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Abstract—The plane wave scattering and absorption by finite
and infinite gratings of free-space standing infinitely long graphene
strips are studied in the THz range. A novel numerical approach,
based on graphene surface impedance, hyper-singular integral
equations, and the Nystrom method, is proposed. This technique
guarantees fast convergence and controlled accuracy of compu-
tations. Reflectance, transmittance, and absorbance are carefully
studied as a function of graphene and grating parameters, re-
vealing the presence of surface plasmon resonances. Specifically,
larger graphene relaxation times increases the number of reso-
nances in the THz range, leading to higher wave transmittance due
to the reduced losses; on the other hand an increase of graphene
chemical potential up-shifts the frequency of plasmon resonances.
It is also shown that a relatively low number of graphene strips
(>10) are able to reproduce Rayleigh anomalies. These features
make graphene strips good candidates for many applications,
including tunable absorbers and frequency selective surfaces.

Index Terms—Graphene strips, Nystrom-type algorithm,
singular and hyper-singular integral equations (IEs), surface
plasmon resonances.

I. INTRODUCTION

RAPHENE monolayers are electrically infinitesimal thin

layers (single-atom) and display a rather good electron
conductivity o that mainly depends on frequency, temperature,
electron relaxation time and chemical doping [1]-[10]. In ad-
dition, one of the most promising features of graphene as com-
pared with metals is the opportunity to modify its conductivity
by applying an external electrostatic biasing field, which modify
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graphene chemical potential [1], [2]. This can be easily imple-
mented for instance by including an extremely thin polysilicon
layer below the dielectric which supports graphene, and ap-
plying a DC bias between these two layers (see [1], [2], [8]).
Graphene is very interesting in view of possibility of strong
interaction with electromagnetic waves in the THz frequency
range [3], [4]. Indeed, it is able to support delocalized surface-
plasmon waves at frequencies two orders of magnitude lower
than the noble metals [3].

Some of the THz applications of graphene include giant
Faraday rotation [5], fixed and reconfigurable periodic fre-
quency selective surfaces [10], [11], plasmonic waveguides,
switches and lenses [6], [7] or absorbers and cloaks [8], [11].
In addition, there has been much interest in patterned graphene
materials to control their interaction with electromagnetic
waves that has led to novel antennas [9], [12].

Graphene strips have already attracted attention in the THz
science community as attractive and easily manufactured
components of plasmonic waveguides, antennas [12] and
sensors. Single strip scattering has been studied in [13] and
its wave-guiding properties in [14]. Plasmon-assisted reso-
nances in the scattering and absorption by an infinite grating
of coplanar graphene strips under normal incidence have been
analyzed in [15] using the Fourier expansion method.

In this context, this paper proposes a rigorous study of the
transmittance, absorption and scattering of THz waves by
a coplanar graphene-strip grating. Compared with [15], we
present a novel convergent integral equation approach able
to efficiently analyze the problem under study. This allows
us to greatly extend the results shown in [15], including two
wave polarizations, different angles of the incoming waves, the
presence of finite or an infinite number of strips, and different
graphene parameters. In particular, we investigate the surface
plasmon resonances, which depend on each strip conductivity
and width, and the build-up of the Rayleigh anomalies at the
wavelengths A = p(1 £ cos8)/m,m = 1,2, ... caused by the
grating periodicity and depending on the angle of incidence €
and the number of strips in the grating.

The very efficient analysis of the problems is achieved via
the combined use of: 1) integral equations (IEs) obtained using
the surface-impedance (sometimes also called resistive-sheet)
boundary conditions and 2) Nystrom-type discretization that
uses interpolation polynomials and appropriate quadrature for-
mulas accounting for the kernel-function singularities and edge
behavior. As known [1], [2], [10], [16], graphene monolayer
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can be electromagnetically characterized with the aid of the fol-
lowing boundary conditions on a zero-thickness boundary:

LB+ 8] = ot [ - ).

tyg tg Er_; = E{q (1)
imposed on the limiting values of the field components tangen-
tial (#g) to the top (4) and bottom (—) sides of layer.

Note that the jump in magnetic field is the electric surface
current and the quantity Z = 1/ is called surface impedance.
Conditions (1) were widely used some time ago in the analysis
of the scattering by the gratings made of so-called resistive strips
[17]-[19], with applications to microwave absorbers.

The Nystrom methods have already been used in the mod-
eling of the wave scattering by perfectly electrically conducting
strips [20]-[22], thin strips of conventional dielectrics [23] and
finite periodic silver strip gratings in the optical band [24]. Their
main merit is numerical efficiency and guaranteed convergence
that entails easily controlled accuracy of computations. It al-
lows rapid simulation of scatterers consisting of hundreds of
micron-size graphene strips.

The paper is structured as follows. In Section II we present
the scattering problem formulation, reduce it to a set of
hyper-singular integral equations (IEs), and briefly explain the
discretization scheme. Section III shows the actual rate of the
algorithm convergence and validates the proposed approach
using data from literature and commercially available full-wave
software. Section IV presents the dependences of the scattering
and absorption of THz waves by a finite and infinite graphene
strip gratings on the frequency and geometrical parameters.
Conclusions are summarized in Section IV. A brief review
of graphene conductivity characterization and details of the
numerical treatment are presented in Appendix. We assume
that the electromagnetic field is time-harmonic ~ e~ ** and
omit this dependence.

II. FORMULATION, INTEGRAL EQUATIONS, AND
NYSTROM-TYPE ALGORITHM

A. Formulation and Boundary Conditions

Consider at first the two-dimensional (2-D) scattering and ab-
sorption of the H-polarized (vector E is across the strips) plane
wave by a finite periodic grating made of /V identical coplanar
graphene strips, in the THz frequency range.

The corresponding freestanding geometry and the problem
notations are shown in Fig. 1. The strips are assumed infinite
along the z-axis, have zero thickness, width d and period p. They
are characterized with complex-valued graphene conductivity
o(w, pe, I, T) calculated via Kubo’s formalism [16], [25] (see
Appendix), where w is the radian frequency, f.. is the chemical
potential, I' = (27)~! is the phenomenological scattering rate
that is assumed to be independent of energy (7 is the relaxation
time of charge carriers), and T’ is the temperature [1], [2], [11].

As known, in a 2-D scattering problem one has to find a scalar
function H¢(7) that is the scattered magnetic field z-compo-
nent [23]. Here, the total field function H,(7) = H¢(¥) +
ikl cosbtysing) @ (4 y) must satisfy the Helmholtz equa-

tion off the strip surface S = U, S;, where S; = {(z,0) :

Graphene o(®, p, 7, T)

Fig. 1. Free-standing finite periodic grating of /¥ infinitely long (along the
z-axis) graphene strips of the same width d and period p.

x € [aj, bj]}, and a; and b; are the j strips endpoints. The con-
ditions (1) at 7 € S take the form as

—

OH(7)
i

=-ik(oZ) t [HXP-H (D] @
where & = w/c is the free-space wavenumber (c is the space
velocity) and Zg = (po/e0)'/? is the free-space impedance.

For solution uniqueness, the formulation of the problem must
be completed with the local integrability of power (edge condi-
tion) and the radiation condition at infinity [23], [24].

B. Hyper-Singular Integral Equations

To satisfy Helmholtz equation and radiation condition, we
seek the scattered field as a sum of double-layer potentials

N
o : OG(7, 7
EGEDY / wj(qﬂ)%dw

i=1 S],

(€))

where G(7,7) = (73/4)H(g1)(k|7:' — 1) is the Green function.
Note that the unknown functions are electric currents induced
on the strips, w;(7) = H (F)— H; (7), 7€ S;,j=1,...,N.

Using condition (2) and the properties of the limit values of
the double-layer potentials, we obtain the following set of V
coupled IEs for w,(z7) where 27 € [a;, b;]

N b]
WoZy)~ Lo, TO + E w;(z
=1

where f(x}) = 4sinfe Fr0cs? 4t € Si(i = 1,...,N).
Note that these IEs are fully equivalent to the original boundary-
value problem. The integrals in (4) are understood in the sense
of finite part of Hadamard, and unknowns can be represented as
products w; (i) = 1, () — ( — VpY2[(j — )p+d— ]2,
where 1, () is smooth and non-singular at the S; endpoints.

C. Npystrom-Type Discretization

It is easy to see that the kernel functions in (4) display both
hyper-type and logarithmic singularities, if z — zg, because

HY (o — o)

|z — xo] T

In |z — zg 2

(&)

Tk|z — xo]?

In fact, it is this hyper-singularity, together with the step-like
dependence of conductivity ¢ on z in the grating plane (o = 0
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out of strips), which makes the projection of (4) on the Flo-
quet basis functions (this is Fourier-expansion method) a diver-
gent algorithm. In contrast, we discretize the IEs (4) using Nys-
trom-type method based on the Gauss-Chebyshev quadrature
formulas of interpolation type of the n-th order (with Cheby-
shev weight). As the discretization and collocations nodes, we
choose the nulls of the Chebyshev polynomials of the second
kind. This leads to /N x N block-type matrix equation with n X n
—sized blocks. After solving it numerically we obtain approxi-
mate solution of IEs in the form of /V interpolations polynomials
for the unknown surface currents. Then the field (3) is easily re-
constructed in the near and far zone of the strip grating. Our
meshless numerical algorithm is efficient and reliable and has
theoretically guaranteed convergence (at least as 1/ as follows
from the convergence of quadratures) and controlled accuracy
of computations. For more mathematical details about the Nys-
trom-type discretizations see [20]-[24].

III. NYSTROM-TYPE ALGORITHM CONVERGENCE AND
METHOD VALIDATION

A. Scattering and Absorption Characteristics

To study the features of the plane wave scattering and absorp-
tion by a finite grating of N graphene strips, the figures-of-merit
are not the reflectance, transmittance and absorbance usually
introduced in infinite-grating scattering problems, but the total
scattering cross section (TSCS) and the absorption cross-section
(ACS) [26, p. 13]. Besides, the monostatic radar cross-section
(RCS) is known to characterize the power that is reflected back
to the source [27]. As the scattered field in the far zone (r — oc)
takes the form H3° ~ (2/imkr)'/2e™*"®(y), where the radia-
tion pattern is found as

N
ksin ' ikx cos ¢
B(p) = ( 1 Lp) E /wj(a;)e W S e (6)
j:lsj

the following expressions are obtained for TSCS and RCS:
T
~ (2 B(p)* d =4|0(0)* /k
Tise = \ 1 |D(0)|" dep,  0r5c =4[1R(0)]" k. (7)
0

The ACS is obtained from the near-field integration

N
auie = Re(oZ0) Y [ fus(e) do ®)

=1,

and the optical theorem (power conservation law) states that
Gtse + Oaps = —(4/k)Re®(p + 6).

B. Algorithm Convergence

As convergence is guaranteed by the general theorems, the
accuracy can be, in principle, at the level of machine preci-
sion. For the demonstration of the actual rate of convergence,
we have computed the RMS deviations e,,(n) = |67 /62" — 1]
of the uniform norms of the surface current functions, 2, =
Zj\;l ],11 |w;(#)|?dt, versus the order of discretization poly-
nomial, n. The results are shown in Fig. 2.

[ 3
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n, discretization order

Fig. 2. Computation error ¢,,(n) as a function of the discretization order n
for a standalone graphene strip of the width ¢ = 10 and 20 gm at f = 5
and 10 THz under the normal incidence of a H-wave; graphene parameters are
7 =1ps, pt. =0.13eVand T = 300 K.
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Fig. 3. ACS versus the frequency in THz range for a normally incident H-wave
scattered by a stand-alone graphene strip of d = 5 pum calculated using pro-
posed Nystrom-type algorithm (blue curve) and numerical simulations of [13]
(red curve); graphene parameters are 7 = 0).1 ps, . = 0.0 eV, 7 = 300 K.

As visible, the proposed Nystrom method ensures algebraic
convergence of the approximate solution to the accurate one
with increasing discretization order n.

For instance, to achieve 4-digit accuracy in the near field anal-
ysis one can take n = 55 in a frequency range up to 10 THz with
a strip width of 20 pm.

C. Algorithm Validation

The ACS results obtained using the proposed Nystrom-type
algorithm provides very good agreement with the data of [13]
for a single infinitely long graphene strip of d = 5 pum sus-
pended in free space (see Fig. 3).

A comparison with the transmittance and absorbance of an
infinite graphene-strip grating computed using the Fourier—Flo-
quet expansion method of [15] has shown good qualitative
agreement, especially in the location of resonances. However,
it is known that this approach may suffer from the lack of
convergence—see discussion in Section II-C.

Besides, we have compared our results for a standalone
graphene strip with the data generated by the commercial soft-
ware HFSS. In Fig. 4, we present the graphs of the monostatic
RCS versus frequency for a strip of d = 20 ym, 7 = 1 ps and
te = 0.2 eV under normal incidence (# = =/2) calculated
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Fig. 4. RCS versus the frequency for a normally incident H-wave scattered
by a stand-alone graphene strip of d = 20 ym calculated using Nystrom-type
algorithm (blue curve) and HFSS (red curve); graphene parameters are 7 =
1ps,p. =0.2eVandT = 300 K.

with the Nystrom-type algorithm (blue curve) and HFSS (red
curve). HFSS results agree well with the proposed method for
low frequencies; however this is not so above 2.2 THz where
the mesh becomes insufficiently dense. Making it denser leads
to prohibitively large simulation times. Overall obtaining the
presented curve with HFSS requires about 9 hours of compu-
tation time, while modeling a similar problem using proposed
Nystrom-type algorithm takes only 40 s with a 10" THz step
and 102 accuracy of computations, in the wider frequency
range (that is the same as 0.4 s instead of 270 s for a fixed
frequency).

It should be noted that computing the TSCS or ACS with
HFSS would lead to completely unrealistic simulation times,
and, therefore, we provide only the RCS comparison.

IV. NUMERICAL RESULTS AND DISCUSSION

A. Stand-Alone Microsize Graphene Strip

Standalone microsize graphene strip illuminated by the H-po-
larized wave in the THz frequency range demonstrates a variety
of surface plasmon resonances.

In Fig. 5(a) and (b), we show the TSCS and ACS as a func-
tion of frequency for several strips of different widths d and
two incidence angles, # = /2 (solid curves) and § = 7 /4
(dotted curves). Here, the chemical potential is j1. = 0.13 eV,
7 = 1 ps and the room temperature (7' = 300 K) is assumed.
As can be observed, the TSCS and ACS spectra strongly depend
on the strip width. The wider strips demonstrate larger numbers
of resonances on the localized surface plasmons, shifting-down
in frequencies. Note that the absorption is more sensitive char-
acteristic as it shows the resonances (at § = x/4), which are
not visible in the scattering and are associated with even-order
surface plasmon modes.

Fig. 6(a)—(b) displays the near-field patterns of |H| at the
first four surface-plasmon resonances H,, for the scattering by
a graphene strip of d = 20 pm under the (a) normal 8 = 7 /2
and (b) inclined § = 7 /4 incidence, respectively. As mentioned,
only odd-index resonances are excited at the normal incidence
because of their y-axis symmetry, and both odd and even ones
appear under the inclined incidence.

0 = n/2(solid curves)
0 = n/4(dotted curves)

N=1
— &20pum
d=10 pm

25 50 75
Frequency, THz
(a)

10.0

B = n/2(solid curves)
B = n/4(dotted curves)

N=1
—— 4220 um
d=10 pm

25 J 7.5 10.0
Frequency, THz
(b)
Fig. 5. (a) TSCS and (b) ACS versus the frequency for the normally (solid
curves) and inclined (dotted curves) incident H-wave scattering by a stand-alone
graphene strip of varying width d; graphene parameters are 7 = 1 ps, y. =
0.13 eVand T = 300 K.

It should be noted that each H,, resonance is formed as a
Fabry—Pérot like standing wave because of the reflections of the
surface-plasmon natural wave of a graphene layer from the strip
edges. The complex-valued propagation constant of this wave
can be obtained analytically from (1)

ral=

ﬁﬂ:k[l_(!}ﬁ)z ©9)

and then the associated resonance frequencies satisfy
Ref,d ~mnr, m=12,.... (10)
We have also analyzed the spectral response of a

free-standing graphene strip for different values of chem-
ical potential 1. and relaxation time 7.

Fig. 7 shows that the magnitudes of the surface-plasmon res-
onances are quite sensitive to the relaxation time changes. The
peaks of TSCS and ACS became more pronounced if 7 in-
creases due to the smaller dissipation losses (see Appendix).
Unlike ACS, all resonances in TSCS except of H; demonstrate
asymmetric Fano shapes.

In turn, Fig. 8 shows that an increase of p. up-shifts the
resonance frequencies and decreases losses in graphene. This
is in agreement with the surface impedance of graphene (see
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Fig. 6. Near-field patterns for a standalone graphene strip under the normal
6 = #/2 (a) and inclined # = x /4 incidence (b) for the four lower resonant
frequencies.
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Fig. 7. Same study as in Fig. 5 but for a normally incident H-wave
and a strip width d = 20 pm for different values of relaxation time,
7 = 0.25, 0.5, 0.75, andlps and fixed chemical potential ., = 0.13 eV.

Appendix) and explains the behavior of TCS and ACS in Fig. 8,
where significant enhancement of the absorption coefficient is
obtained with a slight change in the chemical potential fs...

B. Resonance Prediction According to the Strip Width

In order to obtain a better insight into single-strip resonances,
Fig. 9 presents the dependences of the resonance frequencies of
the first to the fourth-order plasmon resonances versus the strip
width. For comparison, the stars show the same values obtained
by solving the approximate (10).
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Fig. 8. Same study as in Fig. 7 but for a fixed relaxation time of 7 = 1 ps and
different values of the chemical potential . = 0.0,0.13, 0.26, and 0.39¢V,
T = 300 K.
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Fig. 9. Dependence of the 1°¢, 27, 3*4 and 4** order plasmon resonance fre-
quencies versus graphene strip width; graphene parameters are ' = 300 K,
7 =1psand g, = 0.13 eV.

This result demonstrates that a wider free-standing graphene
strip presents more resonances in the considered THz range,
with the lowest of them down-shifted in frequencies.

C. Gap Size Effects in Finite Graphene Strip Gratings

In Fig. 10, we show the plots of TSCS (a) and ACS (b) for
the gratings of NV = 10 strips of widths d varying from 20 to 60
pm and fixed period p = 70 pm. As far as the airgaps g = p—d
become smaller, the interaction between the strips gets larger
and the resonances shift down in frequency.

These results show that, if the gaps between the strips are
large, the resonances keep their shapes and positions and the
scattering and absorption spectra per one strip show the same
features as for a stand-alone graphene strip (also see Fig. 5).

D. Comparison Between Finite and Infinite Gratings for H-
and E-Wave Scattering

It is interesting to compare the THz properties of infinite and
finite gratings made of graphene strips. However it is not ob-
vious how to select a common figure-of-merit. We have found
that the reflectance of a plane wave by a finite grating can be in-
troduced as the part of TSCS associated with the power scattered
into the upper half-space. The transmittance of finite grating can
be derived in similar manner, however, with account of the op-
tical theorem. In addition, we normalize these values by the strip
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Fig. 10. Same study as in Fig. 7 but for a normally incident H-wave scattered
by a grating of N = 10 strips with different values of width d and fixed period
p = 70 pum; graphene parameters are 71 ps, it = .13 eV and T" = 300 K.

electric width kd, the number of strips N and { = d/p, that
leads us to expressions

R = 2/ e Ea) [ 126" o (1)
0
27
2 4
Ton = 1+ﬁ/|‘1’(¢)l2dw+N—ngC‘b(w+9) (12)

while the absorbance can be found as Ag, = 1 — (Thiy + Rgin)
that follows from the conservation of power. These quantities
can be conveniently compared to the reflectance, transmittance
and absorbance of infinite grating.

In Fig. 11, we present such comparison for the H- and E-wave
scattering by finite (N = 10 and 50) and infinite strip gratings
with ¢ = 20 ym and p = 70 pum, at the normal incidence.
Note that the alternative case of the E-polarized wave scattering
(vector E is parallel to the strips) reduces to a set of N coupled
IEs with logarithmic singularities in the kernels. They are solved
similarly to Section II using Nystrom-type discretization with
Gauss-Legendre quadrature formulas [21], [23]. This is because
the currents tend to finite values at the edges of resistive strips
and hence no weight is needed.

In the case of infinite strip grating, we have used the same al-
gorithm as explained in Section II where Green’s function of the
free space is replaced with the pseudo-periodic Green’s function
[having the phase factor of exp(ikp cosf)]. As both functions
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Fig. 11. Reflectance (a) and absorbance (d) per one strip for the normally in-
cident plane waves of two polarizations scattered by the infinite and [\ -strip
gratings of d = 20 pm and p = 70 pm. Panels (b) and (¢) show zoomed
reflectance near the Rayleigh anomaly wavelength in H-case and E-case, re-
spectively; graphene parameters are 7 = 1 ps, i = 0.39 ¢V and 7 = 300 K.

have the same logarithmic singularity, this does not lead to new
quadrature formulas.

As one can see, the H-polarization case demonstrates
plasmon resonances in the THz range and a gradual build-up
of the Rayleigh anomalies at the associated wavelengths
A = p/m, m = 1,2. As expected, in the E-polarization case
no plasmon resonances appear, however more pronounced
Rayleigh anomalies are built and show enhanced transmission:
one where the wavelength equals to period, f = 4.283 THz
and the other where it makes a half of period, f = 8.565 THz.

As visible, even 10 strips provide normalized reflectance and
absorbance values very close to the infinite grating values in
the whole band of frequencies from 0.1 to 10 THz, except for
the narrow bands around the Rayleigh anomalies. Interestingly,
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Fig. 12. Near E-field pattern around the strips 25 to 28 for a E-wave normally
incident at the grating of N' = 50 graphene strips ofd = 20 pymandp = 70 pum
near Rayleigh anomaly frequency f = 4.274 THz (a); H-field patterns for the
H-wave incidence in the plasmon resonance at f = 2.6 THz (b) and at Rayleigh
anomaly (c).

either of polarizations does not display high-quality grating res-
onances that have been recently reported for the silver nanostrip
gratings in the visible range [28] in the H-polarization case.

Fig. 12 shows the near E-field in the vicinity of the Rayleigh
anomaly at f = 4.274 pm for a N = 50 strip grating (around
the strips 25-28) with width d = 20 pgm and period p = 70 pm,
demonstrating good transparency. The corresponding near
H-field patterns for the H-wave scattering at the first-order
plasmon resonance f = 2.6 THz (b) and at the first Rayleigh
anomaly frequency f = 4.27 THz (c) demonstrate high re-
flectivity of the incident plane wave and slightly increased
transparency, respectively.

V. CONCLUSION

In summary, we have presented a numerically efficient and
accurate analysis of the scattering and absorption of plane waves
by finite and infinite coplanar graphene-strip gratings in the THz
frequency range. Unlike standard full-wave commercial soft-
ware, the developed meshless algorithm is based on the singular
IEs and Nystrom-type discretizations, which provides a theoret-
ically guaranteed convergence up to machine precision.

Application of the method shows the presence of surface
plasmon resonances in the THz range in the case of H-polar-
ization, and a gradual buildup of the Rayleigh anomalies as the
strip number gets larger in the both polarization cases. We have
also investigated the tunability of the mentioned resonances
with respect to the graphene chemical potential, relaxation time
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Fig. 13. (a) Real (a) and (b) imaginary parts of the graphene impedance Z =
1/¢ in the THz range calculated at the room temperature 7 = 300 K and
7 = 1 ps versus the chemical potential z...

and the grating configuration. These effects can be potentially
exploited in the design of tunable THz range filters, frequency
selective surfaces, and ultrathin absorbing panels for electro-
magnetic compatibility.

APPENDIX
GRAPHENE CONDUCTIVITY

Graphene conductivity is characterized applying the Kubo
formula [1], [2], [11], [16]

o(w, pe, T, T))
=¢ (w—|—i2F)’2/5 (0%6(6) ~ 0,}‘;10(;5)) N
0

fd(fg)ffd(g) _ e
(w+ir)2—4(5)" |

(A1)

where £ = —ig?(w 4 12T)(xh?) 1, and ¢ is the energy, fq(c)
is the Fermi—Dirac distribution, g, is the elementary charge, and
h is the reduced Plank constant. The first term in (A1) relates to
intraband contributions of graphene, which usually dominate in
the low THz range, and the second term relates to interband con-
tributions of graphene, which become more important at higher
frequencies.

From the engineering point of view, it is useful to study the
surface impedance (sometimes also called complex resistivity)
of a graphene monolayer defined as Z = 1/o. Fig. 13 shows
the real and imaginary parts of this quantity versus different
values of the chemical potential, considering the room temper-
ature T' = 300 K and the relaxation time 7 = 1 ps. Note that .
can be easily varied using an external electrostatic field.

Analysis shows that graphene behaves almost as a frequency-
independent resistor, with a significant purely inductive reac-
tance. It is observed that an increase of the chemical potential
1 leads to the lower losses and an up-shift of the frequencies
where graphene presents large inductive behavior.

The latter feature makes this material appropriate for the
propagation of delocalized surface plasmons, which are trans-
verse magnetic waves traveling along the interface between
graphene and dielectric [1]-[3].
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