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Abstract—We assess the accuracy of a standard finite-difference
time-domain (FDTD) code in the analysis of the near and far-field
characteristics of two-dimensional (2-D) models of small-size di-
electric lens antennas made of low or high-index materials and fed
by the line sources. We consider extended hemielliptic lenses and
use the Muller boundary integral equations (MBIE) method as a
suitable reference solution. Inaccuracies of FDTD near so-called
half-bowtie resonances are detected. Denser meshing reduces the
error of FDTD only to a certain level determined by the type of ab-
sorbing boundary conditions used and other fine details of the code.
Out of these resonances, FDTD code is demonstrated as capable of
providing sufficient accuracy in the near and far-field analysis of
small-size hemielliptic lenses typical for the millimeter-wave (mm-
wave) applications.

Index Terms—Finite-difference time-domain (FDTD), hemi-
elliptic dielectric lens antenna, Muller boundary integral equa-
tions, resonances.

I. INTRODUCTION

SINCE THEIR introduction [1], [2], integrated dielectric lens
antennas (DLAs) have been recognized as an efficient and

reliable solution for many mm, sub-mm, and THz band antenna
applications including various indoor and outdoor communica-
tion systems [3], [4], mm-wave imaging [5], radar systems [6],
collision avoidance devices [7], [8], time-domain spectroscopy
[9], radio-astronomy [10], and satellite communications [11].
The integration of a dielectric lens with an active circuit has en-
abled one to solve two important tasks in one turn, i.e., improve
the directivity of the radiating element and eliminate the losses
appearing due to the excitation of surface waves on a dielectric
substrate.

The most common shapes of dielectric lenses used as building
blocks for integrated DLAs are hemielliptic or hemispherical.
This design comes from geometrical optics (GO), which tells
that all the parallel rays impinging on the elliptic lens along
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its major axis gather in the rear focus if the ellipse eccentricity
equals the inverse of refractive index.

Later, DLAs with shaped profiles were proposed to meet
specific requirements to advanced applications [11]–[13]. Fi-
nally, double-shell shaped lenses were introduced to improve
the DLA operating bandwidth, which was restricted due to
the electromagnetic performance of reduced-size conventional
dielectric lenses [14], [15]. This was a step ahead in the DLA
technology promising great benefits in comparison to classical
hemielliptic or hemispheric designs. However, further improve-
ment of such antennas seems to be jammed due to the lack
of adequate simulation tools fast enough to be combined with
optimization routines.

Among available simulation tools the most popular ones are
those based on the combinations of GO and physical optics
(PO) [1]–[4], [11]–[18]. They are fast and simple however
provide reasonable accuracy only for electrically large lenses
of low refractive index materials. As it was demonstrated in
[11], [16]–[18], proper accounting for the multiple reflection
effects improves the performance of corresponding numerical
algorithms in the analysis of DLAs in the emitting mode.
Recently we have found, however, that this does not prevent the
same algorithms from a possible failure if applied to the anal-
ysis of the same DLAs in the receiving mode [19], [20]. This
happens because the ray-tracing techniques fail to characterize
accurately the focal domain size, shape, and location.

The answer to these challenges is in the use of the full-wave
methods based on integral-equation (IEs) or differential-equa-
tion techniques. Among the latter ones, the most popular
approach, thanks to its flexibility and simplicity of imple-
mentation, is finite differences in time domain (FDTD). It
is recognized as a powerful and universal tool applicable
to solving a wide variety of electromagnetic problems [21].
Unfortunately, FDTD algorithms usually have enormous re-
quirements to computer resources especially for open-domain
and/or resonant problems. This prevents such algorithms from
being integrated with optimization routines. These require-
ments are significantly reduced for 2-D versions of FDTD [22].
Still FDTD codes have another drawback intrinsic for both 2-D
and 3-D versions, which can spoil the analysis of dielectric
scatterers, namely the loss of accuracy near the high-Q natural
resonances [23]. This can become a bottleneck in the analysis
of small-size dielectric lenses where internal resonances have
been shown to play an important role [20]. Besides of [23],
there seems to be no papers focused on the comprehensive
verification of FDTD as to the reliable characterization of
resonance phenomena in arbitrary dielectric scatterers. Such
verification needs a trusted reference solution, and if the shape
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Fig. 1. Cross-section of an extended hemielliptic dielectric lens excited with a
line current source.

of scatterer is not circular or spherical, this can be provided by
the MBIEs both in the 2-D and 3-D cases [24]. Here, conver-
gence is guaranteed due to the favorable properties of MBIEs,
and several competing algorithms for solving 2-D MBIE with
controllable accuracy have been published [25]–[27].

The aim of this paper is to assess the accuracy of a standard
FDTD algorithm in the analysis of 2-D model of compact DLA
that employs a line-current fed hemielliptic lens extended with
a rectangular bottom (Fig. 1).

The paper is organized as follows: a brief description of the
methods used is given in Section II; then the comparative nu-
merical data are discussed in Section III for rexolite, quartz and
silicon lenses. Conclusions summarize the results obtained.

II. OUTLINE OF THE METHODS USED

A. Finite Differences in Time Domain (FDTD)

To build our in-house FDTD algorithm, we have used a stan-
dard method with Cartesian grid [28]. The mesh cell size has
been chosen to be fine enough with respect to wavelength in
the lens material, . The time has been discretized in accor-
dance to the Courant-Friedrich-Levy stability criterion. Based
on these discretizations, second-order finite difference approx-
imation has been used to compute the partial derivatives in the
Maxwell equations in order to establish the updated equation
for each field component. The field components have been com-
puted at successive time steps until all field intensities in the do-
main decay to a steady-state value. To truncate the infinite free
space, absorbing boundary conditions have been implemented
in the form of the split perfectly matched layers (PML) [29].
As known, with a transient excitation the FDTD method pro-
vides results over a wide frequency band in one single calcula-
tion which is a benefit comparing to the frequency-domain tech-
niques. Less known is the fact that, because of varying mesh
size, the accuracy changes within the same frequency band, that
is highlighted in Section III.

In this study, to model the primary source in emitting mode
we use a line current placed at the distance of one mesh cell from
the lens bottom center and modulated in time with a Gaussian

Fig. 2. Normalized radiation patterns of the electric line current illuminating
quartz (left, l = 0:58) and silicon (right, l = 0:31) hemielliptic lenses (ka =
9:42).

pulse. The central frequency is GHz and the duration
of the pulse is chosen to provide the 20 dB attenuation at
GHz. The mesh size is mm for quartz and

mm for silicon. The PML parameters have
been set in such a way that the normal back-reflection from the
boundary is kept below dB for the whole frequency range.

B. The Muller Boundary Integral Equations (MBIEs)

There are several ways to derive boundary IEs for a cylin-
drical dielectric scatterer. We represent the field function and its
normal derivative, inside and outside the lens, as combinations
of single and double layer potentials. Here, we have to assume
both the contour and its normal to be continuous. Then, from the
boundary conditions, we obtain a set of two coupled Fredholm
second kind IEs known as the Muller boundary IEs [24].

Then we discretize MBIEs by applying the Galerkin method
with entire-domain angular exponents as basis functions. The
convergence rate of the algorithm is greatly improved by the
application of analytical regularization in the treatment of the
kernel functions [30]. This is done by adding and subtracting the
canonical terms corresponding to a circular contour and analyt-
ically integrating these terms. Then the remaining parts of the
matrix and right-hand-part elements are reduced to the Fourier-
expansion coefficients of the smooth functions that can be eco-
nomically computed with the fast Fourier transform (FFT) and
double FFT (DFFT) algorithms. The resulting infinite-matrix
equation has favorable features that originate from its Fredholm
nature. This guarantees fast convergence of the numerical solu-
tion of matrix equation with respect to the truncation number
[27].

The advantages of the developed algorithm that make it an
efficient tool in the analysis of dielectric lenses are as follows:
(i) controllable accuracy, i.e., a possibility to minimize the com-
putational error for arbitrary set of lens parameters, including
wavelength, lens shape and its dielectric constant, to the level
determined by DFFT, by solving progressively greater matrices;
(ii) low memory and time requirements; (iii) stable operation
near and far from the sharp natural resonances; and (iv) absence
of false “numerical resonances” intrinsic to the algorithms based
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Fig. 3. The forward directivity of electrical and magnetic line currents illu-
minating hemielliptic lenses (ka = 9:42) made of (a) rexolite (" = 2:53),
(b) quartz (" = 4:0), and (c) silicon (" = 11:7) versus the lens extension pa-
rameter. The vertical dashed lines indicate the location of the rear focus of the
ellipse.

on the other-type IEs [31]. More details of the algorithm prop-
erties can be found in [27].

III. NUMERICAL RESULTS

The geometry and notations of a 2-D model of a hemielliptic
expended lens antenna are given in Fig. 1. The cross-sectional
contour of the lens having dielectric constant is represented
by a twice continuous curve that consists of two parts, and

, smoothly joined together at the points marked with crosses.
Here, is a half of the ellipse with eccentricity chosen in ac-
cordance with the GO focusing rule, , and is a
half of so-called “super-ellipse” that simulates a rectangle with

Fig. 4. Normalized near-field intensity maps of extended hemielliptic silicon
lenses (ka = 9:42) excited by electric line currents. The lens extension values
correspond to the resonances indicated by triangles in Fig. 3(c). Solid white
line is for the lens cross-section; dashed line in (c) highlights the characteristic
triangular shape of the HBT resonance.

rounded corners [32]. In computations, we normalize lens di-
mensions by , where is the wavelength in free
space. This makes the obtained results valid for any frequency,
thanks to scalability of the Maxwell equations. The lens is ex-
cited by a line current located close to its flat bottom. Although
such a source model is idealized one, for our verification-ori-
ented study this is not critical. More important is that such a
line source can be easily incorporated into both FDTD and IEs
approaches and provides an efficient excitation of resonance
modes of the hemielliptic lens. As mentioned, we analyze the
problem with our FDTD-2D algorithm, and the MBIE code is
used as a suitable reference solution.



BORISKIN et al.: ASSESSMENT OF FDTD ACCURACY IN COMPACT HEMIELLIPTIC DLA ANALYSIS 761

Fig. 5. The normalized radiation patterns of the electric line current illumi-
nating silicon hemielliptic lenses with different resonant extensions marked by
triangles in Fig. 4(c). For comparison, grey line is for the radiation pattern of
the line source illuminating the lens cut through the rear GO focus (l = 0:31)
computed by MBIEs (the one presented in Fig. 2 right).

In Fig. 2, one can see the normalized radiation patterns of
the line source illuminating a quartz (left) and a silicon (right)
lens with the flat bottom size that is typical for
practical applications. In all computations with MBIE, we took
the current line source distance to the lens bottom as .
For comparison purposes, in the frequency scans this value was
varied in the same manner for the both algorithms. As one can
see, FDTD demonstrates a reasonable accuracy in this far-field
analysis. However, further we will show that this is mainly due
to the fact that the size of the lens is not tuned to any specific
resonance.

In the emission regime, one of the major far-field character-
istic of any antenna is the directivity. For the hemi-elliptic lens
antennas, on the one hand, it has been suggested that increasing
the lens extension (i.e., the size of its flat-bottom side) improves
its forward directivity [1], [34]–[36]. In our notations of Fig. 1,
this is the directivity in the negative- direction. On the other
hand, in our recent analysis of the same lens in the reception
regime [20] we have demonstrated that this may also lead to the
excitation of intensive resonances, which can dramatically af-
fect the lens focusing ability.

Fig. 6. The forward directivity of the electric line current illuminating a
hemielliptic silicon lens (left axis) and the FDTD mesh size parameter (right
axis) versus the normalized frequency. Arrows indicate well-defined reso-
nances whose near fields are presented in Fig. 7. The lens extension is chosen
in accordance with the GO focusing rule (l = 0:31).

The nature of these resonances has been recently revealed in
[33] in the analysis of natural modes of stadium-shape and el-
liptic dielectric resonators. They appear as algebraic sums or
differences of certain modes of the circle perturbed by the ap-
pearance of eccentricity. Characteristic field patterns of these
resonances suggested their name as “bowtie” modes. Therefore,
in our hemielliptic DLAs the observed resonances with trian-
gular field patterns are on the “half-bowtie” (HBT) modes. Their

-factors depend on the refractive index and electrical size and
reach hundreds for a-few-wavelength lens made of dense mate-
rial such as silicon.

To study this effect in the emission regime and to test the
accuracy of the FDTD algorithm as to description of the in-
ternal resonances, we have plotted the forward directivity of
the line source illuminating rexolite, quartz and silicon lenses
versus the normalized lens extension parameter, (Fig. 3); both

- and -polarization states are considered. As one can see
in Fig. 3(a), the rexolite lens demonstrates almost quasi-optical
behavior, i.e., no significant difference between polarizations is
observed and directivity grows almost monotonically until ap-
proaches to the rear focus value suggested by GO (indicated by
the vertical dashed line). Whereas for quartz and silicon lenses
the curves for different polarizations behave in different manner,
and periodic oscillations (for quartz) or well defined resonance
drops in the directivity (for silicon) are observed. These effects
evidence a significant role of internal resonances in the lens be-
havior. The most important observation is that FDTD algorithm
looses its accuracy near the resonances. Similarly to the previ-
ously reported FDTD analysis of the back-scattering from a cir-
cular dielectric scatterer [23], there appears a shift of resonances
in frequency and also a distortion of the resonance curve.

The near-field maps for the silicon lens with extensions cor-
responding to the GO focus at the flat bottom and to the reso-
nances marked with triangles in Fig. 3(c) are presented in Fig. 4.
In Fig. 4(a) and (b), one can see irregular field-spot patterns,
whereas in Fig. 4(c) to (f) characteristic regular resonance pat-
terns can be identified. They differ between themselves in the
number of in-resonance near-field variations along a certain tri-
angular contour marked by the dashed white line in Fig. 4(c).
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Fig. 7. Normalized near-field intensity maps of the silicon lens (l = 0:31)
whose parameters correspond to the resonances marked with arrows in Fig. 6.

Comparing the performance of MBIE and FDTD algorithms,
one can see that, apart of the shift in frequency, FDTD is capable

of reproducing the near fields of medium- resonances such as
HBT ones excited within the silicon lens.

The in-resonance far-field normalized radiation patterns are
presented in Fig. 5. As one can see, the resonances result in the
degradation of the main lobe and even its splitting to two side-
lobes. This explains the resonance drops in directivity in Fig. 3
and agrees well with the near-field maps in Fig. 4 computed for
the same resonances.

Similar resonance drops in directivity appear when scanning
the performance of lens in frequency—see Fig. 6. Here we com-
puted the forward directivity of the fixed-geometry extended
hemielliptic lens cut through the rear GO focus and fed by an
electric line source. Comparison of the FDTD and MBIE re-
sults shows considerable discrepancies that become more pro-
nounced in the higher frequency range. This is apparently be-
cause the mesh is getting coarser in this range as illustrated by
the dotted line and the right vertical scale. The mesh size for
each frequency point on the FDTD curve can be estimated as

.
Near-field maps given in Fig. 7 and the periodicity of the

sharp drops in directivity confirm that these resonances are the
same HBT ones as observed in Fig. 4. Moreover, one can see
that the resonance presented in Fig. 7(a) is apparently the same
as the one shown in Fig. 4(c).

IV. CONCLUSION

We have developed FDTD and MBIE numerical algorithms
and applied them to the comparative analysis of the near and far
fields of 2-D models of small-size extended hemielliptic lenses
with dielectric constants corresponding to rexolite, quartz and
silicon. The MBIE algorithm data have been used as a reference
solution.

It has been shown that the line current of either polarization
located at the axis of symmetry of the lens close to its flat
bottom efficiently excites so-called HBT resonances which
cause significant changes in far-field radiation pattern and, as
a result, a drop in the directivity. Our comparative analysis
has demonstrated satisfactorily high accuracy of the FDTD
code when applied out of HBT resonances, whereas near such
resonances the error in FDTD simulations can be unacceptably
high. Finer meshing reduces these errors only to a certain level
however cannot eliminate it completely. In particular, the reso-
nances remain always shifted in frequency. The limiting level
of accuracy is determined apparently by the type of absorbing
boundary conditions used, shape and size of computational
window, and other fine details of the FDTD code. Therefore
these widely spread tools of numerical simulation should be
used with a caution when applied in the analysis of resonance
dielectric objects such as small and medium size lenses made
of high-index materials.
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