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Abstract. The regularization of the integral equations for the solution of 
electromagnetic problems is discussed. The technique includes a semi-analytic 
inversion of the integral operator resulting in equation of the Fredholm second 
kind, which can be solved using numerical inversion. The procedure is employed 
through Riemann-Hilbert Problem technique for the electromagnetic problems that 
can be put into a dual-series equation form. An example of the method is 
described for the E -wave scattering from a cavity-backed aperture. 
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1 Introduction 

Scattering, diffraction and radiation of electromagnetic waves can be reduced to 
integral equations using generalized potential theory approach. Analytical solution 
of these integral equations is possible only for some classes of problems. The 
Wiener-Hopf approach is one of the powerful analytical techniques for the 2-D 
problems [1]. On the other hand, purely numerical methods have been developed 
and widely used in all kinds of problems. In between these approaches are the 
numerical-analytical techniques that are based on the partially analytical 
development of the solution and calculation of the final result through numerical 
methods. Here, partial inversion of the singular kernel of the integral equation 
plays an important role to convert the problem into a form that can be solved 
numerically in an efficient and accurate way. 

For an operator L, the approach inverts the singular part of the operator 
equation 

Lp=j (1) 

so that one gets 

(2) 
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where I is the identity operator, I; is the singular part of the operator L, and 

LII is its inverse. It is obvious to note that L = Lt + ~ . The above equation can 

also be written in compact form as 

(l-K)p=S (3) 

where K = -r;l~ and S = r;l!. 
T!le advantage gained in converting (1) into a form given in (3) is the compact 

nature of the operator K which then implies that the operator equation (1) is of 
Fredholm second kind. The existence of the solution is guaranteed and numerical 
approximation is mathematically rigorous. For this reason, this process is called 
the regularization of the operator equation. The subtlety lies in identification of the 
singular part of the operator and its analytical inversion. 

For problems involving circular strips or periodic grating of strips, the 
regularization can be done through Riemann-Hilbert Problem (RHP) approach 
which utilizes the theory of analytic functions of complex variable ([2-4]). This 
approach has been widely exploited especially in the former Soviet Union for the 
scattering from a wide class of periodic, zero-thickness, 2-D scatterers with 
perfect conductivity. Initially, the focus was on the analysis of strip gratings, later 
circular open screens or a collection of such screens in various environments have 
been analyzed. An extensive list of such works is given in [3]. 

The common nature of all these problems is that the boundary conditions allow 
the solution to be formulated in the form of dual series equations. The RHP 
solution of dual series equations was introduced into the Western literature by 
Ziolkowsky ([5-7]). Later, E - and H - wave scattering from coated cavities have 
been explored ([8, 9]). Recently, a complex source point-dual series combination 
has lead to the RHP formulation of the radiation from reflector antennas [10, 11]. 
For cavity structures, a comparative study of the method of regularization and the 
Wiener-Hopf is given in [12]. In the following sections, the dual series equations 
and their regularization through RHP will be described for scattering from 
cavity-backed apertures (CBA). For a complete discussion of the subjelft, the 
reader is referred to [3]. 

2 The RHP Technique 

Consider a simple, smooth, non-intersecting closed curve C in the complex plane 
of variable z = x + iy and define the open domains exterior and interior to C as 

Q+ , and Q- , respectively. Let the closed curve C be composed of two curves 

M and N such that 

C=MuN. (4) 
Consider a boundary value problem concerning the reconstruction of a complex 
function X (z) satisfying 
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ZoE N 

(5) 

(6) 

where X + (Zo ) and X - (Zo ) are the limiting values of X (z) from outside and 

from inside of C, respectively. B(zo) is a given function which is Holder 

continuous. The Riemann-Hilbert Problem is the determination of X (z) 

satisfying the above equations and the condition that X (z) is vanishing as 

Izl-7 00. Guided by the assumption that X (z) has singularities of order 112 at 

each of two endpoints of M (this is a necessity for the electromagnetic problems 
due to edge condition), one can introduce a characteristic function R(z) of the 

problem under consideration, such that R(z)X (z) is regular in the whole plane. 

The procedure is described in [3] and introduces 

R(z) = (z -a1)II2(z _a2)lf2 (7) 

with z = al,2 at the endpoints and the branch is chosen so that the limits differ by 

sign: if zE Q± and Zo E C ,then for z -7 zo' R(z) -7 R±(zo) = ±R(zo). Now, by 

introducing a new function 

one obtains 

where 

fez) = X(z)R(z) 

Zo EM 
ZO E N. 

The solution of the above RHP is given in the form of Cauchy integral 

(8) 

(9) 

(10) 

fez) = -1-1 D(zo)dzo + G (11) 
2m c zo - z 

where G is a constant which has to be determined from physical conditions of the 
problem. Rewriting (11) for the function X (z), one gets 

X(z) =_1 ___ 1_1 B(zo)R+(zo)dzo +~. 
2m R(z) C zo - z R(z) 

(12) 

In the dual series solution applications, the value of the function X ( z) exactly on 

the curve is requested. For such cases, one uses the Plemelj-Sokhotskii formulas 
for the limiting values of X (z) on M to obtain 
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3 Solution of Canonical Dual Series Equations 

Consider the following dual series equations with trigonometric kernel for infinite 
sequence of coefficients 

00 

LXnlnlein!fl = F(ei!fl), IfIE M = (11fI1 < ()) (14) 
n=--oo 

00 

Lxnein!fl = 0, IfI E N = «() < IIfII ~ n) (15) 
n=-oo 

where F(eil(l) is a known function with an expansion F(eil(l) = Lineinl(l . 

Assuming the series is term-by-term differentiable, we replace (15) with its 
derivative with respect to IfI and add the identity at IfI = 0 to get 

n=-oo 

By introducing functions X±(z) of the complex variable z = ei!fl such that 

X+(z)=Linnzn, 1z1~1 
n>O 

X-(z)=-Linnzn, Izl~1 
n<O 

we arrive at the functional equations, 

X+ (ei!fl) + X- (ei!fl) = F(ei!fl); IfIE M 

X+(ei!fl)-X-(ei!fl) =0; IfIE N 

(16) 

(17) 

(18) 

(19) 

(20) 

which constitute the RHP considered above. The determination of the vector 

{xn };=_ is given in detail in [3], so it will not be repeated here. It is considered to 

be essential to include the final result as 
00 

in = LinTmn(cos()) (21) 
n=-oo 

where Tmn(u) are related to the Legendre polynomials Pn(u) as follows 

j Qmn(u), 

Tmn(u) = QnO(u), m = O,n:f:. 0 

-In[(l+u)/2], m=n=O 

m:f:.O 

(22) 

where 
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1 
Qmn(u) = [Pm-1(U)Pn(U)-Pm(U)Pn-l(U)], m7:n 

2(m - n) 

sgn(m) b1 
Qmm(u) =~ ~qlml-s<u)~ml-s-l(U), m 7: ° 

qo(U) = l,ql (u) = -u,···,qs(u) = Ps(u) - 2uPs_1(u) + Ps-2 (u) 

and we make use of the relation P -s-l ( U ) = Ps ( u ) . 

4 Formulation for E-wave Scattering by Cavity-Backed 
Apertures 

The geometries analyzed are shown in Fig. 1 and 2. The electric field vector of the 
incident plane wave is taken to be parallel to the axis of the cylinder, and the axial 
component of the magnetic field is taken to be zero (i.e. TM with respect to the 
axis of the cylinder). This E -polarized plane wave is assumed to be normally 
incident on the cylinder; hence the problem is two dimensional. The coordinate 
system (r, rp, z) is coaxial with the cylinder. The screen which has a radius of" a" 

is taken to be in the interval of 0 < Irp - rpol ::::; 1l' • The angular width of the slit is 

20 , and the angle between the center of the slit and the x axis is rp o' The 

cylindrical cavity is coated with an absorbing material with thickness t. The 
radius "b" is at either a - t or a + t depending on whether the coating is on the 
inside or on the outside, respectively. The relative permittivity and permeability of 
the absorbing material are fr and f.lr , respectively. Our objective is to analyze 

the radar scattering behavior of this geometry for various frequencies. The 
problem is scalar, so the total field can be characterized by the single Ez 

component. The time dependence eiW/ has been assumed and suppressed. 
First, consider the geometry shown in Fig. 1. The total field can be expressed as 

follows 

r > a 
b<r<a 

r<b 

where E~n (r) and E~c (r) stand for incident and scattered fields, respectively. 

The scattered field E:c satisfies the 2-D Helmholtz equations: 

(V2 + k;)E;C(r) = 0, r > a, r < b 

(V2 + k;frf.lr)E:c (1=) = 0, b < r < a 

(23) 

(24) 
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where ko = (J)~ PoGo is the free-space wave number and V2 is the Laplacian 

operator. 
In addition, we impose the boundary conditions: First, the continuity of Ez on 

the closed contours r = a as well as r = b , and the continuity of H tp on r = b . 
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Fig. 1. E-wave scattering by an inner-coated cavity-backed aperture 
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Fig. 2. E-wave scattering by an outer-coated cavity-backed aperture 
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Second, the continuity of H rp in the aperture region and vanishing Ez on the 

screen, at r = a . 
Because of the sharp edges of the screen, the field should satisfy certain edge 

conditions. These conditions are satisfied by the requirement that the total 
electrical and magnetic energy stored inside any finite neighborhood of the edge 
must be finite. Finally, the Sommerfeld radiation condition should be satisfied far 
from the scatterer as r ~ 00 • 

5 Derivation of Dual Series Equations 

The scattered field expansions in three regions of Fig. 1 are assumed to be 

n=oo lAnHn(kor), r > a) 
E;c = n~ Bnln(kr) + CnHn(kr), b<r<a einrp 

- Dnln(kor), r < b 

(25) 

where k = ko~ jlrEr ' 1 nand H n represent the Bessel and Hankel functions of 

the first kind and order n, respectively. 
The incident plane wave of unit amplitude has the Fourier expansion as 

00 

Ein = ik.x = ik.rcosrp = ~ .nl (k ) inrp z e e £.Jl n or e . (26) 
n=-oo 

The number of unknown coefficients in (25) can be reduced by applying boundary 
conditions that are valid on the closed contour, that is, the continuity of Ez at 

r = a and r = b as well as the continuity of H rp at r = b . Hence 

(27) 

(28) 

and 

D = 2i in 1 n (koa) + H n (koa)An 

n 7Tkobjlr In(ka)fn - Hn(ka)'fJn 
(29) 

are obtained. In (27), (28) and (29) 

fn = ~H~(kb)ln(kob)-Hn(kb)l~(kob) V-;,-
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and prime denotes derivative with respect to the argument. 
Zero value of E z on the screen and the continuity of Hlp in the aperture lead to 

dual series equations for the expansion coefficients 

where 

and 

.. .. 
~ x Y einlp = - ~ d i nlp 
~ n n ~ n ' 

n=-oo n=~ 

.. 
~ x einlp =0 
~ n ' 

n=-oo 

_ H~ (kdl) ~ J~ (ka )qn - H~ (ka )TJn 
Yn - Hn(koa) v-:u: In(ka)qn -Hn(ka)TJn . 

Investigating the asymptotic behaviour of Y n as Inl ~ 00 , 

corresponding expressions for cylindrical functions [13], we find 

Yn - K(I+ Pn) 
koa J1.r 

where 

Pn = 1 + 2ELJ.. (~)2n[l_ ELJ..(~)2n ]-1 
J1.r + 1 a J1.r + 1 a 

(30) 

(31) 

(32) 

(33) 

(34) 

based on the 

(35) 

(36) 

For b ¢ a , the dominant term in (36) is the first term, which is 1. The remaining 
terms decrease very fast as nincreases. 

Adding and subtracting the asymptotic expression (35) from Y n in (30), we get 
the following result 

(37) 

where 

Ii = J1.rkoa Y + Inl n 1 n , 
J1.r+ 

(38) 

xn and dn are given in (32) and (33), respectively. Equation (37) and (31) form 
canonical dual series equations as shown above in (14) and(16). The solution of 
this dual series equations is given as described above. By defining 
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Xn and dn are given in (32) and (33), respectively. Equation (37) and (31) form 

canonical dual series equations as shown above in (14) and(16). The solution of 
this dual series equations is given as described above. By deftning 

Pn = An /In(koa) , (39) 

one can write (21) as 
00 

Pm= IKmnPn+Sm, m=O,±I, ... (40) 
n=-oo 

where 

(41) 

(42) 

and 

W = ei(n-m)tp, T (cosO) mn mn' (43) 

The coefftcients Wmn contain all the information about the angular geometry of 

the screen, as functions of 0 and ({Jo' Expression (40) can be written as a single 

operator equation 

(J -K)p=S (44) 

where P = {p};=-oo, I is identity matrix and K = {Kmn}:,n=_oo . Operator K can 

be shown (see [3] to be compact in the Hilbert space of 12 (p E 12 if 
00 

IlpJ < (0). Besides, vector S = {Sm}:=_oo E 12 as well. It means that (44) is a 
n;:::::-co 

regularized operator equation, and therefore well known Fredholm's theorems are 
valid [14]: solution p does exist and is unique. Moreover, any solution of (44) 

can be shown (see [3]) to satisfy 

(45) 
n=-oo 

as Pn decay as O(n-3/2 ) when Inl ~ 00. Hence, (45) ensures the validity of the 

edge condition [3]. Further, this solution can be approximated with any desired 

accuracy by means of truncation of the matrix K = {Kmn}:,n=_oo' and vector 

S = {Sm }:=-oo for all 1m I, Inl > N tr . 
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verified. To provide an accuracy of 0.1 %, we had to take Ntr = integer part of 

( k oa ) + 15 . It is noted that, all the field coefficients in (25), namely An' B n' en 

and Dn are calculated using equations (39), (27), (28) and (29), respectively. 

We treat the second problem (for the outer covering) in a similar way. In (25), 
we replace a's with b's; afterwards the same procedure is followed. The resultant 
infinite system of linear equations is formally the same as that of the previous 
problem (40). It is rewritten below for convenience 

where now 

Pm = LKmnPn +Sm' m=O,±I, ... 
(n) 

K = In(koa) Hn(ka)qn -In(ka)l]n 11 W 
mn Jm(koa) Hm(ka)qm -Jm(ka)l]m n mn' 

and the coefficients are 

and 

where 

qn = In(kb)H~(kob) - ~J~(kb)Hn(kob) vP: 

11 = - f-lrkoa y + Inl 
n +1 n 

f..l r 

Yn = J~(koa) fi: H~(ka)qn - J~(ka)l]n 
In(koa) vP: Hn(ka)qn -In(ka)l]n 

Coefficient Sm in (46) is now given by 

where 

gm = -im[Hm(ka)S2m - Jm(ka)s4m] 

hn = Hn(ka)s2n - I n(ka)s4n 

In = [Hn(ka)qn - I n(ka)1]nr 1 

(46) 

(47) 

(48) 

(49) 



419 

a = tr3(kob)2 f.lr(f.lr + 1) 

s2n = In(kb)J~(kob) - ~J~(kb)Jn(kob), v-:u: 

S4n = Hn(kb)J~(kob) - ~H~(kb)Jn(kob). vP: 
The second problem has the same type of operator equation as the previous one. 

6 Numerical Results and Discussions 

Numerical results are obtained for the radar cross section (RCS) behaviour of a 
CBA which is coated either from inside or from outside with absorbing materials. 
The formula for RCS can be written in terms of expansion coefficients as 

2 
4 N" 

(jbs =- LPninJn(koa) . 
ko -N" 

We normalized RCS with respect to tr a which is the geometrical optics value 

for the perfectly conducting closed circular cylinder. The normalized RCS results 
are presented in Figs. 3a to 4b as a function of frequency for different coating 
materials and different orientations of the aperture. In all figures, () is taken as 

300 , and the materials used for coating are shellac, natural XL 
(£r = 3.45 + 0.25i, f.l r = 1) (dashed curves) and poly-2.5-dichlorostyrene 

(cr = 7.3, f.l r = 0.91 + 0.32i) (solid curves). The thickness of the absorbing layer 

is 10% of the radius of the screen. For comparison, dotted curves represent the 
RCS calculated for the same CBA without any coating, and dash-dotted line in 
Fig. 3b gives the RCS of a perfectly conducting circular cylinder. It is noted that 

for CPo = 1800 case, the average level of RCS of uncoated CBA is much higher 

than that of closed uncoated circular cylinder of the same radius (See Fig. 3b). In 
addition, strong resonances are observed in the RCS. The resonances are due to 
the excitation of the damped natural modes of the screen as a cavity-backed 
aperture. 

The effect of the presence of the absorbing material on the outer and inner wall 
of CBA are demonstrated in Figs. 3a and 3b, respectively for the case of aperture 
in the illumination region. As observed in these figures, the lowest order peak 
cannot be reduced by using absorbing dielectric material. However, when the 
frequency increases, the resonance peaks are reduced. It is due to the fact that low 
frequency E-field has zero value on the screen and has a maximum on the axis of 
the cylinder, as zeroth harmonic is dominating. But when the frequency is 
increased, the number of azimuthal harmonics of comparable amplitude also 
increases and the location of the maximum of E-field moves away from the axis. 
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Fig. 3. The normalized ReS of (a) an uncoated and outer-coated eBA (coating radius 
b = l.1a) and (b) an unslitted cylinder, uncoated and inner-coated eBA (coating radius 
b = 0.9a ) for two different absorbing materials with eBA having 60° aperture size and 

f/Jo = 1800 • Solid line, e, = 7.3, IJ, = 0.91 + 0.32i ; dashed line, 

e, = 3.45 + 0.25i, IJ, = 1; dotted line, uncoated cylinder, i.e., e, = 1, IJ, = 1; dot
dashed line, unslitted cylinder 



421 

1.6,_---r---........,..---,.....----r-----, 
0-0~ 

1. 

1.2 

~ 1 
a: 
11 

1: 
0.4 

0.2 

2 

. 
4 

,I 

/) 
~ , : 
t f'I\ , i 

j . ,. 

~ I'" I : , " ; 
\ t •• · 
.I 

till 
, I 

~" :. ~ . ~ 
\ ~ ,'\ ! \ : \1\ ,........ ; •. '. .' 
...... ':\' \! '. ,:n .. : .. ,' ... ! , t. .. !, '...... .' , ···.P/.i , • 
, 1:''-''/' :; I ~ .. ~ fr:' \! 
, J.: t , ,. I II ~ ~ 

\ t~ \: \ I '. ~ 
II; II' : 'I 
" " I ---. , I v 

\ ' ,: 

4 8 10 

1.8,....---..,----,-----.------,,------, 

~ 
11 

1 
l5 z 

1.4 

1.2 

O.S 

0.8 

2 4 

0-
tin 

kJl 
(b) 

o 
'I 
I, ,I 

'I " :'~: ' I ., ' , , .. , 
:: II, I i ~ , 

\ , 
I ' .'" II, 

• 

6 

'\/ 1 /:~\ 
:,.... ': ..... t ~ : .• j 

I .: ... :, 

'. i r .•• ., " ~: 
'" " 

8 

, 

10 

Fig. 4. The normalized ReS of (a) an uncoated and outer-coated eBA (coating radius 
b = 1.la) and (b) an uncoated and inner-coated eBA (coating radius b = O.9a) for two 

different absorbing materials with eBA having 60° aperture size and ({Jo = 900 • Solid line, 

£r = 7.3, J1. r = 0.91 + 0.32i; dashed line, £r = 3.45 + 0.25i, J1.r = 1; dotted line, 

uncoated cylinder, i.e., £r = 1, J1. r = 1 
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Therefore, resonances of higher order modes can be suppressed by coating the 
screen with the absorbing material from inside. To reduce the lowest order 
resonance peak, one needs to use magnetic absorbing material as seen in Fig. 3a 
and 3b. Since the magnetic field has an azimuthal component, which is not zero on 
the screen, it can be suppressed by using lossy magnetic material which results in 
a lower back scattered power. Coating from outside has no effect on the internal 
resonances but it helps only to decrease the amplitude of the incident field 
entering into cavity. Therefore, the sharp minima cannot be suppressed, but the 
average level of RCS is reduced as seen in Fig. 3a. So the resonances are just 
shifted in frequency but they are still sharp which may cause the target to be easily 
identified. 

As an example of nonsymmetrical excitation, we examine the case of 90° 
orientation, i.e. when the aperture is looking up. Coating from outside is much 
effective for reducing the average level of the RCS, but there are still sharp 
resonances (See Fig. 4a). The frequency value at which RCS has a broad 
minimum in those figures corresponds to the frequency at which the reflection 
coefficient is minimum for quarter-wavelength magneto-dielectric coating on a 
perfectly conducting plane. If the coating is from outside, some of the energy is 
absorbed by the coating material. So, the amplitudes of the resonance peaks are 
reduced. On the other hand, as seen in Fig. 4b, coating from inside is again 
effective for suppressing the resonances, except the lowest one. The resonance 
phenomena are greatly reduced if the frequency is increased and magnetic coating 
is used. 

The results obtained for the case when the aperture is in the shadow region are 
very similar to the closed cylinder case (See Fig. 3b, dash-dotted curves). This 
happens because the E-polarized excitation induces only longitudinal current on a 
cylindrical scatterer, hardly reaching the shadow part of surface, and hence, not 
exciting the interior of CBA. 

7 Conclusions 

The method of regularization is introduced and its application through 
Riemann-Hilbert problem technique for electromagnetic problems is discussed. 
The method converts the integral operator into a form for which the existence of 
the solution is guaranteed and numerical approximation is mathematically 
rigorous. 

The method is applied to the RCS study of coated cavity-backed apertures. The 
problem is first formulated in dual series equations and then solved by using RHP 
technique. According to the numerical results, one can say that it is much more 
preferable to choose a lossy magnetic material for coating. Further, it is much 
better to make the coating from the inside to suppress the resonances when the 
interior resonance is the dominant feature in the backscattering characteristics. 
Moreover, in case of direct on-aperture incidence, the inner covering is obviously 
better for any frequency. Otherwise, coating from the outside can also be 
preferable to reduce the average level of the RCS off the resonant frequency. 
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