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Abstract—The paper deals with an accurate mathematical and
numerical analysis of a spherical-circular antenna printed over a
coaxial spherical-circular ground conductor. A coaxial probe sim-
ulated by a radial driving current placed between two conductors
excites the antenna. Consideration is done in terms of the spherical
vector wave function expansions of the field in each partial domain.
The problem is cast into a coupled set of the dual-series equations
for the expansion coefficients, and then to an infinite-matrix equa-
tion having favorable features. This is achieved by following the
Method of Analytical Regularization developed earlier for the anal-
ysis of spherical reflectors.

Index Terms—Analytical regularization, spherical disk, con-
formal microstrip antenna, far-field radiation.

I. INTRODUCTION

AGROWING interest is observed in the patch antennas
conformally printed on spherical surfaces. The reason

can be seen in potential applications to the cellular and in-
door-communication base stations, and in mobile terminals.
Indeed, these antennas offer a designer a higher degree of
freedom than flat structures. At first, a simple “cavity-model”
analysis was published on the spherical-circular microstrip
antenna (MSA) [1] shaped as a perfectly electrically con-
ducting (PEC) spherical disk placed on the outer surface of a
spherical dielectric layer backed with a PEC spherical ground.
Superstrate-covered spherical-circular MSA was studied in [2].
Later on, annular-ring and combined circular plus annular-ring
MSA with the spherical ground conductors were considered
[3], [4]. Book [5] summarized the state-of-the-art achieved by
1999. The treatment was usually based on a moment method
(MM) version, with so-called “cavity modes” frequently taken
as expansion basis. Recently, finite-difference time-domain
(FDTD) method has come into wide utilization. Due to its

Manuscript received January 14, 2002; revised June 16, 2003.
S. Rondineau was with IETR, UMR-CNRS 6164, Université de Rennes

1, Rennes Cédex 35042, France. He is now with the Microwave and Active
Antenna Laboratory of the Electrical and Computer Engineering Depart-
ment, University of Colorado, Boulder, CO 80309-0425 USA (e-mail:
sebastien@nemes.colorado.edu).

A. I. Nosich is with the Institute of Radio-Physics and Electronics of the
National Academy of Sciences of Ukraine, Kharkov 61085, Ukraine (e-mail:
alex@emt.kharkov.ua).

J.-P. Daniel and M. Himdi are with IETR, UMR-CNRS 6164, Université
de Rennes 1, Rennes Cédex 35042, France (e-mail: jean-pierre.daniel@univ-
rennes1.fr; mohamed.himdi@univ-rennes1.fr).

S. S. Vinogradov is with the Department of Mathematics, University of
Dundee, DD1 4HN, Scotland, U.K. (e-mail:svinogra@maths.dundee.ac.uk).

Digital Object Identifier 10.1109/TAP.2004.827254

Fig. 1. Cross-sectional view of the rotationally symmetric two-conductor
conformal antenna printed on a spherical substrate and fed by a centered
coaxial probe.

versatility, this method is normally found behind many com-
mercially available printed-antenna simulators, many of which
boast of applicability to curved substrates as well.

However, conventional numerical methods result in very
large matrix equations and need very high memory capacity
and computation time. Therefore, it is not a surprise that none
of the published analyzes show frequency dependence of major
MSA characteristics in a wide band. Moreover, these methods
do not guarantee a convergence because of ill-conditioned
matrices, numerical instabilities, and vulnerability to high-Q
resonances [6], [7]. Therefore, a technique able to ensure fast
and uniform point-wise convergence of the solution and has
controlled computational error is still attractive. The Method
of Analytical Regularization, or MAR [8], sometimes-called
semi-inversion method shows a way to achieve these goals.
Generally, MAR converts a first-kind singular integral equation
to a well-conditioned second-kind matrix equation with the
dominant main diagonal, and therefore serves as analytical
preconditioner of originally ill-posed problem. Then both
numerical convergence and efficiency are achieved and the
error is controlled by the matrix truncation.

A spherical-circular MSA was treated with MAR in [9]
assuming its axially symmetric excitation by a radial electric
dipole (RED). Here, the MAR was based on the technique
previously developed in the acoustic and electromagnetic
wave scattering by spherical disks in free-space environment
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Fig. 2. Relative computational error versus the order of matrix truncation for various normalized frequencies. � = 180 ; � = 18 ; r =r = 0:97; " =

" = 1; " = 1:3.

[10]–[13]. This technique avoids formulating integral equations
and starts from introducing the Debye potentials—auxiliary
functions satisfying the Helmholtz equation. Expanding these
potentials in terms of the Legendre functions in spherical
domains and using the boundary conditions leads to the
dual-series equations (DSEs). They are further decomposed
into the static and dynamic parts, and the former is inverted
analytically thanks to the properties of the Abel integral
representations for the Legendre functions. Such a procedure
results in the regularization: unknowns are found as a solution
to the Fredholm second-kind matrix equation.

In this paper, MAR is applied to a conformal printed antenna
containing two finite-size spherical-circular disk conductors
conformally placed at the interfaces of a layered dielectric
sphere and fed by a coaxial probe. For convenience, we shall
refer to the inner conductor as ground, and to the outer
one as patch, however this terminology can be reversed. The
both conductors have a common axis of rotational symmetry
and the probe is assumed to be on the symmetry axis as
well. Hence, our antenna geometry is a generalization of a
simple spherical-circular MSA considered in [9]. Although disk
MSA is frequently used with the broadside radiation, centered
radial-probe excitation can generate only an axisymmetric
radiation pattern. Such omnidirectional, in the horizontal plane,
patterns are necessary in the mobile communications [14], radio
LAN [15], and broadband distribution systems [16]. Variable
size of the ground provides an additional degree of freedom in
the antenna design. The basic steps in the solution are similar
to that of [9] but differ in the way of presenting the fields:
instead of the Debye potentials we use a more up-to-date
technique of the spherical vector wave functions. Of course,
the presence of the second spherical-disk conductor entails
numerous complications: instead of a single set of DSE, here

Fig. 3. Relief of the total radiated power normalized to the power radiated by
the feed alone, on the plane k r �� . � = 18 ; r =r = 0:97; " = " =

1; " = 1:3.

we obtain a coupled pair of sets; the far field depends on the
currents induced on the both conductors, etc.

The rest of the paper is organized as follows. Section II con-
tains the problem formulation and the derivation of the DSE.
Section III deals with the analytical regularization of DSE by
extracting the disk-in-free-space parts and inverting their static
limits. In Section IV, we derive the formulas for the currents, and
far-field antenna characteristics. Section V contains a review of
numerical results showing the effect of the finite-size ground
surface and the curvature. Experimental verification of the ob-
tained results is briefly outlined in Section VI. The conclusions
are summarized in Section VII. The study is done with the
time-harmonic dependence ( is the angular frequency).
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Fig. 4. Total radiated power normalized to the feed radiated power. � = 160 ; � = 18 in the case of the presence of the patch and 0 otherwise, r =r =

0:97; " = " = 1; " = 1:3 in the case of the presence of the substrate and 1.0 otherwise.

II. FORMULATION AND BASIC EQUATIONS

A. Antenna Geometry

The considered antenna structure is shown in Fig. 1. A two-
layer dielectric sphere has the inner and outer interface radii
and , and the relative permittivities of the layers are and

, respectively. Surrounding medium is free space. Between
the layers, a PEC spherical disk of the angular size is placed.
This is the ground conductor. On the outer surface of the di-
electric sphere, another PEC spherical disk of the angular size

is placed. This is the patch. A coaxial probe simulated by a
radial driving current between two conductor centers feeds the
antenna. The disks are assumed infinitely thin. Note that both
conductors have angular sizes varying from 0 to that enables
us to include into single formulation the previously studied cases
of a RED exciting a dielectric-coated PEC sphere, and a spher-
ical-disk MSA with complete sphere as a ground conductor.

B. Electromagnetic Model

The chosen feed is a centered coaxial probe whose current is
oriented along the radius with the fixed amplitude

(1)

Here is the Dirac-delta distribution, the unit function
on the set , and the radial unit vector. Note that the driving
current (1) is -independent. Placed in a homogeneous medium,
such a current generates electromagnetic field whose nonzero
components are as follows:

(2)

where and are the angular unit vectors. In our case current
(1) is placed in the inhomogeneous but still -independent envi-
ronment. Therefore, without going into details we can correctly
guess that the total field of the studied MSA will have the same
components (2) as the “incident” field.

Off the MSA boundaries, total field must solve the time-har-
monic Maxwell equations with source given by (1), and satisfy
a set of boundary conditions at the PEC elements and trans-
mission conditions at the free parts of the dielectric surfaces.
Besides, it must satisfy Silver–Muller radiation condition [17]
as electromagnetic analog of the scalar Sommerfeld condition.
This requires the far field, due to (2) and associated discussion,
to behave in the following manner:

(3)

where it will be convenient to set . Note
that and are respectively the wave number and the intrinsic
impedance of the considered medium.

Finally, edge condition follows from the demand that the
power contained in any bounded volume of the space, is
finite

(4)

This condition determines the field behavior at the rims,
namely, , where is
the distance to either of the disk rims in the plane .
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Fig. 5. Normalized far-field patterns (left column) and currents on the spherical disks (cap 1 at the middle column and cap 2 at the right one) in the maxima of the
radiated power marked in Fig. 4. � = 160 ; � = 18 ; r =r = 0:97; " = " = 1; " = 1:3. From top to bottom, the values of the normalized frequency
are kr = 1:00;9:95; 18:41;26:87, and 35:32.

Under these conditions, the problem of finding the total
electromagnetic field may have only one solution (the unique-
ness theorem). Now we shall work on developing a numerical
scheme of approaching this solution as close as possible in
terms of finite digit computations.

C. Field Expansions and Basic Equations

Because of the spherical geometry, it is natural to expand
the electromagnetic field in terms of the spherical vector wave
functions [18]. Such an expansion is found by solving the
Maxwell equations for the electromagnetic field in the spher-
ical coordinates and taking account of the rotational symmetry.
For example, thanks to expression (1), the shape of the elec-

tromagnetic field of the feed in the homogeneous medium 2
is found to be

(5)

where the coefficients are given as follows:

(6)
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Fig. 6. Directivity associated with different ground sizes: � = 18 in the case of the presence of the patch and � = 0 otherwise, r =r = 0:97; " = " =

1; " = 1:3 in the case of the presence of the substrate and " = 1 otherwise.

and the spherical modal vectors

(7)

and are the spherical Bessel function of the 1st kind and
spherical Hankel function of the 2nd kind of the order and
argument , respectively. The other functions involved
in (7) are

(8)

(9)

where , and represents the associated Legendre
function of order and degree .

The PEC spherical disks are disturbing elements that cause a
response to the given excitation, which is a radial probe. As both
the feed field and the boundary, edge, and radiation conditions
are -independent, no other field components besides those of
the probe field appear in the secondary field. Therefore, it can
be expanded in terms of the same vector spherical functions as
the feed field

(10)

Here is the number of the layer. Note that the spher-
ical-wave coefficients are different for each -th layer. Further-
more, some coefficients vanish in the most inner region

, and in the most outer region .

D. Dual Series Equations

By applying the boundary and continuity conditions at
to the electromagnetic field (10), we obtain the four equa-

tions in terns of the dual series

(11)

(12)

where

(13)

(14)

(15)

(16)

(17)
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Fig. 7. Direction of the main beam associated with different ground sizes. � = 18 in the case of the presence of the patch and � = 0 otherwise, r =r =

0:97; " = " = 1; " = 1:3 in the case of the presence of the substrate and " = 1 otherwise.

(18)

E. Class of Expansion Coefficients

The following orthogonality property holds at the surface of
the unit sphere:

(19)

where means the complex conjugate of . Therefore, the edge
condition (4), being applied to the interior spherical volume

and to the spherical layer leads to
the requests that

(20)

where , and .

III. ANALYTICAL REGULARIZATION

In order to follow the MAR scheme in solving DSE (11) and
(12), it is convenient to change unknowns to and

(21)

Then it is easy to see that

(22)

where, after some algebra

(23)

(24)

where if , and
do not depend on . Thanks to that, DSE (12), (13) become

(25)

(26)
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where , and the following notations have been
introduced:

(27)

(28)

It can be seen that if
. Besides, from (20) and (21) we conclude that the un-

known coefficients must belong to the class determined by the
inequalities

(29)

Now we assume a uniform convergence of (25) and inte-
grate it in in term-by-term manner. On using the formula

, we obtain that

(30)

where and are some constants to be determined. Now, the
Mehler–Dirichlet formulas give integral representations of the
Legendre polynomials and associated functions [19] that enable
us to convert DSE to the following equations:

(31)

(32)

Each of the above equations is a homogeneous integral equa-
tion of the Abel type. Then, each integrand function vanishes on
the whole interval of the equation validity, hence

(33)

(34)

By multiplying both sides with and then inte-
grating this series equation in from 0 to , we obtain linear
equation set for coefficients. After some algebra necessary

to exclude the constants and , two coupled infinite-matrix
equations are cast into the following form:

(35)

where

(36)

(37)

(38)

with representing the Krönecker symbol.
Note that no numerical integration is needed to fill in the ma-

trix in (35) that entails very fast algorithm in contrast to conven-
tional MM codes. Now, collect all the unknowns into a single
column vector and all the right-hand parts
into the known column vector , which contains the characteris-
tics of the probe. Furthermore, introduce the block-type (2 2)
infinite matrix built of four infinite blocks

generated by (35) in obvious manner.
Then (35) can be written in the following way:

(39)

Note that each matrix element is a product of two functions:
, the

first of which goes to 0 if and , thus
certifying that when building (39) we had inverted explicitly the
static part of the problem associated with each spherical disk in
free space.

Generally, studying the large-index behavior we find that

(40)

Introducing the Hilbert space of square-summable number
sequences with the corresponding scalar product

, it is easy to see that
, therefore is a completely continuous operator

in , hence it is compact [20]. Besides, . Therefore, (35)
is a Fredholm second-kind matrix equation, or, in other words,
(39) is a canonical Fredholm operator equation, whose unique
solution belonging to is given by . More-
over, the solution to the -th order truncated equation given by

, where each block of the 2 2 ma-
trix has the size , converges in the piecewise manner
to the exact solution , if [8]. The last necessary step
is to verify the edge condition (4). Inspection of the large-
behavior of and shows that it is determined by the
functions (36) and (37) and given by . Therefore, the
solution of (35) satisfies (29) and hence (4), i.e., belongs to the
sub-set of determined by the edge condition. This validates
assumptions leading to (30).
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IV. ANTENNA CHARACTERISTICS

The shape of the far field is determined by the large-argu-
ment asymptotic behavior of the spherical Bessel and Hankel
functions (see [21, p. 437]). For example

(41)

Consequently, the far-field radiation pattern introduced in (3)
is given by

(42)

The radiated power is given by the Poynting vector total
flux through a distant sphere. Thanks to the orthogonality re-
lation—see (19), it reduces to

(43)

It is interesting to compare with the power radiated by the
same source (1) located in free space, that is

(44)

The normalized value, , coincides with the normal-
ized radiation (input) resistance of MSA. In the case of this value
being greater, respectively lower, than the unity, the MSA con-
ductors and spherical substrate improve, respectively deterio-
rate, the radiated power. Note that the same value, and also input
reactance, can be found from the near field of antenna by using
the Poynting theorem.

The directivity of the antenna represents the ratio of the
radiation intensity in a given direction to this value averaged
over all directions [21]. In our case, this yields

(45)

The electrical current on each disk is obtained as a jump in
the tangential magnetic field across its surface. In the terms of
series, this is given by

(46)

where for we imply , and , while for
we have , and .

V. NUMERICAL RESULTS

Now we shall present some numerical results in order to il-
lustrate the influence of two major MSA parameters: the size of
the ground and the curvature. However, at first we show the rel-
ative error associated with the truncation of each block
of the matrix. This quantity is defined as

(47)

It shows the normalized difference between two adjacent-
solutions of the matrix equation. Typical behavior of
is shown in Fig. 2. For large values of , this quantity be-
haves like . All the further computations were done
with , except for the plots in Fig. 4, where we took

. The choice of this value is clear from Fig. 2 and en-
sures a 3-digit accuracy in solving the matrix, for the considered
normalized frequencies and fixed .

Fig. 3 presents the relief of as a function of two
parameters: ground size and normalized frequency. It shows that
if , the resonance frequencies and the radiated power are
fixed. However, if the inner disk becomes smaller than the outer
one, the resonance frequencies grow up, while their Q-factors
and hence the radiated power falls down.

The plot in Fig. 4 corresponds to a cut of the relief in Fig. 3,
i.e., to the case of an incomplete spherical ground conductor

. The values of the first several resonance frequen-
cies of the patch are marked here. As explained before, these
values do not change significantly when the inner conductor
is a finite-size disk greater than the outer one. In the high-fre-
quency part of the plot one can see periodic small-amplitude
ripples caused by the spherical-substrate waves, which travel
around the spherical ground like the whispering-gallery modes.
Besides, one can notice the presence of a low-Q resonance close
to . This is the resonance of the spherical ground itself.
To emphasize this effect, the dotted and dashed curves in Fig. 4
show the same dependence in the case of a bare and coated PEC
sphere, respectively, fed by the coaxial probe.

The far-field radiation patterns and the current distribution on
the metallic disks associated to the marked normalized frequen-
cies are plotted in Fig. 5. This shows that the currents on the
inner and the outer conductors are almost the same. Moreover,
on the ground disk, the current distribution decreases smoothly
when crossing the angular position, which corresponds to the
rim of the patch disk. In addition to this, one can observe that
the th resonance frequency is associated with variations in
the patch-disk current magnitude from its pole to the rim. As
here the separation (substrate thickness), , is smaller than
half-wavelength in the dielectric of for the normalized
frequencies up to . =50, there is no variation of the reso-
nant -field between the disks for any of significant resonances.
Therefore, these frequencies are associated with the TM res-
onance modes. Besides, each TM mode has the far field pat-
tern whose number of lobes in the forward half-space is also .
The greater the normalized frequency, the greater the backward
radiation and the narrower the main beam. If the frequency is
very large, then the most intensive beam radiates backward-this
“keel-over” effect has been earlier reported for a conventional
spherical-circular MSA [9].

In addition to this, Fig. 6 shows the dependence of the
maximum directivity on the frequency. It is slightly improved
by the presence of the ground surface. It can be also noted that
the directivity is very similar in all the cases when the ground
surface is greater than the patch, except of the “keel-over”
band. The main-beam direction varies with the frequency, as
shown in Fig. 7, and eventually displays a “keel-over.” Its
nature is entirely explained by the waveguide features of the
spherical dielectric substrate that dominate over the patch effect
if the frequency or substrate thickness is large. However, by
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Fig. 8. Influence of the ground size on the far field pattern in the maxima (kr = 9:95 for the left column, kr = 18:41 for the right one) of the radiated power
at � = 180 . � = 18 ; r =r = 0:97; " = " = 1; " = 1:3. From top to bottom, the values of the ground size are � = 180 ; 40 ; 18 , and 0 .

placing a patch over the feed, one can shift the “keel-over”
frequency to a much higher value.

In order to emphasize these remarks on the ground size effect,
Fig. 8 exposes modifications of the radiated far-field pattern at
the first two resonances of MSA with a spherical ground. So far

as , the pattern does not change significantly. However,
in the case of equal angular sizes of the two metallic disks, the
backward and the forward-radiated field patterns are very sim-
ilar to each other. If the inner metallic disk becomes smaller than
the outer one, the orientation of the radiated far-field pattern is
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Fig. 9. Influence of the radius of curvature on the far-field pattern at 9.95 GHz.
� = 180 ; � � r = 15 mm, r �r = 1:4 mm, " = " = 1; " = 1:3.

Fig. 10. Conformal antenna used in comparison of theory with experiment:
front side view (left) and back side view (right). The slot separating foam
hemispheres and the feeding cable are visible.

inverted. Then, the inner disk behaves like a patch and the outer
one like a ground.

Consequently, the main conclusion of these observations is
that the smaller-size metallic conductor determines the resonant
frequency. That is why the ground size is a very important pa-
rameter for such conformal printed antennas.

The influence of the radius of curvature of the MSA with the
spherical ground is shown in Fig. 9. Here, the curvilinear radius
of the patch is a fixed value, , and

, that corresponds to the “cavity-model” TM resonance
of a flat circular-disk MSA [21]. However, such a “first guess”
value happens to be pretty far off the resonance for our MSA on
the spherical substrate, until its radius is mm. This
is well observable from the radiation pattern shape. Shifting the
resonance frequency to the required 10 GHz occurs at
mm. In this case, the pattern shape is close to the ones given
previously. A more interesting situation corresponds to
mm. Here the influence of the substrate curvature variation is
smaller, hence the TM resonant frequency is almost fixed
and the far-field pattern variations are minor. The greater the
radius of curvature, the closer the radiation pattern to that of a
flat circular MSA backed with infinite PEC ground plane.

Fig. 11. Comparison between the measurements and theory for the radiated
far field at 9 GHz. � = 160 ; � = 16 ; r = 35 mm, r = 38 mm,
" = " = 1:23; " = 1.

VI. VALIDATION

Partial validation of our results has been done by recreating
the conditions studied in [9], i.e., by considering a spherical-cir-
cular MSA with a spherical PEC ground excited by elemen-
tary RED of the length . This needs replacing unit-func-
tion -dependence of the driving current density in (1) with
the Dirac-delta factor and other relevant simple modifica-
tions. The equations obtained in this case coincide with those of
[9]. Besides, we have computed an input resistance scan in fre-
quency with HFSS 8 commercial solver: it took 16 hrs 41 min
using 41 389 cells against 1 s with MAR using 150 unknowns.

In order to see the accuracy of simulation, a conformal printed
antenna was manufactured (see Fig. 10) and measured. It had
a metalized foam substrate (see [22], [23]), whose technology
is controlled by the University of Rennes I. Two hemispherical
foam caps were placed on a copper sphere having a hole for the
coaxial-cable feeder. The feeder was piercing the foam and con-
tacting a smaller disk patch deposited at the pole opposite to the
feed hole. Electromagnetic and geometrical parameters of this
antenna are as follows: mm,

mm, . Numerous mea-
surements have been carried out; a typical example is given in
Fig. 11 and relates to the frequency of 9 GHz. All the other
measurements were in similar excellent agreement with theo-
retical results. A few discrepancies are due to some difficulties
of positioning the sphere in the anechoic chamber and certain
perturbation caused by the feeding coaxial cable.

VII. CONCLUSION

The presented analysis shows that MAR is a powerful and
efficient analytical-numerical method dealing with a global field
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computation. Indeed, the separation in terms of direct field—re-
flected field—diffracted field is not so convenient here as it is in
high-frequency methods such as GTD or PTD. More adequate
physical interpretation of the results is achieved in terms of ac-
tion (radiation of the feeding probe) and reaction (influence of
the scattering structures).

Unlike previous studies, here we expanded electromagnetic
field in terms of the spherical vector wave modes and assumed
finite size of the ground surface. Computations have shown that
the angular size of the ground and its radius of curvature are, in
some cases, critical parameters, which must be properly taken
into account. The MAR method allows analyzing more compli-
cated stacked structures, such as conformal spherical patch with
a similar parasite and finite-size ground surface, excited by the
centered radial and tangential dipoles simulating probe and slot
feeding. Arbitrarily positioned probe excitation, although treat-
able, presents a more complicated problem as it generates infi-
nite number of the azimuth field harmonics. Another interesting
research problem is simulation of a Lüneburg lens antenna fed
by a circular-spherical MSA.
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