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Radiation Conditions and Uniqueness Theorems for Open Waveguides ™

" A. I. NOSICH AND V. P. SHESTOPALOV

The correct formulation of boundary-value problems in the theory of
open waveguides is considered.

INTRODUCTION

The radiation conditions at infinity are an element of the foundation on which the solu-
tions of exterior boundary-value problems for harmonic oscillations (~e~%kef Imk = 0) are con-
structed. The physical meaning of the radiation principle was formulated in its time by Sommer-
feld and consists of the absence of sources at infinity. To obtain a unique solution a differ-
ent principle is also sometimes employed—the principle of limiting absorption: the solution
is taken as the limit of a bounded solution as Imk—+0. In spite of the convenience of this
principle the existence of this limit must be justified for each specific class of problems.

Sommerfeld derived the radiation conditions for free space containing bounded obstacles
[1] (see also [2]). Sveshnikov derived an analogous result for an open waveguide in the form
of a partial radiation condition for each of the characteristic waves, and he justified the
principle of limiting absorption [3, 4]. Conditions of this type, as shown in [5, 6], can also ’
be employed with complex k for analyzing exterior problems of the characteristic oscillations
of obstacles. .

The purpose of this paper is to derive the radiation condition for open waveguides (OW),
as an extension of Sommerfeld's and Sveshnikov's condition to the case of unbounded space con-
taining infinite bodies and surfaces, regular along some straight line. The method of deriving
this condition follows from the general theory of partial differential equations [7, 8]: all
possible forms of Green's function for the OW must be constructed, their asymptotic behavior at
infinity must be studied, and the conditions that separate the unique form of Green's function
satisfying the radiation principle must be formulated. In addition, it is of interest to prove

the principle of limiting absorption.

*Qriginally published in Radiotekhnika i elektronika, No. 12, 1988, pp. 2483-2491.
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1. GREEN'S FUNCTIONS OF OPEN WAVEGUIDES

Consider a three-dimensional OW formed by elements of three types: dielectric rods D x z,
ideally conducting rods ¥ x 2z, and ideally conducting, open, infinitely thin surfaces aM' X z.
We shall assume that the contours of the transverse sections of the elements are closed curves
3D, 3M and the open curves 9M' can be multiply connected, but finite, and do not intersect and
are quite smooth—for example, they have a continuous curvature (Fig. l). We shall assume that

all the media are nonmagnetic u(7) = 1(7'= (r,9)) and the permittivity e(;) is a piecewise-
differentiable function, equal to unity outside D; 3D is the union of all lines where the per-
mittivity is discontinuous. We denote by a the radius of the smallest circle containing the
cross section of all elements of the OW, and the origin of coordinates is placed at the cen-
ter of this circle; we also denote by 3W =3DU 3MU dM' the collection of boundaries of elements
in W=MUW. L

The construction of the tensor Grg_en's_.function for the OW @(R, Ry) reduces to searching
for a pair of vector functions G®™={E®™ H%™} such that

Ee Josuare
e =G iy : .
He Byl ™

(1

. - -
where da is the Kronecker delta and |/ ®*|=1. The components of G satisfy Maxwell's equations

8
with a § function on the right-hand side [9]:

TOtE® — (kH® = —4nc™ 60y 1 ™,

10t H% +ikeE® = 4nc™'§,,7¢, R,Re €MN\WXz), Imk=0, (2)

where 7°'=7°‘6(§ - Eo) and o = ¢ and m, and known conditions (the outer brackets denote the dif-
ference of limiting values)

[Eax’—’.”(a,wuafw')mzo" [[Euxm”aox:=0; 3)
((H*XA] ] 5px, = 0,

J(ReelEX? +|HY})dv< =, VCIMR®, a=e m.
. (4)

Based on general considerations we know that the solution of the exterior problem (2)-(4)
without the additional condition at infinity (& * ®) will not be unique. However, since the
conditions (3) are given on the boundary of the OW 9/ x 2z, which also recedes to infinity, there
are not enough grounds for using Sommerfeld's condition as usually done in classical diffraction




problems. For this reason, it is first necessary to determine which solutions of (2)-(4) can

exist. - Py
We shall seek the functions G¢®'™(R) among the class of functions which increase as |z]| =

no faster than some power of Izl In this case the generalized Fourier transformation can be
applied to the solution of problems (2)-(4), so that

»

ih(z

Gom(R Ry k)= @ayt J EOm(F Rork e T, (5)

and the Fourier transforms of Green's functions g°'™={ u°™, v¢'™} exist at least as generalized
functions of the parameter 4 (IM h = 0), i.e., they can have singularities on the integration
contour which are circumscribed along semicircles with infinitely small radius. We have the
following boundary-value problem in the plane of the transverse cross section of the OW for the

; »e,m
Fourier transforms g ~

ot % +ih[Z0 X U] — ikU% = —dnc™ Sami ™,
0tUS +ih[T0 X VO] +ikeii® = dnc™ 8a,7  F.To € IRN\W, | (6)

(B X7 | ypruape =0 (@ XA 5 =0; (v X7n]]],5=0, )

f(Reelu®|? +|v%|*)ds < e, SCIMR?, :
Ky (8)

where J(7.7)=1%8(F~T7p), a=¢,m .

Unlike the initial problem (2)-(4), problem (6)-(8) does not contain boundaries receding
to infinity, i.e., it is a classical diffraction problem. For this reason a unique solution of
this problem can be obtained by applying the radiation principle in the form of Sommerfeld's
condition or the condition that the solution should decay exponentially as a function of the
ratio of the parameters k and 4. Combining both conditions we require that for r>r.= max(a, 7o)
the solution should be representable in the form of a converging series (see [2, 5]):

§6F. = I {@ B3 HDn)eme, a=em, 9)
n':—w

where k?=k*-h*+#0; Imk=0; Imh=0; Rex =0, Imk>0.
The form of condition (9) is explained by the fact that the fundamental solution of (6)

>
99 with no OW and satisfying the radiation principle can be expressed in terms of Green's func-—

tion of the two-dimensional Helmholtz equation
go(7, o: ko ) = i[4H{D (|7 =75 ). i

Thus the starting three-dimensional problem has been reduced to a simpler two—-dimensional prob-
lem, which can be formulated in closed form, ensuring that the solution is unique, and subse-

quent evaluation of integrals of the type (5). This approach has been used many times to study
different particular OW [10-17], though here the radiation condition was not stated explicitly.

2. FOURIER TRANSFORMS OF GREEN'S FUNCTIONS AND THEIR ANALYTICAL
CONTINUATION IN h. PROBLEMS REGARDING THE SPECTRUM OF
GENERALIZED CHARACTERISTIC WAVES

In spite of the fact that problem (6)-(8) was initially formulated for real h, the problem
of evaluating integrals of the type (5) unavoidably leads to studying the functions g°'™(h) over
the entire region of their analytical continuation in h. For example, this is obvious if (5)
is evaluated by the methods of contour integration for iz —zg|—>oo.

It is clear that the region of analyticity of ¢ (i) cannot be wider than the region of
analytic continuation in h of the fundamental solution (10), which is identical with the infi-
nite—sheet Riemann surface L of the function Lnk(h) =¥%Ln(k +h)(k-h).

We shall describe the surface {. We separate the principle logarithmic branch [, of the
function Lnk, choosing -m/2 < argk < 3m/2, and we associate with it two copies of the sheets T
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of the complex % plane in view of the double-valuedness of the function x(k). The sheets L}, L3
are shown in Fig. 2, where the wavy line shows the cuts and the broken line shows the contour
of integration in the Fourier integral. All other pairs of sheets [l differ from £§* in thr
-2 + 2an < argk < 3n/2 + 2nn.  We draw cuts between L and £} along the lines on which Imk=0,
and on the entire sheet £§ Imk > 0, while on the sheet £} Imk <0. If h€L{®, then the formula

H{D(kre ™y ~ (2fimkr) 2= 1mm 12 [(1 = 2n)el*" — 2in(—1)Teix"]
as |kr|=oo (11)

holds, which shows that on the sheet £; the condition (9) describes functions that decay expo-
nentially as |«r| = e, while on the sheet £3,£;2 they are exponentially increasing. For this
reason the sheet £; is called the ''physical" sheet and the contours of integration in (5) are
drawn along its real axis, while the other sheets [, L)* are "unphysical" and reflect the, at
first glance, anomalous behavior of g®™(k) on them.

We denote by R the real axis of the "physical" sheet £§. The following theorem is true.
Theorem 1. The Fourier transforms of Green's functions—the solutions of problem (6)-(9)—
exist and are unique for A€ R],1h] < k, and can be analytically continued to all sheets of the
surface L, with the exception of not more than a discrete set of poles, with a single point of
accumulation at infinity. The residues of the complex poles of g®™(h) are the nontrivial solu-
tions of the generalized spectral problem—a homogeneous problem of the type (6)-(9)—for all h
from L.
The proof of this theorem is based on the possibility of regularizing problem (6)-(9), i.
reducing it to the equivalent operator equation
- % I+T, 0
U+T()g*(7)=¢58(7), 7€D, T= ;

T3 ! (12)

where I is the identity operator and T(h) is an integral operator that depends on % and is com-

pact in the vector Hilbert space L6(D). The regularization is performed by the methods of the
Avelume,
theory of generalized ehfga_dxmeasieaal potentials, so that the components T'(h) and go are ex-—

pressed in terms of scalar Green's functions g2%(4) of the Dirichlet and Neumann problems for

the two-dimensional Helmholtz equation with the boundary conditions given on 3M and 3M' with

€ £ 1. The latter, in turn, based on [5, 18, 19], exist as meromorphic functions of 4 on the
surface L. For such operator equations Fredholm's theorem is true [20], whence follow all asser-
tions of Theorem 1. In principle, Eq. (12) enables us to find the functions g™ (h) off their
poles with any fixed accuracy.

Thus the surface £ off the branch points h = *k consists of two sets: the resolvent Py
forming the region of analyticity of ¥¢™(k), and the spectral 9y identical to the set of poles
of g&™(h).

The problem of finding the poles of z°"™(h) can be formulated and studied completely inde-
pendently, outside of the problem of finding Green's functions. This spectral problem has the
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form

rot’ +ih[Z° X U] —ikv =0,

oty +ih[Z° X V) +iked =0, rEMRN\W, (13)
‘ (7 X7 ypoane =0 [EXAN],p=0: ([T X7 ,5=0, (14)

f(Reeu? +v*)ds < =, SCIR?, (15)

S

(7,3Y = Z {3.ba} HOKre™?, r>a,  hEL\(2k). (16)

n=—oo

The nontrivial solutions of this problem for k€ g, formally determine the generalized char-
acteristic waves of the OW (see also [5, 21, 22]):

WER, )= (ER, 0, HR, 1)} = (#(F),0(F))e ke = (7 etz =teet.

We shall adopt the following terminology, depending on the sheet of the surface L in which
the point of the spectrum lies. We shall call points in R the spectrum of characterisfrc Waves

of the OW. According to (ll), they are a surface character. The points outside & but on one
. . quasi-eigenwaves |,
of the sheets £}, £} will comprise the spectrum of quasi-characteristic waves. These waves are

surface waves on the 'physical" sheet L; and outgoing waves on the "ynphysical" sheet £}. We

shall refer the points of the spectrum lying on the remaining sheets £}2, to the set of pseudo-

reudo-eigenwaves . ! ! : X
%haracé@rlstﬁc waves. According to (l1), as r + « their fields will behave as the sum of in-

coming and outgoing waves, and in this sense they describe some diffraction problem. It may be
useful to take these points of the spectrum into account when calculating the fields in the
"near zone'" of the source. : o

For the simplest OWs [10-14] the method of separation of variables reduces the problem of
finding the spectrum to a dispersion equation with complex h. For example, for a circular,

ideally conducting cylinder, 0j consists of the zeros of Hélwxﬂ and H;:)Yxﬂ and for any m con-
tains not more than a finite number of quasi-characteristic (outgoing) waves and an infinite
number of pseudocharacteristic waves. In more complicated cases, when the variables cannot be
separated, it is necessary to study the eigenvalues of homogeneous operator equations of the
type (12) for h€ L by the methods of the theory of analytical operator functions (see [22, 23]).

3. A UNIQUENESS THEOREM FOR FOURIER TRANSFORMS OF GREEN'S
FUNCTIONS CONTINUED IN h
If some region @ of the surface £ does not contain points of the spectrum oy, then Q belongs
to the resolvent set p,, so that for h€ Q the functions g®™(h) are unique, if they exist.

Any generalized characteristic wave, being a solution of Maxwell's equations, must satisfy
Poynting's theorem

SIEX H | ids=i [(kIHI? — €'k |E1)dv, (17)
S 4

£
where V is an arbitrary volume, bounded by the surface S with the normal nge

Let V be a circular cylinder with radius 2y > a, truncated by the planes 2 = 0, A Let
r be large enough so that the expression (11) can be employed when integrating over S. We

1
shall assume that k€ L}?, i.e., we shall study only the characteristic and quasi-characteristic

waves of OW. We denote by

= = 77¢71=°0 4.
P,—C/Sn'Sf[bXH 12°ds (18)

1

the complex energy flux through the circle Sl with radius rl in the section of the OW. Inte-

grating in (17) we arrive at the fact that for any characteristic or quasi-characteristic wave
the following relations must hold:
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~2Im «r, X

—ReP,Imh +c(4nlk|®>)" ' (RekRex +ImkImk)e
X 2 (agl? +16,0%) = —c(16m™! [ImkH? +

n=—o S,
+(RekIme +ImkRee) E2]ds, (19)
~ImP, Imh +c(4nlk|*)"*(RekImk — ImkRe k) e~ 2Im¥m X
X Z (lag? = 1bul*)=—=c(16m)™" [[(RekRee —Imklme)E? —

n=—oo S,

— RekH?]ds. _ (20)

Setting Im 4 = 0 and analyzing the left- and right-hand sides of (19) and (20} for 51gn—

definiteness, we arrive at the following theorem.

Theorem 2. The boundary-value problem (6)-(9) has not more than one solution under the
following conditions: 1) for all K€ &, if Imk>0; 2) for hs*k, h€ R, if Im k = 0 and either
Ime =0 or € < 1; 3) for all A€ R, such that |h| < k or Ih|>ke”nzlax, if Imk=0, Ime=0, e> 1.

Thus the resolvent set p,D Q is not empty and contains at least part of the & axis.
Corollary 2.1. The. spectrum of characteristic waves can lie only on the segment k< |ki| <

ke‘“nLa of the R axis with Im X = 0 and Im € = 0 and is thus finite.
X

Corollary 2.2. The principle of limiting absorption separates a unique solution of prob-
lem (6)-(9) only if AE &R does not belong to the spectrum 9, in particular, if either Im e > O

or e §1or Ime =0 for € > 1, but |hl < k or |h|>ke'l?
max
Theorem 2 still does not guarantee the existence of characteristic waves of the OW, i.e.,
real points of the spectrum on R/; it merely shows that they can be found. Katsenelenbaum [24]
proved that the spectrum of characteristic waves of any dielectric OW contains at least two
basic quasi-waves of the the T type, such that for them h(k) + k as k + 0. The following theo-

rem is true.
Theorem 3. The spectrum of characteristic waves of any metal-dielectric OW of the class

studied contains at least N + 2 fundamental quasi-waves of the T type, where N is the order of

connectedness of the ideally conducting elements of the OW.
The proof of this theorem rests on the application of Ruchet's operator theorem [25] to

the analysis of the eigenvalues of (l12) as kK ~ 0, € + 1. Here it is necessary to take into

account the fact that if € = 1, then the functions §°"™(h) have poles of order N at the branch
points h = *k, corresponding to waves of the T type of an N-conducting line located in free

space.

4, RADIATION CONDITION AND PRINCIPLE OF LIMITING ABSORPTION
FOR OPEN WAVEGUIDES

Thus we have established that the functions g°"(h) exist and are analytic for all h, dif-
ferent from the branch points *k and the points of the spectrum Oh at which the functions have

poles. The spectrum does not have finite accumulation points on L. In addition, the fact that
the operator [/ + T(h)]™! is bounded for h ¢ o, implies that 12,20y < cmmtﬂUSHL,(D), which on
1 1

the "physical" sheet L) leads to the inequality |g€*"(h)| < conste™!™*?, These properties enable
us to use the saddle-point method to evaluate the integral (5) as R » <. In so doing the direc-
tion in which the poles and branch polnts, located on the real & axis, are circumscribed remains
arbitrary: the integral (5) makes sense for any direction. Moreover, because of the equiva-
lence of directions along 02 the singularities that are symmetrical about zero should be circum-
scribed in opposite directions.

Let the number of poles on each of the semiaxes of & equal §. We introduce the vector 7 =
{7q}$_0 where ¥y = tl, and in addition 7, =1 corresponds to circumscribing the singularity from

below while 74 =1 corresponds to circumscribing it from above. We also note that all poles on
| are simple and are different from the branch points *k. Then applying the standard procedure

of the saddle-point method [9-14] we find that as R=(? +:?)!1/2 >

Ty, 0)e o R(KR)Y, 1> e .
T Bg W, (7 AT, (2),

Goy~ |
®) o(l), r<n q=1

(21)
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where r; = max(a, rq); [q(z) = e”qhqu_z“,ﬁ§ are numerical coefficients, & = e, m; Wq (7, hq) are the
characterstic waves of the OW, i.e., the eigenfunctions of the spectral problem (13)-(16) cor-
responding to the points g5, N®  The contribution of other points of the spectrum to the asymp-
totic behavior of Ea(éb as R » = is exponentially small, though near the source it can be sig-

nificant.
It now remains to determine how the arbitrariness of choosing Yq can be resolved so that

(21) can be regarded as a condition ensuring that the solution is unique. For this it is suf-
ficient to show the values of Y for which the homogeneous problem (2)-(4) with this condition

as B + « has only a trivial solutiom.
Assume the opposite, i.e., a nontrivial solution exists, and apply Poynting's theorem.
Consider the real part of (17) for the region V, bounded by the surface S, (Fig. 3). Its right-

hand side with Im kX = 0, Im ¢ = 0 equals zero. On the left-hand side we pass to the limit as S* + o in

such a manner that R,->? g:—>w,rJR.-+O. Then, using (21) and also the property that the char-
acteristic waves in the séction of the OW are orthogonal [9], we obtain

»

s

c - =
1Esnqim AR EBIR, dyrsd S g2+

8 Se—e S, 8nk?

!

o,

Y
+ [ Wy, |*]sin6d8dp + 2 T v,18,1"RePyq = 0.
q=1 (22)

The left-hand side of expression (22) is sign-definite only if either 7o =1, 7, = signRe P,, or
Yo = =1, 7, = —signReP.q, which contradicts the initial assumption. The first method for choosing
g gives a solution for which energy is carried off to infinity while the second method gives

a solution for which energy arrives from infinity, i.e., it does not conform to the radiation

principle. This proves the following theorem.
Theorem 4. Let Im k = 0, Im e = 0 and all 2Q points of the spectrum 9y lying on the R

axis, be simple and different from the branch points +k. Then there exists a unique solution
of the problem (2)-(4) 5°(R), conforming to the radiation principle, understood as the require-
ment that there be no waves delivering energy, and satisfying as R » < condition (21), where
Yo =1, 74 =signRePzq (@=1,....0).

Thus in the presence of an OW the field sufficiently far away from sources should have the

form of a sum of a spherical wave, satisfying the Sommerfeld condition, and a finite number of
characteristic waves of the OW. For each of the latter a partial radiation condition can be

formulated for |z] —o:

d
( dier - ”qhq)rq@)zo: g s ual

This condition is analogous to Sveshnikov's condition for closed waveguides [3, 4], but
it differs from the latter in that the quantities Yq are present. Thus the requirement that
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there be no waves delivering energy is more general than the requirement that there be no arriv-

ing waves (see Mandel'shtam's lectures [26]). _
The spectrum may not contain any real points (see Theorem 2). The following corollary is

obvious.

Corollary 4.1. Let Im k = 0 and either Im e > 0 or Ime =0, € £ 1. Then a unique solu-
tion of problem (2)-(4) that satisfies the radiation principle can be separated with the help
of Sommerfeld's radiation condition.

Thus Theorem 4 guarantees that the solution of the starting problem with Im k = 0 is unique.
For Im X > O the solution is also unique in the class of functions that decay at infinity. Fur-
ther, since it can be shown that the points of the spectrum depend in a piecewise-analytical
fashion - on k, by studying the limit in (19) the concept of a group velocity can be introduced
for the characteristic waves of the OW:

o=t
Vq E(a'hq/dk)-l = 167Re P, {c S (Reeué +ué)d3J !
R (23)

Expression (23) shows that as Imk - +0,the poles approaching & deform the integration

contour in (5) in the precise manner required by Theorem 4,
Corollary 4.2. The principle of limiting absorption separates a unique solution of prob-
lem (2)-(4), whose limit as Imk-—+0 exists and its asymptotic behavior as R + = is given by

(21), where Yo=1, 7 =signRePq (¢=1,...,0). 0
Further, it can be shown by direct substitution that for any solutions of Egs. (2),{Eh H}

and {E;,Eh}, satisfying condition (21), the relation

Seme (24)

lim Sf {[El Xﬁz] —[Ez Xﬁx]}adﬁ:o

holds.

Relation (24) together with the vector Green's formula enable us to construct a solution
of problem (2)-(4) with arbitrary finite functions 78,7"’ on the right-hand side of the form
of a convolution with Green's tensor (1):

E®) GeeGem | [7Ro) D ..
1 yafer= 153| vlang g bis|duesds KSR W %2
H(R) Va GmeGmm Jm(RO) (25)

Then, by virtue of linearity, the total field{Eiﬁ} also satisfies the radiation condition

(21), conmsistent with the radiation principle. »
In conclusion we shall present without proof an expression, analogous to (21), for two-

dimensional problems of the excitation of plane-layered OW. For Imk = 0, Ime = 0 and r = (22 + )2 5

e U\'rk —-1/2
G"‘('r')~{ W@ e (k)= 2, y> ) N
o(1), y< )
o
+ 3 ge il l‘thqlz—:,l.
ol RO B (26)

In such problems an explicit expression, rather than an operator equation, is obtained for
the Fourier transform of Green's function. For this reason all results necessary to prove (26)
follow from the theorems of the theory of functions of a complex variable. We note that condi-
tion (26) for plane-layered OWs can be derived from a representation of the fields as a sum of

"discrete and continuous spectra' [27].
Thus in formulating problems of the excitation of OWs the radiation condition requires

finding all characteristic waves of the OWs and determining the direction in which these waves
transport energy. We note that the solutions of the particular problems [9-16] satisfy (21) if
there are no backward characteristic waves.
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