моделювання та експерименти», кер. О.Й. Носич
  • 2011-2012, програма «Дніпро», Держкомнаука, співробітництво з Францією, проект «Мікролазери з органічних матеріалів: експерименти та моделювання», кер. О.І. Смотрова
  • 2010-2014, Державна цільова програма «Нанотехнології й наноматеріали», проект «Фундаментальне математичне й чисельне дослідження оптичних електромагнітних полів поодиноких та зв’язаних мікрорезонаторних лазерів з нанорозмірними активними шарами, нитками й стрічками», кер. О.Й. Носич
  • 2008-2010, співробітництво України з НАТО, Держкомнаука (МОН в 2010), проект «Чисельне моделювання квазіоптичних фокусуючих систем», кер. О.Й. Носич
  • 2008-2010, співробітництво НАНУ з TUBITAK, Турція, проект «Інноваційне електродинамічне моделювання багатоелементних квазіоптичних систем», кер. О.Й. Носич
  • 2007-2010, співробітництво НАНУ з Академією Наук Чеської республіки, проект «Електродинамічне і чисельне моделювання активних та нелінійних мікрорезонаторів для напівпровідникових лазерів та оптичних перемикачів», кер. О.Й. Носич
  • 2007-2009, програма фундаментальних досліджень НАНУ «Наноструктурні системи, наноматеріали, нанотехнології», проект «Мікро та нано-вимірне електродинамічне моделювання оптичних полів в резонаторах з активними зонами у вигляді квантових шарів, ниток й точок», кер. О.Й. Носич
  • 2006, співробітництво НАНУ з CNRS, Франція, проект «Аналіз й оптимизація лінзових антен для систем електромагнітних хвиль міліметрового та терагерцевого діапазонів», кер О.Й. Носич
  • 2005-2006, програма «Дніпро», Відділ науки МОН, співробітництво з Францією, проект «Інноваційні лінзові антени для систем електромагнітних хвиль міліметрового та терагерцевого діапазонов», кер. О.Й. Носич
  • 2005-2006, співробітництво НАНУ з TUBITAK, Турція, проект «Обробка світла за допомогою мікро й нановимірних дзеркал та лінз для нових застосувань в оптоелектроніці», кер. О.Й. Носич
Наші дослідження було підтримано багаточисельними грантами міжнародних фондів та організацій:
  • 2012-2014, Досліджувальна мережа "Plasmon-Bionanosense" Європейського наукового фонду, «Нові підходи щодо розробки біохімічних сенсорів на основі плазмонних ефектів в біонанофотоніці», 5 робочих візитів від 2 тижнів до 4 місяців, О.Й. Носич, В.О. Бєлобров, Д.М. Натаров, Н.К. Сахненко, О.В. Шаповал. Країни-партнери - Великобританія, Чеська республіка, Німеччина, Іспанія, Франція
  • 2011-2012, Європейська рамкова програма FP-7, проект «Спін-термо-електроніка», Швеція, кер. О.Й. Носич
  • 2010-2013, Досліджувальна мережа "Newfocus" Європейського наукового фонду, «Нові горизонти розвитку інтегровних фокусуючих систем мм і суб-мм діапазонів хвиль», 12 робочих візитів від 2 тижнів до 6 місяців, О.Й. Носич, В.О. Бєлобров, М.В. Балабан, В.М. Булигін, Д.М. Натаров, Н.К. Сахненко, О.І. Смотрова, О.В. Шаповал Країни-партнери - Англія, Франція, Швейцарія, Німеччина, Італія
  • 2010-2011, Програма реінтеграції, Відділ науки НАТО, «Поглиблене чисельне моделювання квазіоптичних фокусуючих систем», кер. О.Й. Носич
  • 2009-2010, Регіон Бретань, Франція, проект «Міжнародна досліджувальна кафедра: Нові границі електродинаміки – Передові чисельні інструменти на основі рівнянь Максвелла для точного аналізу та швидкого синтезу діелектричних розсіювачів та резонаторів для нових застосувань в електродинаміці та фотоніці», кер. О.Й. Носич
  • 2008-2009, Досліджувальна мережа, Міністерство європейських та іноземних, Франція, проект «Електродинамічне моделювання і проектування діелектричних резонаторів й лінз для нових застосувань в фотоніці і терагерцах», кер. О.Й. Носич
  • 2007-2009, Учбово-досліджувальна мережа, Міністерство науки та освіти, Франція, проект «Поглиблене чисельне моделювання та проектування діелектричних лінзових антен», кер. О.Й. Носич
  • 2007-2009, Програма міжнародних проектів, Королівське товариство, Великобританія, проект «Поглиблене моделювання поодиноких та періодичних активних діелектричних резонаторів для мікролазерів», кер. О.Й. Носич
  • 2007-2009, Програма міжнародних проектів, CNRS, Франція, проект «Проектування та оптимізація мініатюрних інтегровних фокусуючих пристроїв для надширокополосних систем зв’язку»,  рук. О.Й. Носич
  • 2005-2006, Рада з інженерних та фізичних наук (EPSRC), Великобританія, проект «Розвиток математичних й чисельних методів електродинаміки для застосувань в оптоелектроніці», кер. О.Й. Носич
  • 2005-2006, Програма міжнародних проектів, Королівське товариство, Великобританія, проект «Моделювання мікро та нановимірних резонаторів й лінз для оптичних схем високої щільності», кер. О.Й. Носич
До міжнародних контрактів, що було виконано в лабораторії, можна віднести наступні:
  • 2014, Університет м. Вьокше, Швецмя, курс лекцій «Методи інтегральних рівнянь та дискретизація Найстрьома в електродинаміці антен та лазерів», О.Й. Носич
  • 2014, Школа по біофотоніці й оптиці, Байонна, Франція, курс лекцій «Вступ до нано-електродинаміки для оптичних антен, резонаторів та лазерів», О.Й. Носич
  • 2012, Університети Чуо та Ніхон, м. Токіо, Японія, курс лекцій «Моделювання антен та відкритих резонаторів методами інтегральних рівнянь», О.Й. Носич
  • 2009, Університет м. Сієна, Італія, курс лекцій «Методи інтегральних рівнняь в електродинаміці з застосуваннями для антен, резонаторів та лазерів», О.Й. Носич
  • 2007, Датський технічний університет, Данія, курс лекцій «Поглиблений курс з електродинаміки з застосуваннями в оптоелектроніці та мікрохвилях», О.Й. Носич

Підготовка кадрів

За час існування лабораторії були захищені 1 докторська дисертація (Н.К. Сахненко, 2012), 4 кандидатських дисертацій (О.І. Смотрова, 2010; В.С. Булигін, 2010; М.В. Балабан, 2012 і О. В. Шаповал, 2014). На даний момент в лабораторії працюють 2 здобувача (В.О. Бєлобров і Д.М. Натаров)

Співробітники

П.І.П Посада Наук. ступ., наук. зван. e-mail Телефон, робочий Місце роботи, кімната
Носич Олександр Йосипович г.н.с., в.о. зав. лаб. д. ф.-м.н., проф. anosich@yahoo.com 720-3782 корп. 4, к. № 35
Балабан Михайло Васильович с.н.с. к. ф.-м. н. mikhail.balaban@gmail.com 720-3782 корп. 6-А, к. № 20
Шаповал Ольга Володимирівна н.с. к. ф.-м. н. olga.v.shapoval@gmail.com 720-3382 корп. 4, к. № 35
Стогній Надія Петрівна н.с. к. ф.-м. н. nstognii@gmail.com 720-3782 корп. 4, к. № 35
Бєлобров Володимир Олександрович м.н.с. - volodia.byelobrov@gmail.com 720-3325 корп. 4, к. № 64
Натаров Денис Михайлович м.н.с. - den.natarov@hotmail.com 720-3338 корп. 4, к. № 64
Смотрова Олена Іванівна с.н.с. к. ф.-м. н. співробітник лабораторії  в 2010-2013
Сахненко Наталя Костянтинівна с.н.с. д. ф.-м. н. співробітник лабораторії в 2010-2015
Булигін Віталій Сергійович с.н.с. к. ф.-м. н. співробітник лабораторії в 2010-2015