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Abstract—Time-harmonic electromagnetic wave diffraction by
a perfectly electrically conducting (PEC) finite rotationally sym-
metric surface located in free space is investigated. The problem is
split to independent azimuth orders and reduced to the sets of cou-
pled hypersingular and singular integral equations (IEs) for the
surface current components. These IEs are discretized by the Nys-
trom-type method of discrete singularities using the interpolation
type quadrature formulas. From the solutions of corresponding
matrix equations the near- and the far-field patterns are obtained.
The presented method has guaranteed convergence for arbitrary
not axially symmetric primary field.

Index Terms—Body of revolution (BOR), focusing, interpolation
type quadrature formulas, radar cross-section, scattering, singular
and hypersingular integral equations.

I. INTRODUCTION

T ODAY, efficient development of various devices and sys-
tems using electromagnetic waves is unthinkable without

preliminary computer-aided design. One of the traditional prob-
lems in this area is the analysis of the wave scattering and beam-
forming by various reflectors. Reflectors are usually thin and
therefore can be considered as zero-thickness screens or open
surfaces; if made of conventional metals, they can be considered
as perfectly electrically conducting (PEC) in the microwave to
short-terahertz ranges. However, almost all practically impor-
tant reflectors are three-dimensional (3-D). Together with the
vectorial nature of the Maxwell equations, this means, strictly
speaking, that analysis of wave scattering by reflectors cannot be
reduced to simplified two-dimensional (2-D) formulations. Still,
as the whole idea of a reflector is borrowed from the ray optics,
most of reflectors used in practice are large in terms of the wave-
length. This circumstance offers a hope that high-frequency ap-
proximations, both empiric and grounded, can be useful. Indeed,
today the engineering simulations of reflectors are usually done
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using geometrical optics and its derivatives, such as geomet-
rical theory of diffraction [1], or physical optics and physical
theory of diffraction. The most advanced versions of the latter
exploit the very fruitful idea of expanding the fields in terms
of Gaussian beams or, better, complex-source-point beams [2],
[3]. They are, however, not sufficiently accurate near reflec-
tors and generally fail if the near- and medium-zone environ-
ment of reflector is complicated by the presence of subreflectors,
radomes, and earth surface. Therefore, the full-wave simulation
tools have been, and still are, in demand.
Themethod ofmoments (MoM)models based on the electric-

field integral equations (IEs) are attractive as these IEs are fully
equivalent to the Maxwell-equation problem (provided that the
reflector is zero-thickness), satisfy the radiation condition ex-
plicitly, and need to mesh only the reflector surface. Among
the remarkable earlier MoM versions, one can mention [4]–[6],
while the more recent are in [7] and [8]. However, if used in
the numerical modeling of 3-D diffraction by an arbitrary PEC
open surface, they lead to huge-size matrices that entail large
computer resources. Still more important is that their conver-
gence is not uniformly guaranteed, which is caused by the sin-
gular character of the IE kernels.
A powerful remedy was developed during the 1980s in the

form of the Method of Analytical Regularization (MAR) [9].
MAR is equivalent to a judicious choice of the entire-domain
expansion functions in Galerkin MoM. If they are taken as the
orthogonal eigenfunctions of the most singular part of the IE
operator, projection to them plays the role of a perfect precon-
ditioner [10] and turn the IE into a Fredholm second-kind infi-
nite-matrix equation; the convergence is then guaranteed [9].
The alternative to MAR is the meshless Nystrom-type nu-

merical algorithms having guaranteed convergence and devel-
oped recently for 2-D problems [11], [12], [31]. Here, the cur-
rent density is sought as a product of unknown smooth function
and known weight. In either polarization, the weight is chosen
in conformity with the edge condition, and the smooth func-
tion is approximated with a polynomial of finite order. The con-
vergence is guaranteed due to the properties of the interpola-
tion-type quadrature formulas that take into account both the IE
singularities and the weights [13], [14]. Extension of the Nys-
trom method to arbitrary 3-D reflectors is difficult, however, be-
cause it is necessary to satisfy the edge condition analytically
and derive interpolation type quadrature formulas for double hy-
persingular and singular integrals.
Recently, the locally corrected Nystrom (LCN) method has

been applied to 2-D and 3-D scattering problems [15]–[17]. The
LCN method uses accurate quadrature formulas introduced by
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Fig. 1. Generic geometry of a finite PEC surface of rotation.

Stain [18]. At first, the weights for smooth function integration
are constructed, and then they are locally corrected near the
singularity to obtain an accurate quadrature formula for a sin-
gular integral. However, discrete inverse operator existence is
not proved, and therefore this method does not have guaranteed
convergence.
The axially symmetric PEC reflectors represent a very impor-

tant subset of possible shapes. One of the first fully 3-D numer-
ical analyses of closed PEC BOR has been done by Andreasen
[19]. A more arbitrary case of impedance boundary condition
on closed BOR was considered in [20]. Among the works on
diffraction by open PEC surfaces of rotation, one should men-
tion the papers [21]–[23]. Because of the analytical manner of
taking into account the axial symmetry, authors reduce the 3-D
problem to a set of 1-D IEs that significantly lowered the or-
ders of the corresponding matrix equations. However, these ad-
vanced versions of MoM use low-order basis functions and still
do not have guaranteed convergence.
As for the 3-D MAR-based algorithms, they have been de-

veloped so far only for a few rotationally symmetric zero-thick-
ness PEC screens of simple shapes: flat disk [24], finite cir-
cular cylinder [25], spherical disk [26], and finite cone [27].
The corresponding numerical results can be considered as refer-
ence ones; however, they relate only to the near and far fields of
on-axis dipoles and, for flat and spherical disks, to the broadside
incidence of plane wave.
In this paper, we consider the diffraction of an arbitrary elec-

tromagnetic wave by an arbitrary PEC open surface of rotation.
In Section II, we present the formulation of the problem and
reduce it to a set of two coupled IEs, one hypersingular and the
other singular, for each azimuth order of the surface current
components. For the IEs’ numerical solution,wedevelop new in-
terpolation-type quadrature formulas. In Section III, we validate
ournumerical technique,demonstrate ahigh rateof convergence,
and present numerical results on the monostatic radar cross-sec-
tionand thenear-field focusing for shallowanddeepparaboloidal
reflectors. Conclusions are summarized in Section IV. The de-
pendence on time is assumed and omitted throughout the
paper.

II. DIFFRACTION BY A SURFACE OF ROTATION

A. Problem Formulation

Consider the problem of arbitrary time-harmonic electromag-
netic wave diffraction by a PEC open surface of rota-
tion located in free space (see Fig. 1). The total electromag-
netic field is a sum of the incident field

and the sought-for scattered field . The latter field must
satisfy Maxwell equations off , PEC boundary condition on ,
Meixner edge condition at the rim of , and Sommerfeld radi-
ation condition at infinity.
Choose cylindrical coordinates and assume that the

surface is created by the rotation of contour around the
-axis. Introduce also the curvilinear orthogonal coordinates

in which the surface has the parameterization

(1)

and cylindrical coordinates are expressed as

(2)

Here, the Lame coefficients of the coordinates are

and the unit vectors of curvilinear coordinates are

(3)

(4)

where are unit vectors of Cartesian coordinates, and
a combination of prime and subscript , means partial
derivative with respect to the variable , .
Then, a point located on has the following cylindrical co-

ordinates: , . If is the
integration variable, we will use notations like

, , and , while for the observa-
tion point on the notations will be , ,

.

B. Hypersingular and Singular Integral Equations

The electric field vector can be expressed in terms of the
scalar and vector electromagnetic potentials as

(5)

The PEC boundary conditions are

(6)

or, in terms of potentials,

(7)

(8)

As known, the vector potential can be presented as a convo-
lution with the surface current function

(9)

where is the distance from the observation point to the
integration point , and the scalar potential is given by

(10)

The components of the current density and primary field on
surface are represented as Fourier series in azimuth

(11)

(12)
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As shown in [28], the Fourier series of the scalar and vector
potentials have the form

(13)

(14)

where

(15)

(16)

(17)

(18)

(19)

Introduce new unknown smooth functions and
in conformity with the edge condition as

(20)

Thus, in (7) and (8), equals since the point belongs

to the surface if . If we substitute (9)–(15) into (7) and
(8), then we obtain a set of equations with 1-D integrals with
the function and its first and second derivatives in
the kernels. As (see [28]), one

cannot move the limit to the integrands of (7) and (8), because
of non-integrable singularities .
Introduce the following integral operators [13], [14]:
• hypersingular integral operator understood in the sense of
Hadamard finite part,

(21)

• singular integral operators with different weights,

(22)

(23)

• integral operators with logarithmic kernels,

(24)

(25)

• and integral operators with smooth kernels and weights,

(26)

(27)

We will denote the integral operators with smooth kernels
(26) and (27) and their kernels using similar symbols.
If we take a limit in (7) and (8) using the expressions for

the vector and scalar potentials (13)–(17), then we obtain a set
of two coupled hypersingular and singular integral equations
(HSIE and SIE) with varying coefficients,

(28)

where , and the varying coefficients are

(29)

(30)

(31)

(32)

while the smooth kernels are

(33)

(34)

(35)

(36)

and shorthand notations
are used.
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C. Discretization of IEs

We use the following interpolation type quadrature formulas
[12]–[14], [31] for discretization of HSIE and SIE (28):
• quadrature formulas for a hypersingular integral,

(37)

• quadrature formulas for singular integrals,

(38)

(39)

(40)

• quadrature formulas for integrals with logarithm kernels,

(41)

(42)

• and quadrature formulas for integrals with smooth kernels,

(43)

(44)

On satisfying the first IE of (28) in the zeros of the
second-kind Chebyshev polynomial

and the second IE in the zeros of the first-kind
polynomial and using the

quadrature formulas (37)–(44), we obtain discrete counterpart
of (28),

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

where and denote the polynomials of the de-
grees and , respectively.
Using the technique described in [13] and [14], we have

proven that the set (28) has a unique solution in the corre-
sponding Hilbert spaces for each value of the parameter .
If the parameterization functions are polynomials,
then approximate solutions and converge
to the exact solution of (28) for with the rate of
convergence .

D. Near-Field and Far-Field Patterns

On substituting the expressions (13)–(17) into (6), we obtain
the expressions for the electrical field components via the solu-
tions and of the set (28),

(54)

(55)

(56)
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(57)

(58)

The far-field scattering pattern components are defined as

(59)

Using (54)–(57) and the following limit expression:

(60)

we obtain the far-field scattering pattern components as

(61)

(62)

(63)

(64)

(65)

(66)

Introduce the vector far-field scattering pattern as

(67)

where is the incident field pattern, and denote

(68)

Using quadrature formulas (43) and (44), we obtain the fol-
lowing formulas for the electric field and the far-field scattering
patterns of the th azimuthal order, respectively:

(69)

(70)

Fig. 2. Spherical disk illuminated by the normally incident plane wave
(NIPW).

Fig. 3. Normalized monostatic RCS of a hemispherical disk calculated using
[26] with accuracy (reference solution) and our algorithm with interpola-
tion orders 20, 40, 60, 80 as a function of normalized frequency.

III. VALIDATION

Consider a PEC spherically curved disk of the radius and
angular width illuminated by the plane wave having elec-
tric field and propagating parallel to the
rotation axis, as shown in Fig. 2.
In this case, the incident field has components given by

(71)

From (71), it is obvious that if , then
and , . This leads to the

conclusion that if and ,
, hence and
.

In [26], this problem was reduced, using MAR, to the
Fredholm second-kind matrix equation. The corresponding
algorithm has guaranteed convergence and, if the matrix size is
adapted to the parameter , provides results with a desired ac-
curacy up to machine precision. We have computed, using this
algorithm with uniform accuracy , the monostatic radar
cross-section (RCS), , of a hemi-spherical
disk for varying from 0 to 50—see Fig. 3. This
curve is shown as a reference solution.
Four other curves correspond to RCS calculated using the

method proposed here, with different values of the interpolation
order . One can see that, for a graphical coincidence of results,
it is necessary to take , where is the length
of the reflector cross-section contour.
In Fig. 4(a), we show the error in the far-field scattering pat-

tern for several values of . In addition, the actual rate
of convergence is demonstrated in Fig. 4(b) where the reference
values of RCS as computed by [26] are 53.7309674
and 144.551412 at and , respectively.
A test of the numerical stability of our algorithm can be per-

formed if we take the functions and
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Fig. 4. The errors in the far-field patterns in two principal planes for
(a) and the error in the monostatic RCS as a function of for ,

(b), .

Fig. 5. The errors in the functions (a) and (b) for ,
and varying . The reference solutions are those for .

Fig. 6. Paraboloidal reflector illuminated by electromagnetic plane wave.

computed for , , as a ref-
erence, and compare them to the same functions computed with
smaller values of . This comparison is shown in Fig. 5.

IV. PARABOLOID ILLUMINATED BY A PLANE WAVE

A. Monostatic Radar Cross Section

Consider a paraboloidal reflector with the focal distance
and the diameter (see Fig. 6) illuminated by the plane wave
having electric field

(72)

where , , and
. Using (3) and (4), we obtain

(73)

(74)

Fig. 7. Paraboloidal reflector normalized monostatic RCS as a function of the
normalized frequency in the case of the normal incidence .

Fig. 8. RCS as a function of incidence angle in the (a) local maxima
25.88, 14.9, 19.2 and (b) minima 17.2, 17.2, 24.6 .

Fig. 9. Paraboloidal reflector normalized monostatic RCS as a function of the
in the case of , , , .

In Fig. 7, we show the variation of the monostatic RCS,
, versus the normalized frequency for

the normal incidence and three values of .
Note that the quasi-period of RCS oscillations, in frequency,

for reflectors with 0.25 and 0.1 is two and five times
smaller, respectively, than for . These oscillations
are caused by the interference of the field reflected by the pa-
raboloid bottom with the field reflected by its rim.
The variation of the monostatic RCS with the plane wave

incidence angle in the marked in Fig. 7 local maxima and
minima for the considered three reflectors is shown in Fig. 8.
In Fig. 9, we show as a function of in the case of

normal incidence and three different values of reflector diam-
eter . Note that if is fixed and value increases, then
the paraboloid depth decreases. As one can see,
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Fig. 10. The equal-value curves for the total electric field in the geometric focus
of paraboloidal reflector as a function of and .

the RCS of paraboloid under the broadside illumination drops
several orders of magnitude at certain frequencies.
Based on the ray tracing, this effect was explained in [29] and

linked to the paraboloid depth being an integer multiple.
This condition means that and

, , which is in good agreement with
the minima on the curves in Figs. 7 and 9. The new point is
that the RCS of paraboloid almost vanishes at these values of its
depth only for shallow paraboloids . For deeper
paraboloids, this rule is not true both in terms of the RCSminima
location and their values. Thus, geometrical optics fails for deep
paraboloids even if they are large.

B. Focusing Ability

The field in the geometrical focus is of particular interest
as a receiving horn is normally placed there. Its magnitude is
shown in Fig. 10 as a function of and . One can see
that if the frequency and the dish diameter are fixed, then the
largest in-focus electric field is achieved for a shallow dish with

. This is rigorous proof of the well-known engi-
neering fact: deep reflectors have no merits. The optimal value
of corresponds to the reflector whose geometrical focus
lies in the same plane as its rim (see [30] and [32]).
In Fig. 11, we show the total electric-field magnitude patterns

in two principal planes near an optimal paraboloidal reflector
with and , illuminated by the normally
incident plane wave (NIPW). A zoom of the field near the geo-
metric focus is also shown in the top. Note that here the max-
imum value of is 31.61 found at (0, 0, 0.11 ) and
not in the geometrical focus (0,0,0).
In Fig. 12, the total electric field magnitude is shown in the

near-zone of the deep paraboloidal reflector with ,
illuminated by the NIPW. The maximum value of the

in Fig. 11 is 29.63 at the point (0.3 , 0, 0), which does
not coincide with the geometric focus (0,0,0).
In the case of inclined incidence all primary-field

azimuth harmonics are non zero however their contribution
decays with . We have found that to obtain results
with graphical accuracy, one can truncate the azimuth series
at the order , for which and

with .
In Fig. 13, we show the total electric field magnitude in the

near-zone of a deep paraboloidal reflector with ,

Fig. 11. The near fields of the paraboloidal reflector with ,
illuminated by the NIPW, in (a) the E-plane and (b) the H-plane.

Fig. 12. The near fields of the paraboloidal reflector with ,
illuminated by the NIPW, in (a) the E-plane and (b) the H-plane.

Fig. 13. The near fields of a deep paraboloidal reflector with ,
illuminated by the plane wave under incidence, in (a) the

E-plane and (b) the H-plane.

illuminated by the plane wave under the in-
cidence. In this case it is necessary to take harmonics.
As one can see, here a strong local maximum is formed near

to the directly illuminated inner part of the reflector, and the
local near field resembles a standing plane wave. This indicates
to the stronger back-reflection by that part of the paraboloid at
this angle of incidence. Such a behavior is consistent with the
enhanced RCS at the same , as shown in Fig. 8(a).
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V. CONCLUSION

Summarizing, we have presented a convergent and efficient
meshless numerical method for the analysis of an arbitrary
PEC rotationally symmetric screen illuminated by an arbitrary
electromagnetic field. Unlike [15]–[18], in the present paper,
we separate integrals with simple hypersingular, singular, and
logarithm kernels analytically and use exact interpolation type
quadrature formulas to approximate them.
The developed method is especially economic if the incident

field consists of finite number of Fourier azimuth harmonics.
For example, in the case of illumination by a plane electromag-
netic wave propagating parallel to the axis of rotation, it is nec-
essary to solve only one pair of coupled 1-D HSIE and SIEs.
The method has high rate of convergence: three correct digits in
the far-field analysis can be found after solving as small matrix
as of the order , where is the length of the reflector
cross-section contour. As a consequence, the analysis of a 50-
reflector takes minutes on a moderate desktop computer.
Themethod validation has been done using plane electromag-

netic wave diffraction by a PEC spherical disk. The comparison
of our results for the monostatic RCS with those generated by
the size-adapted MAR-based algorithm of [26] has shown per-
fect agreement within a desired number of digits. The analysis
of the near fields has also demonstrated agreement with the pat-
terns published in [30] and [32].
Using our algorithm, we have obtained the numerical data

concerning the variation of the monostatic RCS of shallow and
deep paraboloidal reflectors with the wavelength, focal distance,
and angle of the plane wave incidence. We have also studied
the focusing ability of shallow and deep reflectors and demon-
strated the splitting of the physical focus to two bright spots in
the E-plane for reflectors deeper than .
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