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Radar Cross-Section Study of Cylindrical
Cavity-Backed Apertures with Outer or
Inner Material Coating: The Case
of E-Polarization

Dilek Colak, Alexander 1. Nosich, and Ayhan Altintas, Member, IEEE

Abstract—A dual-series-based solution is obtained for the
scattering of an E-polarized plane wave from a cavity-backed
aperture which is formed by a slitted infinite circular cylinder
coated with absorbing material. The material coating can be
done on the inner or outer surface of the cylinder. For both
cases, numerical results are presented for the radar cross sec-
tion and comparisons are given for two different realistic ab-
sorbing materials. The radar cross-section results are also given
for the aspect angle of the screen. Finally, the dependence of
radar cross section on the thickness of the absorbing layer is
presented.

I. INTRODUCTION

AVITY-BACKED apertures (CBA) are encountered

as parts of any airborne or spaceborne radar targets.
The most familiar CBAs are, probably, air inlets and
engine tubes, known to contribute a great deal to the
radar cross section of jet aircraft. What is even more
dangerous, the CBAs are famous for the internal reso-
nances, which can easily result in recognizing the shape of
a target. More often than not, these effects are considered
to be undesirable and are to be suppressed. To this end,
the walls of the cavity are covered with some lossy mate-
rial.

To simulate the scattering from these CBA geometries,
two- and three-dimensional (2D and 3D) models of open-
ended waveguide-type cavities are usually employed. Ab-
sorption for thin coatings is generally modeled by intro-
ducing boundary conditions of impedance type. In the
papers [1]-[6], the scattering from such cavities is treated
by various approximate asymptotic approaches, such as
GTD, UTD, bouncing ray, and hybrid methods (modal
and ray approaches). The simplicity and physical appeal of
these high-frequency approaches are not complemented
by the clear limits of accuracy. Besides, it is principally
difficult to take into account various parts of the scatterer
and their interaction with uniform accuracy. Also, the
high-frequency approaches mentioned fail for cavities with
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dimensions comparable to the wavelength. A Wiener—
Hopf-based approach to solve similar 2D problems for
unloaded and loaded rectangular CBA [7] is free of these
difficulties, but it becomes cumbersome if the walls of the
cavity are covered with absorbers. In a recent study [8],
the multiple parameter perturbation analysis has been
applied to the slitted loaded cavity problem comprising
two eccentric circular cylinders. The discussion on the
comparative advantages of different techniques is still
continuing (see [9] and the list of references).

For certain canonical geometries, there exists an accu-
rate approach of analytical-numerical nature which en-
sures any desired accuracy of the obtained resuits. This is
the dual-series-based Riemann-Hilbert (RHP) approach,
which has been under intensive study in the former USSR
since the 1960s [10]. In the 1970s and 1980s a large
amount of results have been obtained on free-space scat-
tering from open screens and collections of screens (see
[11] and the cited literature). In the West the dual-series-
based approach was exploited by Ziolkowski [12]-[14]. It
was unfortunate that a numerical error was present in [13]
for the E case (reported in [15]), which obviously should
not discredit the method. Actually, correct RHP-based
radar cross-section (RCS) analysis results were published
in [16], but remained unknown for western readers. In the
present study, the dual-series-based RHP technique has
been extended to solve the problems of CBAs with non-
homogeneous space inside or outside. Our canonical ge-
ometry is a circular shell formed by a zero-thickness,
perfectly conducting screen having an opening. Arbitrary
thin lossy material can be introduced as a concentric layer
on either inner or outer surface of the shell. We do
realize that this 2D model geometry is far from a real jet
inlet. Nevertheless, such a scatterer exhibits resonant be-
havior of quite a general nature. Studying this behavior
and the effect of absorber in detail, one can judge the
more realistic geometries.

The main advantage of the dual-series-based approach
is that it is based on the idea of partial analytical inver-
sion of the scattering operator. Final matrix equations are
proven to be of the Fredholm second kind, so the solution
exists and can be approximated through truncation. What
is also important is that the method is equally effective for
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any angular width of the shell from 0 to 2#. The size of
the matrix is determined by the electrical radius of curva-
ture, and fairly large structures can be treated accurately.
The numerical data obtained can obviously bring a better
understanding of the scattering behavior of loaded cavi-
ties. It can also serve as reference data for checking
numerical codes for more complicated scatterers, e.g.,
solved by method of moments [17], [18].

The remainder of the paper is organized as follows. In
Section II, we present the formulation of the problem.
The dual series equations are derived and then solved via
the RHP approach in Sections III and IV, respectively.
Sample numerical results are presented in Section V.
Finally, some conclusions are given in Section VL.

Throughout this paper the time dependence e **' has
been assumed and suppressed.

II. FORMULATION

The geometries analyzed in this paper are shown in
Figs. 1 and 2. The electric field vector of the incident
plane wave is taken to be parallel to the axis of the
cylinder, and the axial component of the magnetic field is
taken as zero (i.e., TM with respect to the axis of the
cylinder). This E-polarized plane wave is assumed to be
normally incident on the cylinder; hence, the problem is
two dimensional. The coordinate system (r, ¢, z) is coaxial
with the cylinder. The screen which has a radius of a is
taken to be in the interval of 6 <|¢ — ¢yl < 7. The
angular width of the slit is 26 and the angle between the
center of the slit and the x axis is ¢,. The cylindrical
cavity is coated with an absorbing material with a thick-
ness ¢. The radius b is at either a — ¢ or a + ¢ depending
on whether the coating is on the inside or on the outside,
respectively. The relative permittivity and permeability of
the absorbing material are €, and p,, respectively. Our
objective is to analyze the radar scattering behavior of this
geometry for various frequencies. The problem is scalar,
so the total field can be characterized by the single E,
component.

First, consider the geometry shown in Fig. 1. The total
field can be expressed as

EM(r) + EX(r), r>a,
E(r) = {EF(r), b<r<a, (1)
E*(r), r<b,

where E™ and E¥ stand for incident and scattered fields,
respectively.
The scattered field E}° satisfies the 2D Helmholtz
equations:
(V2 + kDES(r) =0,

(V2 + ke, u)EX(r) = 0,

r>a,r<b,

b<r<a, 03}

where k; = wy/pu,€, is the free-space wave number and
V2 is the Laplacian operator.

In addition, we impose the following boundary condi-
tions: First, the continuity of E, on the closed contours
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E-Wave \ /

Fig.1. E-wave scattering by an inner-coated cavity-backed aperture.

E-Wave ' g N

Fig. 2. E-wave scattering by an outer-coated cavity-backed aperture.

r = a as well as r = b, and the continuity of H, on r = b.
Second, the continuity of H, in the aperture region and
vanishing E, on the screen, at r = a.

Because of the sharp edges of the screen, the field
should satisfy certain edge conditions. These conditions
are satisfied by the requirement that the total electrical
and magnetic energy stored inside any finite neighbor-
hood of the edge must be finite. For the polarization
considered, the magnetic field is proportional to VE,, so
this requirement is given by

J(RIESP + [VES1?) dr < , ©)
B

where B is any bounded domain around the edge. Finally,
the Sommerfeld radiation condition

E*(r) ~ ®(¢) 4)

1/2
) eikor

imkyr

should be satisfied far from the scatterer as r — .
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II1. DERIVATION OF DUAL SERIES EQUATIONS

The scattered field expansions in three regions of Fig. 1
are assumed to be

= Aan(kor): r>a
Ex= Y (BJ(kr)+ C,HJkr), b<r<a}enr®,
n=—w Dan(kOr)9 r<b

&)

where k = kyy/u, €., J, and H, represent the Bessel and
Hankel functions of first kind and order n, respectively.

The incident plane wave of unit amplitude has the
Fourier expansion

-]

Y T (kyr)eine.

n=—o

Ein — eikox = eikorcosw —
z

(6)

The number of unknown coefficients in (5) can be
reduced by applying boundary conditions that are valid on
the closed contour; that is, the continuity of E, at r = a
and r = b as well as the continuity of H, at r = b. Hence

i"J (kga) + H,(kya) A,

B = = g, — H k), @

i"J (kga) + H,(kya) A,
" T (ka)E, — H(ka)n, ™

®

and

2i " (kga) + H(kya)A,

Dn = om, 1,GE, — Hkam,

are obtained. In (7), (8), and (9),

£ - 1/3 HI(kb)J, (kob) — H,(kb)J(kyb),

Er
= / " Ti(kb) T, (kob) — T,(kb)J,(kyb),

where the prime denotes derivative with respect to the
argument.

The zero value of E, on the screen and the continuity
of H, in the aperture lead to dual series equations for the
expansion coefficients

Y x,yemt=— Y de"e, le — @ol < 6, (10)

n=—oo n=—w
Y x,e = 0<le— gl <, 11

where
x, =i (kya) + H(kya)A4,, (12)
Zl'n+1

d, = — ’ 13
" wkoaH,(kya) (13
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and
H(kya)
- H (kya)

€ Skg, — Hikam,
e V u, Jka)é, — Hy(ka)m,

IV. DUAL-SERIES-BASED SOLUTION

Investigating the asymptotic behavior of v, as |n| — o,
based on the corresponding expressions for cylindrical
functions [19], we find

|7l
Yo ~ ——(1+&), 1%
kOa “‘r
where
_1 b 2n 7_1 b 2n -1
B =142 (2} - & —) . (16)
u+1\a nt+1\a

For b # a, the dominant term in (16) is the first term,
which is 1. The remaining terms decrease very fast as n
increases.

Adding and subtracting the asymptotic expression (15)
from v, in (10), we get the result

o« ) o2 rk a )
Y xlnlee =Y (x,,A,,-i— o d,,)e’”"’,
ne o e o Bt 1
lo — @l <6, (A7)
where
’“erOa
= + 18
" 1 |n| 18)

and x, and d, are given in (12) and (13), respectively.

Equations (17) and (11) form canonical dual-series
equations. This dual-series system can be solved by con-
verting into the Riemann-Hilbert problem [10]-[12]. As-
suming that the series (11) is term-by-term differentiable,
we replace it with the derivative with respect to ¢. The
termwise differentiation can be justified as described in
[11]. Denoting ¢ = ¢ — ¢,, we have

x

Y. % Inle™* =F(e'"), lyl<e6, (19a)
n=—x
Y xne"=0, 6<l|yl<m, (19b)
n=-—x
Y (-1D'%, =0, (19¢)

n=—x

where %, =x,e"?. The last equation is obtained by
substituting ¢ = w4+ ¢, into (11) to account for the
elimination of the constant term due to differentiation.
The function on the right-hand side of (19a) has a Fourier
expansion as

Fe¥) = ¥ fem,

n=-—-

(20)
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where the coefficients are given as

+ H’rk(]a
u+1

r

dn)ei""’o. 21

By introducing functions X * of complex variable z =
[zle'¥ such that

X (z) = Y %.nz", lz| <1,
n>0
XD = e Yo, sl P
n<0

and using (192) and (19b), the functional equation valid
on the whole unit circle |z| = 1,

X*(e") + AX (e'Y) =B, (23)

is obtained with

_ |+ lyl <o,
A= {—1, o<lyl<m,

_ | F(e), lyl < 0,
B(w) = {0, 0<lyl<m.

This is the equation which is known to constitute RHP.
To arrive at the exact solution of (23), it is necessary to
restrict the behavior of the unknown function X(z) at
infinity and at the end points of the screen. One may see
from (19) and (21) that the frequency dependence is
contained only in the F(e'*) term. Assuming that F(e'¥)
is known, (23) forms a static problem (k = 0) for X(z).
However, at static limit, the incident plane wave consti-
tutes a supersposition of two cross-polarized constant
fields: electric E, and magnetic H,. The perfectly con-
ducting cylinder does not perturb the axial electric field,
but it does perturb the transverse magnetic field. So,
function X(z) corresponds to the perturbation of H, by
the presence of the screen which then vanishes as |z| — .
From (3), the field behavior at the edges for E, and H,
will be like (I] — 6)/% and (fy| — 6)~1/2, respectively.
So, X(z) has a square-root singularity at the edges of the
screen.

Further we follow [11] and use the Riemann—Hilbert
problem solution in the form

£, = i fuTn(cos 6), (24)

n=—oo

where f, is the Fourier expansion coefficient given in
Q1. T,,(u) is related to the Legendre polynomials (P,
and P,) through the expressions

Qpnu), m # 0,
T,.(w) = { Q,0(w), m=0,n+0, (25
—In[(1 + w)/2], m=n=0,

where
1
Q,nu) = m[Pm_](u)P,,(u) - P, (wP,_ (W],
m+*n
Sgn (m) \ml
Qmm(u) = 2m §0q|m\—s(u)P\m[—s—1(u)’
qo(u) =1, q,(u) = —u,...,

q,(w) = P(u) — 2uP,_(u) + P,_,(u),

and we make use of the relation P__,(u) = P(w).

This form of the solution of the dual-series equations is
simpler than the solution in [10], [12]-[14], since it does
not require the separation of equations for m = 0 and
m # 0 parts.

By defining

Pn =An/‘]n(k0a)’ (26)

one can write (24) as

pm= Z Kmnpn+sm’

m=0,+1,..., 27
where .
H, (kya)J (kya)
mn = nWmns (28)
H, (kya)J, (kya)
S — !
= +
™ H(kja) H,(kya)J,(kya)
> 2ip(p, + D7
7| J (kya)A, — =~ |y
ngml koA, wH,(kya) mn
29)
and
W,,, = e=meT  (cos ). (30)

The coefficients W,,, contain all the information about
the angular geometry of the screen as functions of 6 and
Po-

Expression (27) can be written as a single operator
equation

(I-K)p=3S, 31

where p={p,J;__,, I is identity matrix, and K =
{K,nJy, o= _ Operator K can be shown (see [11]) to be
compact in the Hilbert space of I, (p € 1, if £2_ .| p,I*
< »). Besides, vector § ={S,),__. €/, as well. This
means that (31) is a regularized operator equation, and
therefore well known Fredholm’s theorems are valid [22]:
solution p does exist and is unique. Moreover, any solu-

tion of (31) can be shown (see [11]) to satisfy

Y olplln+ 1< (32)
as p, decays as O(n /%) when |n| —» ». Hence, (32)
ensures the validity of the edge condition (3) [11]. Further,
this solution can be approximated with any desired accu-
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racy by means of truncation of the matrix K =
{K,u¥n, o= _ and vector S = {S,):__, for all |m],|n| >
N,;. The sequence of approximate solutions is guaranteed
to converge to the exact solution for any
koa,b/a, €, 1., 0, ¢, as N, — o, which is not the gen-
eral case in the method of moments. In practice, the
simple numerical rule has been verified. To provide an
accuracy of 0.1%, we had to take N,. = the integer part of
(kya) + 15. It is noted that all the field coefficients in (5),
namely, 4,, B,, C,, and D, are calculated using equa-
tions (26), (7), (8), and (9), respectively.

We treat the second problem (for outer covering) in a
similar way. In (5), we replace as with bs; afterward, the
same procedure is followed. The resultant infinite system
of linear equations is formally the same as in the previous
problem (27). It is rewritten for convenience as

P = 2K, 0, + S, m=0,+1,..., (33)
(n)
where now
J(koa) H,(ka)¢, — J,(ka)n,
= e : T\ Wy ()
Jm(koa) Hm(ka)gm _Jm(ka)nm
and the coefficients are
EY
¢, =J,(kb)H (kob) — ‘/ — J,(kb)H,(kyb),
#’r
EV
n, = H,(kb)H,(k,b) — 1/ I H,(kb)H (kyb),
and
wkya
A = —
n PR + Inl, (35)
where
3 J(kqa) € H,(ka)¢, — J,(ka)n,
" 5k Vb HGa)E, ~J,Gka)n,”

Cocfficient S, in (33) is now given by
S, = J, (ko) H,(ka)&, — I, (ka)n,,]”"

'{—i’"[Hm(ka)Szm — I Gka)sy,]

+ ¥ i”{[H"(ka)SZ”—Jn(ka)s4n]An

n=—o

+8ia”'[H (ka)§, —J,,(ka)n,,]1>Wmn}, (36)
where

a=m3keb) p(p, + 1),

€
Sy, =T (kD) (kyb) — 1/ — J'(kb)J, (kob),
My

Sun = H (kD) (kob) = % Hi(kb)J,(kyb).
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The second problem has the same type of operator
equation as the previous one.

V. NUMERICAL RESULTS AND DISCUSSION

Numerical results are obtained for RCS behavior of a
CBA which is coated either from inside or from outside
with absorbing materials. The associated formula for RCS
is given as

|E*(r, m)|?

o, = lim 27y e

r—oow

»

which can be written in terms of expansion coefficients as

2

4 | N
Ops = 7 Z pni""n(koa) .
kO —Ne

We normalized RCS with respect to 7ra which is the
geometrical optics value for the perfectly conducting
closed circular cylinder. The normalized RCS results are
presented in Figs. 3 and 4 as a function of frequency for
different coating materials and different orientations of
the aperture. In all the figures, 6 is taken as 30°, and the
materials used for coating are shellac, natural XL (e, =
3.45 + 0.25i, p, = 1) [21] (dashed curves), and poly-2.5-
dichlorostyrene (e, = 7.3, w, = 0.91 + 0.32i) [3] (solid
curves). The thickness of the absorbing layer is 10% of the
radius of the screen. For comparison, dotted curves repre-
sent the RCS calculated for the same CBA without any
coating, and the dash-dotted line in Fig. 3(b) gives the
RCS of a perfectly conducting circular cylinder. It is noted
that for the ¢, = 180° case, the average level of RCS of
uncoated CBA is much higher than that of a closed
uncoated circular cylinder of the same radius [see Fig.
3(b)]. In addition, strong resonances are observed in the
RCS. The resonances are due to the excitation of the
damped natural modes of the screen as a cavity-backed
aperture. The damped modes originate from the eigen-
modes of the circular cavity, E,,,, being shifted in fre-
quency and split into even/odd pairs for which we keep
the similar identifiers, E,f,. In brief, this may be justified
as follows. Equation (31) can be extended to complex
values of k and taken with a zero right-hand part, which
constitutes the eigenvalue equation for natural frequen-
cies. This equation, however, is still of the Fredholm
second kind, so the natural frequencies form a discrete set
of complex numbers at any value of 6 [20]. However, they
are continuous functions of §: 0 < 6 < w, point 7 being
excluded because of the logarithm term in (25). The
even/odd splitting is due to breaking of eigenvalues, E,,,,,
of a closed cylinder, for any m # 0, by cutting the slot.

The shifted frequency locations have been calculated
previously [23] for uncoated CBA. Iterative—perturbation
analysis of the characteristic equation det( — K) = 0,
under assumption that 7 = sin(6/2) — 0, had been car-
ried out due to the strongly diagonal shape of the matrix.
The natural frequencies are complex-valued with real
parts smaller than the corresponding zeros of the Bessel
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Fig. 3. The normalized RCS of (a) an uncoated and outer-coated CBA
(coating radius b = 1.14) and (b) an unslitted cylinder, uncoated and
inner-coated CBA (coating radius b = 0.9a) for two different absorbing
materials with CBA having 60° aperture size and ¢, = 180°. Solid line,
€, =73, p, = 091 + 0.32i; dashed line, €, = 3.45 + 0.25{, u, = 1; dot-
ted line, uncoated cylinder, i.., €, = 1, u, = 1; dot-dashed line, unslitted
cylinder.

functions. They are found as an asymptotic series
5, 1
k).a=uv,, — vamn‘rz[l + (—2— -m?+ igm,,)#]

+ 0(+%), (37

for the even modes (m = 0,1,2,...), and
k;,a = v,, — 3m%,, (1 + i, + 0% (38)

for the odd modes (m = 1,2,...) of the empty circular

Fig. 4. The normalized RCS of (a) an uncoated and outer-coated CBA
(coating radius b = 1.1a) and (b) an uncoated and inner-coated CBA
(coating radius b = 0.9a) for two different absorbing materials with
CBA having 60° aperture size and ¢, = 90°. Solid line, €, = 7.3, p, =
0.91 + 0.32i; dashed line, € = 3.45 + 0.25i, p, = 1; dotted line, un-
coated cylinder, ie., €, =1, p, = 1.

slitted cavity. In (37) and (38),
Lo =71 L 8IH) 7,

s=0, #m
=

Yau =7 L SIHG), (39)
s=1, #m
and 8, =1, §, = 2 for s # 0, and v,,, is the nth zero of
J.(x).

The shifted frequency locations show good agreement
with the minima of RCS in the numerical results for
uncoated CBA at ¢, = 180°. Note that for the symmetri-
cal position of the slitted cylinder, i.e., when ¢, = 0° or
180°, there may exist only even modes, i.e., E,,s, however
for unsymmetrical cases both resonances, even and odd
modes, i.e., E;, and E,,,, do appear. The excited modes
corresponding to the first four resonance frequencies for
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the ¢, = 180° case are known as Ej;, E}, E5|, and Ej,
[13].

The effect of the presence of the absorbing material on
the outer and inner wall of the CBA are demonstrated in
Fig. 3(a) and (b), respectively, for the case of aperture in
the illuminated region. As observed in these figures, the
lowest-order peak cannot be reduced by using absorbing
dielectric material. However, when the frequency in-
creases, the resonance peaks are reduced due to the fact
that low-frequency E-field has a zero value on the screen
and has a maximum on the axis of the cylinder, because
the zeroth harmonic is dominating. However, when the
frequency is increased, the number of azimuthal harmon-
ics of comparable amplitude also increases and the loca-
tion of the maximum of E-field moves away from the axis.
Therefore, resonances of higher-order modes can be sup-
pressed by coating the screen with the absorbing material
from inside. To reduce the lowest-order resonance peak,
one needs to use magnetic absorbing material as seen in
Fig. 3(a) and (b). Since the magnetic field has an az-
imuthal component which is not zero on the screen, it can
be suppressed by using lossy magnetic material, which
results in a lower backscattered power. Coating from
outside has no effect on the internal resonances; it only
helps to decrease the amplitude of the incident field
entering into the cavity. Therefore, the sharp minima
cannot be suppressed, but the average level of RCS is
reduced as seen in Fig. 3(a). So the resonances are just
shifted in frequency but they are still sharp, which may
cause the target to be easily identified.

As an example of nonsymmetrical excitation, we exam-
ine the case of 90° orientation, i.e., when the aperture is
looking up. Coating from the outside is very effective for
reducing the average level of the RCS, but there are still
sharp resonances [see Fig. 4(a)]. The frequency value at
which RCS has a broad minimum in those figures corre-
sponds to the frequency at which the reflection coefficient
is minimum for quarter-wavelength magneto-dielectric
coating on a perfectly conducting plane. If the coating is
from the outside, some of the energy is absorbed by the
coating material, so the amplitudes of the resonance peaks
are reduced. On the other hand, as seen in Fig. 4(b),
coating from the inside is again effective for suppressing
the resonances, except the lowest one. The resonance
phenomena are greatly reduced if the frequency is in-
creased and magnetic coating is used.

The results obtained for the case when the aperture is
in the shadow region are very similar to the closed cylin-
der case [see fig. 3(b), dash-dotted curve]. This happens
because the E-polarized excitation induces only longitudi-
nal current on a cylindrical scatterer, hardly reaching the
shadow part of surface, and hence, not exciting the inte-
rior of CBA.

The dependence of normalized RCS on the angle of
aperture orientation ¢, is presented in Fig. 5 for a sample
frequency, kya = 8.0 (maximum RCS of uncoated CBA).
Only lossy magnetic coating results are given for the same
parameters of absorber as before. One notes again that at
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Fig. 5. The normalized RCS versus aspect angle of the screen, i.c., py,
for the magnetic absorbing material with €, = 7.3, p, = 0.91 + 0.32/ at
koa = 8. Solid line, inner-coated CBA; dashed line, outer-coated CBA;
dotted line, uncoated cylinder, i.e., €, = 1, u, = 1.

on-aperture incidence, the inner coating (solid curves)
serves much better for reducing the RCS than the outer
one (dashed curves). As observed in Fig. 3(a) and (b),
when the wave hits the aperture directly, the effect of
resonances makes the structure strongly frequency-depen-
dent. Therefore, RCS dependence on the angle of orien-
tation at two different frequencies, even if they are close
to each other, will be quite different.

The last two sets of graphs show the dependence of
RCS on the thickness of the absorbing layer. The results
are obtained only for the lossy magnetic material for
coating from the inside and from the outside at some
specific frequencies, namely, for ky,a = 1.71 (dotted
curves), 8.5 (dashed curves), and 9.39 (solid curves). As b
approaches a, RCS approaches the value for the uncoated
CBA response at those frequencies [see Fig. 6(a) and (b)].
As seen from the figures, the curves have an oscillation at
first and then stabilize as the thickness is increased.
Mainly, there are two mechanisms involved. The first
mechanism is the interference of the waves reflected from
both surfaces of the material coating at the aperture, and
the second mechanism is the absorption inside the coat-
ing. The former prevails when the thickness is small and
the latter when it is larger. The location of the minima in
Fig. 6(a) and (b) is in good agreement with the calcuia-
tions for a lossy material slab of parameters ¢, €,, and p,,
especially for higher frequencies. This validates the above
explanation, since our circularly curved material coating is
closer to a planar slab for higher frequencies. Hence, for
practical purposes, the thickness of the dielectric slab can
be chosen so that RCS has a minimum value at a specified
frequency. On the other hand, if the absorbing layer were
covering only the walls of CBA, but not the aperture
itself, one could expect the absence of interference min-
ima in Fig. 6(a) and (b).
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Normalized RCS

Normalized RCS

Fig. 6. The normalized RCS of (a) an outer-coated and (b) an inner-
coated CBA versus relative thickness of the layer. CBA has 60° aperture
size, @y = 180°, and €, = 7.3, u, = 0.91 + 0.32i. Solid line, kya = 9.39;
dashed line, kya = 8.5; dotted line, kqa = 1.71.

VI. CONCLUSIONS

We have considered the problem of electromagnetic
scattering of a time-harmonic plane E-wave from a thin,
perfectly conducting, slitted infinite cylinder which is
coated with absorbing material either from inside or from
outside. Our aim is to study the resonances which appear
in radar cross-section signatures of loaded cavities.

We first reduced the problem into dual-series equations
and then solved by using the RHP technique. According
to the numerical results, one can say that it is much more
preferable to choose a lossy magnetic material for coating.
Further, it is much better to make the coating from the
inside to suppress the resonances when the interior reso-
nance is the dominant feature in the backscattering char-
acteristics. Moreover, in the case of direct on-aperture
incidence, the inner covering is obviously better for any
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frequency. Otherwise, coating from the outside can also
be preferable to reduce the average level of the RCS off
the resonant frequency. Finally, it is possible to adjust the
thickness of the absorbing layer at a specific frequency so
that the RCS has a minimum value.

In this paper, the E-polarized incident field case is
considered. The other polarization analysis results are to
be reported separately.
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