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Radiation Conditions and Uniqueness Theorems f or Open Waveguides *

A. I. NOSICH AND V. P. SHESTOPALOV

The correct formulation of
open waveguides is considered.

boundary-value problens in the theory of

*t<*

TNTRODUCTION

The radlatlon conclltlons aL lnflnlty are an elemenr of lhe fourrdaclon ort wltlch lhe solu-
tj.ons of exgerior boundary-value proble*" fo. harmonlc osclllations (-s-i'kcr, lm& = 0) are con-
structed. The physical meanlng of the radlatlon princlple was formulaEed in its tlme by Soruner-

feld and consisEs of the absence of sources at infinity. To obtain a unique solutj.on a differ-
^-F --i-^r-1e 1s also sometines ernployed-the principle of limiting absorpcion: the solutioncrrL Prrrr9rP
is taten ai the lirnit of a bound.ed solution as lmk*+0. In spite of the convenience of this
princlple Ehe exj.stence of this limit must be justified for each specific class of problems.

Sornrnerfeld derived the radiation conditlons for free space concaining bounded obstacles
il] (see also [2]). Sveshnikov derlved an analogous resulc for an oPen waveguide ln Ehe form
ns a -avr{.1 radiatlon condltlon for each of the characterlstlc waves, and he jusClfled rhe
vr d Per Lr4

principle of llmltlng absorptlon [3,4]. Conditions of chls EyPe, as shown ln [5, 6], can al'so

be employed with cornllex k ior analyzlng exterlor problems of the characterlsulc oscillacions
of obstacles.

The purpose of this paper ls to derlve the radlaclon conditlon for oPen waveguldes (0W),

as an extension of Sonrnerfeldts and Sveshnlkovts condltlon to the case of unbounded sPace con-
rrjnjno .rn€inlce bodies and surfaces, regular along some straighr 1ine. The rnerhod of deriving
Lerrrr116

this condition follows frorn the general theory of parclal differenulal equaElons [7, 8]: all
possible forns of Greenrs functlon for the Ot,l must be construcced, thelr asympcotlc behavior at
inflnlty nusE be studied, and the condlEions that separace the unlque forrn of Green's functj'on
--r{^€.'i-^ the radiation princlple uust be fornulated. In additlon, lt ls of i-nterest to ProveJdLrsrJrrrB
the principle of llniting absorptlon.

*origina1ly published in Radlotekhnlka 1 elektronika, No. 12, 1988, pp' 2483-249L'
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I. GREENIS I'UNCTIONS OF OPEN WAVEGUIDES

Consider a three-di.raensional 0W forned by eleuents of three types: dielecEric rods D x z,
ldea11y conducting rods tly' x zr arrd ideally conductj.ng, open, infinltely thin surfaces aM'Xz.
We shal1 assuue that the contours of the transverse sections of the elenenEs are closed curves
aD, aM and, the open curves OMt can be multiply connected, but flnite, and do not j.ntersect and
are quite snooth-for exarnple, they have a continuous curvature (Iig. l). We sha11 assume that

all the media are nonmagnetic lr(7) = t (;= O,g)) and the pernittivity e(i) i" a plecewise-
differentiable function, equal to unity outside D; ?D is the union of all lj.nes where the per-
mittivity is discontinuous. We denote by a the radj.us of the smallest circle containing the
cross section of all elements of the 0W, and the origin of coordinates is placed at the cen-
ter of thii circlel ve also denote by OIV =aDUaMUalrl' the collection of boundaries of elerneuts
ir il=MUdlv.

The construction of the tensor Greents function for the OW dqF,.Rs) reduces to searchi.ng
f or a pair of vector functions d''^ =lE''^,F''^I, such that

I F' I ^l l.o,T, 1

L;"J='l-u"^7^lt
e"r0"^ 

1

e^,6^^ l
^f

where 6oU is the

wlth a 6 function
Kronecker delta and l/ "l= l.
on the rlght-hand side [9]:

The components OI tt

(1)

saElsfy Maxwellrs equat.ions

rot Eo - ikHo = -4nc-t 6o^J ^ ,

rotF" +ikeF" = 4nc-t 6o17", n=,Fo e rn3\(ly x :), (2)

brackets denote the dif-

(J/

(4)

imt=0,

where 7" =7"0(F - Fo) ana o = e and m, and known conditions (che ourer
ference of llmitlng values)

tt" x tll (a,rruarr')x: = o;

[[|/-xnJllaox, = u,

J(Reel l'"1' + lH"l' )du 1 *,

ttF"x;ilil--.. =o:. I dux2

I/C rRr,

Based on general consideratlons we know chat the solucion of che exterior problem (2)-(4)
without the additional condition at j"nfinicy (i + -) will noE be unique. However, since che
conditions (3) are glven on the boundary of che 0l{ atl x z, which also recedes to lnflnity, there
are noL enough grounds for uslng Somnerfeldts condiclon as usually done in classlcal dlffraction

D{ - Ir r5. r
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problems. For
exis t .

We shal1
ns faster than
applled to the

this reason, it is firsE necessary to determlne which soluclons of (2)-(4) can

seek the functions d''-(F) among the class of functions which increase as lzl *-
some power of l"l, In this case the generalized Fourier transformation can be

soLution of problens (2)-(4), so that

6 ','"1F. R-u; k) = (2r)-l i ", ^ ( T,io ; k, h1 cit' 
(' -' o ) dl,, ( ).,

and the Fourier transforms of Greents functions le'tn=li''^, ft't) exist at least as generalized
functions of the parameter h (lM h = 0), i.e., they can have slngularities on the integration
contour which are circumscrj.bed along sernicircles with infinitely sma1l radj.us. We have the
following boundary-va1ue probleur in the plane of the transverse cross seccion of the 0W for the

Fourier transfotms je'm:

I

rot i?a + ihl;o x i"l - ikid = - trc-t 6o,,la"',

roti" + ihfio x i"] + ik€id = 4nc-' 6oJ', 7, io e tn'z\ lv,

li'x;lla,vru,v,=0; [[iaXi]llao=0; [[t'xt]llro=0,

/(ReEItql'? + lt"l')ds< -, .tc fR2,

(5)

(7)

(8)

where 7"(i A)=7"6(7- fo), a= e, m,
Unlike the inicial problern (2)-(4), problem (6)-(8) does not conEain boundaries receding

ra infinirw. i-p-. it is a classical diffracEion probleur. For this reason a unique solutlon of
!v f rrr*^r*s/ , ^. 

e. t

thls problem can be obtained by applying the radiation principle in the form of Sommerfeldrs
condition or the conditlon that the solution should decay exponentially as a function of the
ratio of the parameters k and h. Combining both conditions we require that for rlr.= max(4, rq)

the solution should be representable in the forrn of a converging series (see [2' 5]):

i"G, h)="=i_ li"^,iXla[tt(x)etnc, a= e, m, (e)

where 12

The

Y0 wrL.r

tion of

=k2 -h1 *0; Im,k=0; Imlr=0; Rerc)0, lnrr)0.
forrn of condlrlon (9) is explained by the fact thaE the fundamenEal solution of (6)

no OW and satisfying the radlation principle can be expressed in Eerms of Greenrs func-

the cwo-di-mensi"onal Helnholtz equation

soc,ii k, h)= ifta[ttg li- al). ( l0)

'rh,,- Fk^ aF.,ts{-- three-dimensional problem has been reduced to a simpler Ewo-dlmensional prob-rtlu5 LltE JL4r Lrlr6 L

1^- "L"'^!-. ^a- L^ formulated ln closed form, ensuring that che solution is unique, and subse-IEUIt WllIUlt Ldl( Us r

quent evaluaEion of integrals of the type (5). This approach has been used many times co sEudy

dlfferenE parEicular OW il0-17], though here the radlatlon condltlon was noE sLated expl1cir1y.

2. FOURIER Tfu\NSFOR}IS OF GREEN'S FUNCTIONS AND THEIR ANALYTICAL

CONTINUATION IN h. PROBLEMS REGARDING THE SPECTRUM OF

GENEMLIZED CIIARACTERISTIC WAVES

In spite of che fact chac problem (6)-(8) was inirially formulated for reaL h, the problem

of evaluaglng integrals of the type (5) unavoidably leads to studying Ehe funcEions !''-(lr) over
Lhe engj.re regi.on of cheir analytical conLinuacion in h. For example, Ehis is obvious lf (5)

is evaluated by the methods of conEour incegration for iz-Zql**'
Ic is clear that the region of analytlciLy of i"-$) cannot be

analytlc continuation in h of the fundaroental solutlon (10), which
nire-sheer Riemann suiface -c of che functj.on Lnx(lr) =ltLn(k+h)(k-h).

We shall describe the surface J. We separate the principle logarithrnic
f unction l-n r, choosing -rl2 1 zrgx 1 ltlZ, and we associate qtith lE two coPies

wider lhan the region of
is identical vich the infi-

branch .Cs of the
of che shee cs .Ci'2
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of the conplex h plane in view of the double-valuedness of the function x(lr). The sheets tl,J3
are shown in Fig. 2, where the wavy 1lne shows the cuts and the broken line shows the contour
of integration in the Fourier integral. All other pairs of sheets fj'lo d:.ffer from Xj'2 in th,-

-trl2 + 2rn 1 argx13rl2 * 2nn. We draw cuts.between .Cl and Xfr along the lines on which Im,( = 0, -and on the entlre sheet .Cl Imx ) 0, whl1e on the sheet .Cl Imx ( 0 , Lf. h e!l'2, then the fornula

H | ) 
1x re i2 

" ") - (2 | i nx r)t 12 s- t n n lz [(t - 2 n) ei *' - 2 in (-I)m e- i K' 
]

as lxrl+e

0l
rl'

(i1)

ho1ds, whlch shows that on the sheet 4l the condltion (9) descrlbes functions that decay expo-
nentially as lrrl *-, whlle on t,he sheet t3,t'^'t they are exponentj.ally increaslng. For this
reason the sheet Il is called the t'physicalt' sheeE and the contours of lntegratj.on i.n (5) are
drawn along 1ts real axis, wh11e the other sheets tl(.,t'"'t are "unphysical" and reflect the, at
first glance, anonalous behavior ot ie,m(h) on them.

We denote by G the real axis of the "physlcalttsheet Xd. The followlng theorem 1s true.
Theorem l. The Fourler transforms of Greents functions-t,he solutlons of problem (6)-(9)-

exlst and are unlque for h€ E,lrl (,t, and can be analytically contlnued to all sheeEs of che
surface.C, wlch the exceptlon of noc more Lhan a dlscrete set of poles, wlth a slngle polnc of
accumulation at infini.ty. The residues of the conrplex poles of i',^(h) are the nontrivial solu-
tions of the generalized spectral probLem-a homogeneous problem of the type (6)-(9)-for aII h
frn- f

The proof of this theorem ls based on the possibility of regularizing problen (6)-(9), i..
reducing it to the equivalent operator equation

f + r(l)l?c(7) =sroo(7); -i eot
r/ l,\

where f ls the ldenclry operator artd I(h) 1s an lncegral operacor that depends on h and 1s com-

pac! 1n the vector Hllbert space I!(D). The regularlzarlon ls performed by the nerhods of the

Lheory of generall"ua *=**41*.**1 porenclals, so rhar rhe componencs ?(h) and i[.." u*-
pressed in terms of scalar Greents f,uncElons gg'r/(l) of the Dlrichtet and Neunann problems for
the two-dimenslonal l{e1mho1tz equation with the boundary condiElons glven on 0M and 6llt with
E = l. The latter, in turn, based on [5, 18, 19], exisc as neromorphlc functlons of h on the
surface !. For such oPerator equations Fredhoknrs theorem 1s true [20], whence follow all asser-
tions of Theorern l. In prlnclple, Eg. (12) enables us Eo flnd the funcrions i,'",(h) off their
poles wlch any flxed accuracy.

Thus the surface J off the branch points h = :k consLsts of two seEs: the resolvent ph,

forming the reglon of analyclclty of E"^(h), and Ehe speccral og, idenEi.cal co the set of poles
of [',n(lr).

Tha nrnhloh ^r flndlng the poles of E"^(h) can be forurulated and studied corupletely inde-
pendently, outside of the problern of flnding Greenrs functions. This spectral problen has Ehe

il0

_ ll+Tl' I'r,
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f orrn

Tc ^^*^ -^-i^- OIl bvulE lE6rvtr

to Ehe resolvent set

Any generalized
Poyntingrs theorem

roti+/r[7oXt] -r'et
roti +rh[?o xi] +'&ei

It X;'ll aruau,=oi tttxtlllro=0,
=0, le
ttt x ttll
cr tp2

rn2\ t,
=n.AD

( r '1)

( 14)

( 15)

tro.,

J(Reeu2 +u2)dr< *,
s

: (- - r(t,i ) = x ldn,b^l H[tt1xr1ei"v, r]a, neA{t,t}.
n =-@

The nonrrivial solutions of this problern for h e o1, formally determine the generalized char-

acteristic vaves of the OI'J (see also 15, 2L,221)t

fr1F,t1= ( E(F, ri, rt6,t7) = t[(D,t(i))eihz-ikct =fr(7)eihz-ikct.

r.r^ a!,a11 -,r^-f the following terroinology, depending on Ehe sheeE of the surface .C in whichwg Drrdrr duvP L

the poj.nt of the spectrum 1ies. We sha11 call points in & the spectrun of charaeteristic waves

of the 0W. According to (11), they are a surface character. The points outsi.de fi, but on one

of the sheets .Cl,.Cl will comprise the spectrum of _quasi-characteristic waves. These waves are

surface waves on the ttphysicaltt sheet .Cl and outgoing waves on the "unphysicalt' sheet Xfr' We

sha11 refer the points of the spectrum lying on the remaining sheets -Cr'lo to the set of pseudo-

characteristic waves. According to (11), as r + - their fields will behave as the sum of in-
*n,:.r,g 

".,4 
outgoing lraves, and in this sense they describe some diffraction problen. It may be

useful to take these points of the spectrum into account when calculating the fields in the
t'near zone" of the source.

For che siurplest OI,ts [10-14] rhe method of separation of variables reduces the probleur of
finding the spectruu Eo a dispersion. equation wlth complex h. For exanple, for a circular'
ideally conducring cylinder, ofu consists of the zeros of nfi).1xa) and,?l')'1ra) and for any zl con-

taj-ns not more than a finite number of quasi-characterj.stj.c (outgoing) waves and an infj'nite
number of pseudocharacteristic waves. In more complicaced cases, when the variables cannot be

separated, it is necessary to study the eigenvalues of hornogeneous oPeraLor equations of the

type (12) for h€.C by the urethods of the theory of analytical operator functions (see [22, 23])'

A UNIQUENESS THEOREI1 FOR FOURIER TRANSFOR}IS OF GREEN 
I 

S

FUNCTIONS CONTINUED IN h

of the surface J does noL conEaln points of the spectrum o;rr Ehen Q belongs

rL-r €ar ,,4 O fhe functions ;e'''(lt) are unique, if Ehey exist.
P6t >u LlldL rvr rertssrvrrg O

characteristic wave, being a solution of llaxwellrs equations, musE satisfy

S td x F't i"r/s = i I@lrtf - e',t'lt:|2 )du, (17)

where [/ is an arbiCrary volume, bounded by fhe surface 5 wich Che normal ir'

LeE V be a clrcular cyllnder with radius ,L, O, truncated by Che planes z = Q, zl' Let

r, be large enough so rhaE the expresslon (ll) can be employed when incegrating over 5' We

shall assume thag he1to,", 1.e., we shall study only the characteristii and quasi-characterisEic
waves of 0W. We denote bY

p, = cl8r ^l1'x F'1?oas (lB)
sr

the complex energy flux through the circle 5t wich radius rl in Ehe secEion of the 0W' lnte-

crat.ina in r.l7\ uc arrive at the facg that for any characteristic or quasi--characceristic wave
6rsL1116 rrr \rrl Fe

the following relaEions rnust hold:

u1
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Serring Im h = 0 and analyzing the left- and right-hand sides of (19) and (20) for sign-
definiteness, we arrive at the following theorem.

Theorero 2. The boundary-value problem (6)-(9) has not more than one solution under the
fo11ow'ing conditions; l) for all ft € &, if Im&) 0; 2) for h+!k, he E, if Im k = 0 and elther
Im e = 0 or e < i; 3) for all he7, such that lhl<kor lhllketl2ou, if Im,t=0, Ime=o,e)1.

Thus the resolvent set ph) O is not enpty and contains.ac least part of the G axis.
Coroll-ary 2.1. The spectrum of characterj.stj.c waves can 1ie only on the segment k< lhl <

kerlz of theGaxis \,tith Imk= 0 and In e = 0 and is thus finite.

Coro]-]-'ary 2.2. The principle of Limiting absorption
lern (6)-(9) only if lt€& does not belong to the spectrum

or e < I or In e = 0 for E > l, but l&l (,t or lhl>ketlz
max

. Theorern 2 stil1 does not guarantee the existence of characteristic waves of the 01,1, i.e.,
real poi.nts of the spectrum on fi; it rnerely shows that they can be found. Katsenelenbaum [24]
nrnrrorl t-h'f fhe cncctrum of characterlsCiC waveS of any dieleCtric 0W ContainS at least two
basic quasi.-waves of the the ? type, such that for them h(k) + k as k * 0. The foLlowing theo-
rem is true.

Theoren 3. The spectruur of characEeristic waves of any rneEal-dielectric OW of the class
studled contalns at least ff + 2 fundamental quasl-waves of the T type, where /V is the order of
connectedness of the ideally conductlng el.ements of the 0W.

Thp nrnof.f thls theorem rests on the appllcation of Ruchetts operator theoren [25] to
the analysis of the eigenvalues of (12) as k * 0, e + 1. Here lt 1s necessary to take into
account the fact that lf e i l, then the functlons i''^(h) have poles of order il at the branch
points h = !k, correspondlng Eo waves of the ? type of an iV-conducting 11ne located ln free
sPace.

4. RADIATION CONDITION AND PRINCIPLE OF LIMITING ASSORPTION
I'OR OPEN WAVEGUIDES

Thus we have established that the functio.,s 7"'-(1,) exist and are analytic for al1 h, dif.-
ferent fron the branch poi.nts tk and the points of the specErum o, at which the functions have

poles. The spectrum does not have finite accumulation points on l. In addition, the fact Ehat

the operator [/ + r(ft)]-r ls bounded for h * qn 1mpl1es thac ll['ll rlro) < constlldfill r.ito), whlch on

the "physical" sheeE -Ci leads to the lnequality lF'"n(h)l ( conste-lmxd. These propertles enable
us to use the saddle-po1nt method to evaluaLe the lntegral (5) as r? + -. In so dolng the direc-
tlon in whlch the poles and branch polnts, located on the real fi axis, are clrcumscrlbed rernalns
--Lr--^-"' tL^ r-tegral (5) nrakes sense for any dlrectlon. lloreover, because of the equlva-4l UIL!4lJ . gtLC rll

lence of directlons aLong 0z che slngularltles thaE are symmecrical abouc zero should be clrcun-
scrlbed ln opposlte dlrectlons.

Let the number of poles on each of the semlaxes of di equal Q. We lntroduce che veccor ] =
| \o
tfoif=o where Tq = tl, and ln addiclon lo = 1 corresponds to clrcumscriblng the singularity from

below while 7o = -l corresponds co circumscrlblng it from above. We also note lhaE all poles on
di are siuple and are dlfferenc from the branch polnts 1k. Then applylng the standard procedure
of the saddle-point nethod [9-14] we find thaE as R=(f +z21tlz-*

-ReP, Iml +c(4rlxl3)-t(Re,tRex +lm,tlm x1e-2t^ 
*" y

t,:- (lanl' + lbnlz)=-c(l6z)-t"/1tmk?z +

+ (Rek Im e + Im,t Re e) E2 lds,
-lmP"lmh +c(+rl rl3)-1(Re&lmr - Im&Re11e-2lmrr, ;
* 

,3_ 
(onl'-lb,l')= -c(l5r)-1"/[(RekRe e-lmklme)E2 -

- RekH2lds.

1r a'r

( 20)

separates a unique solution of prob-
oh, lt particular, if either Im e > 0

d'(Fr- 
{ l;f 

o)etk''r o^(tR)-" r)r, I A

,. ;,1 
r 

ol,9i 
fro(7' h)roQ)'

tl2

(?1\



rrhere fr = max(d, ro)l fs 121 = 2i1ehel"-"'1 , pt are numerlcal coeff icients, d = €, mi frqG,hq) are the

characterstic waves of the OW, i.e., t|1e elgenfunctions of the sPectral problem (f3)-(i6) cor-

responding to the points o1, 
.lE. The contrlbutlon of other points of the spectrum to the asymP-

totlc behavior of d"1n-; u" fi + - is exponentially sma1l, though near the source it can be sig-
nificant.

I! now remaiis to determine how the arbitrariness of choosing '(, can be resolved so that

(21) can be regarded as a condition ensuring t.hat the solution is unique. For thls it j.s suf-
.ii"i"ta to show the values ot tqfor which the hornogeneous probleur (2)-(a) with this condition

as .R + - has only a trivial solution.
Assume the opposite, i.e., a nontrivial solution exists, and apply Poynting.ts theorem.

Consider the real part of (17) for the region tr/* bounded by the surface 5* (Fie. 3). IEs right-

handsidevrithlnk=Q,IIne=0equalszero. Ontheleft.-handsidewepasstothelimicasS**-in

such a manner that R. + -, r. + -, 7./R. + 0 . Then, usinC (.2L) and also the property that the char-
acteristic vaves in the section of the 0W are orthogonal [9], we obtain

lim f lE X H') n,ds
S.*- S.

4o
67tK-

il 9e,12 +tf
00

a
+ l*y,l2lsnldld,p + 2 21olLolz ReP,o=0.

g=l ' (22)

The lefr-hand side of expression (?2) is si.gn-definite only if eicher 7o = l,7q = signReP,o or

7o = -1, ?n =-signRePro, which contradicLs the initial assumpEion. The first meEhod for choosing

VL ei"es'a solition ior which energy is carried off to infiniry while the second method gives

a soLution for which energy arrives from j.nfinicy, i.e., it. does not conform to Lhe radiacion
principle. This proves the following theorem.' 

Tireorem 4. t-"t Im k = 0, Im e = 0 and aLl- 2Q poinEs of the sPectrum on, lYin8 on the dl

axis, be simple and different from the branch points 1k. Then there exisLs a unique solution

of the problen (2)-(4) d"(^), conformj.ng to the radiaEion principle, understood as the require-
men[ thaE there be no waves delivering energy, and saEisfying as R * - condition (21), where

7o = l, 7o = signRePrn (q = 1,,'.,0.
Thrrc {n rhp nresence of an 0W the field sufftciently far away front sottrces should ltave Ehe

form of a sum of a spherical wave, saEisfying Lhe Sommerfeld condlclon, and a finlce nuntber ot

characterj.stic waves of the OW. For each of the lacter a parEial radiacion condicion can be

formulated for lzl *-'

This condition is analogous to
it differs from the latcer in tha!

td
lo, -"- -- |

Sveshnikovrs condj.tion for closed waveguides [3, 4], buc

Lhe quanticies Yq are Presenc. Thus the requiremenc thac

---.--.-

Fig. 3

l]'t

ro)roo=0, n
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tbere be no r./aves delivering energy is
ing vaves (see Mandeltshtamrs lectures

The spectrum tnaY not contain any
obvious.

Corollarv 4.1. Let ftn k = 0 and

tion of probleo (2)'G) that satisfies
of SonmerfeLdrs radiation condition.

Thus Theorem 4 guarantees that the solution of the starting problern with Im k = 0 ls unique.
For In k > 0 the solution j.s also unique 1n the class of functions that decay at infinity. Fur-
ther, since it can be shown that the points of the spectrum depend in a piecewise-analytlcal
fashion on k, by studying the limit j-n (19) the concept of a group velocity can be introduced
for the characteristi.c waves of the 0W:

more general than the requirement that there be no arriv-
i26l ).

real points (see Theorero 2). The following corollary 1s

either Im e > 0 or In e = 0, e.< 1. Then a unique solu-
the radiation principJ.e can be separated with the help

vo=@hn/dk)-r = l6zReP:s {, f.(*",u'o + ua)ds} ^

--[ |Ft )

corollary 4.2. The princlple of lirniting absorption separates a

1em (r):(4);;frose l_imlt as Im&++0 exists and its asymptotic behavior
(21) , where 10 = !, 'fd = sign RePro @ = l'.. . ,Q).

. Further, it cair be shown by direct substltution
and {Fr,4}, sat:.sfying condition (21), the relation

Expression (23) shows that as lm& - +0,the poles approaching
contour in (5) ln the precise manne! required by Theorem 4'

(23)

fi deform the lntegratj.on

uni.que solution of prob-
as ,? + - is glven by

that for any solutions of Eqs. (D,{Er, Ft].'

(24)

enable us to construct a solution

rhe right-hand side of rhe forrn

um f {lE,xE'l.r.-- S.
F, 1)i"as = o

holds.
Relation (24) together wich the vecLor Greenrs formula

oF nroblem (Z\-(4\ .,{ }r, ^,1-i r-^t,, F1-iCe funcf io.r. 7t ,i^ on\., wtrLll 4!u!Ll4!/ rrlrl

of a convolution with Green's tensor (l):

-tdx

t/o c mr\(l/x z).
/t(\

rr.^n !.r; rri rrrrg of linearltyp the toEal f ield (E, F) "f"o 
satisf les the radlation conditionrrrsrrt u) vrrLu

(21), consistent wiEh the radiarion principle.
In concluslon we shal1 present without proof an expression, analogous to (21), for Ewo-

dinensional problems of che excitaLion of plane-layered 0W. For Im& = 0, Ime = 0 and r =722 +y21t12 -*

,Y >Y,'l
y 1 l,rj

;E1Fl1 ,lG,"G,^ I f 7"(F.l'l 
,

| -- I = J | ^ ^ ll- - lduo,
L n(nt J vo lG^rG^,nJ L /-(Ro)J

G " G \ - [ 
v " 1e1 et 

k' 
1ttr1- 

t tz

[,r(t),
o

+ Z Pfruo(y, ho)et1e 
nett-tn'

q=l

In such problems an expliclt expression, rather than an oPerator equaElon, 1s obcained for
the Fourier transform of Greents funttion. For thls reason all results necessary to prove (26)

follow from the Eheorens of the theory of functlons of a complex var1ab1e. tr{e noEe EhaE condi-
cion (26) for pJ.ane-Iayered Otls can be derived from a representatton of Che fields as a sum of
"discrete and concinuous spectra" L27).

Thus ln formulating problerus of the excltation of OWs che radlation condiLion requires
finding all characCerisclc waves of the O!./s and determlnlng the direction-in whlch Ehese waves

cransporg energy. We noce thac the solutions of the particular problerns [9-16] saEisfy (21) if
Ehere are no backward characteristic waves.

l. Sonmerfeld, A. Partial Differential
Moscow,1950.

(26)
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