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Abstract—Efficient and rapidly convergent numerical algorithm for the simulation of the scattering of

light waves by a finite gratings consisting of thin (thinner than the wavelength in the free space) metal

nanostrips is presented. The model is based on the utilization of generalized boundary conditions (GBC),

which allow one to exclude from consideration the field inside each strip and to reduce the

two-dimensional boundary problem to one-dimensional systems of singular/hypersingular integral

equations (IE). The obtained IE are solved numerically using the Nystrom-type method and the

quadrature formulas of interpolation type, that provides guarantee convergence and controlled accuracy.

The article presents the results of characteristics calculations for optical scattering and absorption by the

gratings, which consist of silver nanostrips, as dependences on the width and on the thickness of the strips,

and on the grating period. The nature of resonance phenomena has been investigated, namely the article

presents the analysis of intensive optical scaterring and absorption in the case of excitation of plasmonic

modes (plasmons) and of grating modes, which are induced by the periodicity.

DOI: 10.3103/S0735272715050027

1. INTRODUCTION

Nanoscale materials, devices and technologies is permanently developing and expanding range of

science and industry, which rapidly generates new areas, such as nanophotonics and nanooptics. Resonance

effects in the scattering and absorption of light waves by metal nanoobjects are associated with surface

plasmon resonances and have a wide range of practical applications. For example, in the case of biosensors

designing the plasmon effects allow one significantly improve the efficiency of detection, identification and

diagnostics of biological objects by increasing the intensity of fluorescence.

Due to modern technologies of sputtering, deposition and etching the nanowires and thin nanostrips

made of precious metals (silver, gold) have permanently become a part of many devices for terahertz and

optical wave bands (for instance, nanoantennas and biosensors) [1–5]. Periodic gratings of nanowires and

nanostrips attract particular attention. This is connected with the newly discovered phenomena of anomalous

reflection, transmission, radiation and amplification of the near field [3–6]. Such phenomena are observed

near the so-called Rayleigh anomalies for the corresponding infinite gratings [6] and, in the most general

case, they possess the form of Fano-type resonances in the spectra of corresponding characteristics.

The techniques for the numerical simulation of optical properties of nanostrips include the techniques of

volume [7] and boundary integral equations (IE) [8]. Boundary IE are more efficient due to the fact that it is

necessary to discretize only the strip’s contour instead of its volume. Secondly, the boundary IE often have

smooth or integrable kernels, which ensures a more reliable discretization. It should be noted that the number

of unknown quantities, even when calculating characteristics for one nanostrip, is equal to several thousand

for the volume IE and it equals to hundreds for the boundary IE.

In contrast to [7, 8], in this paper the two-dimensional problems for scattering of electromagnetic waves

by finite gratings made of thin silver strips in the optical range are studied by means of dual-sided

generalized boundary conditions (GBC) [9] and they are reduced to systems of singular and hypersingular

IE. They are solved by the Nystrom-type method with the utilization of quadrature formulas of interpolation

type [10, 11].

Note that the Nystrom-type technique has recently attracted particular attention in the simulation of wave

scattering by perfectly conducting and infinitely thin planar and curved strips. This article is related to the

development of such a mathematical model, of the numerical algorithm for solving the problems of light
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scattering by finite gratings of thin planar silver nanostrips in the optical wavelength range and to the

investigation of observed resonance phenomena.

2. PROBLEM STATEMENT

Let us consider the two-dimensional problem for the scattering of a plane H-polarized electromagnetic

wave by the multiple-element strip gratings in free space. Time dependence is given by the factor e
i� �t

. The

geometry of the two investigated gratings, namely of a planar and of a blade one, is demonstrated in

Fig. 1a,b, respectively.

It is assumed that each of them consists of the finite number N of identical silver planar nanostrips, which

are infinite along the OZ axis. The width of each strip equals d, the thickness is h, the grating period equals p.

The refraction index of silver is given as a function of wavelength � � � �r r( ) ( )� in the optical wavelength

range. Note that in this range silver possess a complex permittivity � �r ( ), where its real part takes negative

values. The experimental data from [12] has been used for the refractive index of silver.

It should be noted that in the case of H-polarization the vectors of electric and magnetic fields take the

form

�

E E Ex y� ( , , )0 ,

�

H H z� ( , , )0 0 . On account of superposition, the only nonzero z component of the

magnetic field can be represented in the form of sum

U r U r U rtot sc( ) ( ) ( )
� � �

� �0 ,

whereU r
k x y

0( )
( cos sin )�

�

� �

e
i 	 	

designates the known field of the incident plane wave,U rsc( )
�

stands for

the sought field, which is scattered by the grating.

In this case the total field must satisfy the two-dimensional Helmholtz equation outside the grating

( ) ( ) , ( , ) \
 � � � �k U r r x y S
2 2

0tot

� �

� , (1)

where S S jj

N
�

�1�

, S j denotes the contour of the jth strip, k c� � / is the wave number of free space.

Assume that the thickness of each strip is sufficiently small (h �� �), then based on [9–11] the cross

section of each strip can be replaced by its corresponding center line

L x y j p x j p d yj � � 
 
 � � �{( , ): ( ) ( ) , }1 1 0

or
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L x y x j p y dj � � � �{( , ): ( ) , [ , ]}1 0

for a planar or a blade grating, respectively.

In turn, on the assembly of these center lines L L jj

N
�

�1�

one can determine the dual-sided GBC, which

connect the boundary values of the tangential field components (subscription “tan”)

[ ] [ ]E E Z R n H Htan tan tan tan

� � � �

� � � � �2 0

�

,

[ ] [ ]H H Z Q n E Etan tan tan tan

� � � � �

� � � � � �2 0

1 �

, (2)

where
�

n denotes a unit vector of the normal to the grating’s surface.

These GBC have been originally derived for a thin planar dielectric layer [9]. In point of fact, the

conditions (2) represent Ohm’s law for effective surface electric
�

n H H� �

� �

[ ]tan tan and magnetic
�

n E E� �

� �

[ ]tan tan currents. Finally, forU rtot ( )
�

GBC (2) take the form:

�

�

�

� �

�

� �

n
U r U r[ ( ) ( )]tot tot � � �

� �

2i tot totkR U r U r[ ( ) ( )]
� �

,

[ ( ) ( )]U r U rtot tot

� �

�

� �

�

�

�

� �

� �

2i

tot tot

Q

k n
U r U r r L

�

� � �

[ ( ) ( )], , (3)

where R and Q stand for relative electric and magnetic resistivity,

R kh r r� icot ( / ) / ( )� �2 2 ,

Q khr r� i cot� �( / ) /2 2. (4)

Note that such GBC with resistivities, which are defined by (4), allow one to simulate a uniform metal

layer in the optical wavelength range with the thickness smaller as well as larger than the skin layer is. This

follows from the fact that for metals in the optical band � � ��� �r r| | 1, and for k h r0 1| |� �� cotangents may

be replaced by “–i”. A detailed investigation of the applicability limits of GBC in the problems of the

scattering for plane waves by metal and dielectric strips is presented in [14].

An additional point is that the scattered field must also satisfy the Sommerfeld radiation condition at the

infinity

�

�

� �

�

�

�

�

�

�

U x y

r
kU x y o

r

sc
sci

( , )
( , )

1
,

r x y r� � � �( , ) | |
�

, (5)

and the condition of local boundedness of energy

{ | | | | }k U U
2 2 2

tot tot d� � � �

�

�

�

, (6)

where � designates an arbitrary bounded region in �
2
.

The formulated boundary problem (1)–(6) has a unique solution [9].
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3. DERIVATION OF SINGULAR AND HYPERSINGULAR INTEGRAL EQUATIONS

Let us represent the scattered field outside the grating in the form of a linear combination of potentials for

a single and a double layer

H r k v r G r r r w r
G r

z j

S

j

Sj j

sc
d( ) ( ) ( , ) ( )

( ,� � � � � �

�

�
� � �

�
�

�

� �

�

�

�
�

�
�

�

 

!

"

"

#

$

%

%

�

&

r

n r
r

j

N
)

( )

d

1

, (7)

where G r(
�

,
� � �

�
� �

�r H k r r) ( / ) ( | | )
( )

i 4
0

1
defines the Green’s function for two-dimensional Helmholtz

equation, and the functions v rj ( )
�

and w rj ( )
�

, j N�1,... , designate the unknown densities of electric and

magnetic current, respectively, which are induced on the jth strip.

Performing the substitution of (7) in (3) and using the properties of the potentials of a simple and a double

layers, as well as of their normal derivatives for the case of transition through the integration contour, the

boundary problem (1)–(6) is equivalently reduced to a system of singular and hypersingular IE of the second

kind

i dQv r w r
G r r

n r
rs j

Lj

N

j

( ) ( )
( , )

( )

� �

� �

� �

�

0
0

1

�

�

�

�

&

�

� � �

�

&

�

k v r G r r r u rj

Lj

N

j

( ) ( , ) ( )
� � � � �

0

1

0d ,
�

r Ls0 � , (8)

i dkRw r k v r
G r r

n r
rs j

Lj

N

j

( ) ( )
( , )

( )

� �

� �

� �

�

0
0

01

�

�

�

�

&

�

�

�

� �

� �

�

&

�

w r
G r r

n r n r
r

u

j

Lj

N

j

( )
( , )

( ) ( )

(�

� �

� � � �

�

2

0

01

0
d

�

�

� �

r

n r

0

0

)

( )�

,

�

r Ls0 � . (9)

In the case of a planar grating one considers smooth parameterization of the form

x x t d t
j j

j� � �( ) ( ) /' 2,

x x t d t
j j

j0 0 0 0 2� � �( ) ( ) /' ,

where ' j j j g d� � � �( ) ( ) /2 1 2 1 and
~

( , ) | ( ) ( )|( jl

j l
t t k x t x t0 0 0� � for all t t, [ , ]0 1 1� � .

As a result the system of IE (8), (9) degenerates into two independent IE systems in unknowns w j ( )� and

v j ( )� , respectively.

In turn, the parameterization of the following form is introduced for the blade grating

y y t d t
j j
� � �( ) ( ) /1 2, x j p

j
� �( )1 ,

y d t
s

0 0 1� �( ) /2, x s p
s

0 1� �( ) ,

where

( js

j s j s
t t x x y t y t( , ) ( ) [ ( ) ( )]0 0

2

0 0

2
� � � � � � �( / ) ( )d t t js2 0

2 2
� ,

wherein � js p j s d� �2 ( ) / .

Consequently, after the substitution of variables the equation system (8), (9) can be rewritten in the

general form for both gratings as follows:
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4
1

0 0

1

1

1

Q v t v t K t t ts j v

js

j

N

) )

�

�

�

�

�

&

( ) ( ) ( , , )d

� � �

�

�

�

&

~
( ) ( , , ) ( , )w t t K t t t f tj w

js

j

N

v

s
1

2

0

1

1

1

0) )d ,

s N�1,... , , (10)

4 1
1

0 0

2
R w t ts)

�

�

~
( ) � �

�

�

�

&

~
( ) ( , , )w t t M t t tj w

js

j

N

1
2

0

1

1

1

) d

� �

�

�

�

&

v t M t t t f tj v

js

j

N

w

s
( ) ( , , ) ( , )) )0

1

1

1

0d ,

s N�1,... , , (11)

for all t0 1 1� �( , ) and ) � * �d / .

It should be noted that the condition of local boundedness of energy (6) allows one to find unknown

magnetic currents, which are induced by the jth tape as

w t w t tj j( )
~

( )� �1
2

,

where
~

( )w tj , j N�1,... , are new smooth functions, that must be determined on the whole interval [–1, 1].

In (10), (11) K t tw

js
( , , )) 0 , K t tv

js
( , , )) 0 , M t tv

js
( , , )) 0 , M t tw

js
( , , )) 0 and f tv

l
( )0 , f tw

l
( )0 for all

s j N, ,... ,�1 denote known smooth functions, which are determined according to the following formulas

depending on the geometry of the grating:

– planar grating:

K t t M t tw

js

v

js
( , , ) ( , , )) )0 0 0� + ,

K t t
H t t j s

H k t t j s
v

js

js

( , , )
( | | ), ,

(
~

( , )),

)

)

(

0
0

1

0

0

1

0

�

� �

, ,

-

.

/

0

/

M t t

H t t

t t
j s

H k
w

js

js

( , , )

( | | )

| |

, ,

(
~

( )

( )
)

)

)

(

0

1

1

0

0

1

1
�

�

�

�

( , ))

~
( , )

, ,

t t

t t
j s

js

0

0(

,

-

.

/

/

0

/

/

f tv

s t s( , )
( )cos

) )

) ' 	

0

1
4 0

�

� � �

i e
i

,

f tw

s t s( , ) sin
( )cos

) ) 	

) ' 	

0

1
4 0

�

� � �

e
i

;
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– blade grating:

K t t

j s

H k t t

t t
j s

w

js

sj

js

js

( , , )

, ,

( ( , ))

( , )

,
)

�

(

(

0 1

1

0

0

0

�

�

, ,

-

.

/

0

/

K t t
H t t j s

H k t t j s
v

js

js

( , , )
( | | ), ,

( ( , )), ,

)

)

(

0
0

1

0

0

1

0

�

� �

,

-

.

/

0

/

M t tw

js
( , , )) 0 �

�

�

�

H t t

t t
j s

H k t t

sj

js

j

1

1

0

0

2 0

1

0

( )

( )

( | | )

| |

, ,

( ( , ))

)

)

�

(

( s

js

js

sj

jt t

H k t t

k t t

t t

( , )

( ( , ))

( , )

( )
( )

0

2

1

1

0

0

0

2 2

�

� �(

(

�

( s t t

j s

( , )

, ,

0

2
,

-

.

/

/

0

/

/

M t tv

js
( , , )) 0 �

�

,

-

.

/

0

/

0

2 1

1

0

0

2

, ,

( ( , ))

( , )

, ,

( )

j s

H k t t

t t

j ssj

js

js

�

(

(

f tv

s t s np
( , )

( )sin ( )cos /
)

)

) 	

) 	

0

1 2 14
0

�

� �

� �

ie e
i i

,

f tw

s t s np
( , ) cos

( )sin ( )cos /
)

)

	

) 	

) 	

0

1 2 14
0

�

� �

� �

e e
i i

,

where 's s s g d� � � �( ) ( ) /2 1 2 1 and n d pp � / .

Due to the asymptotic behavior of the Hankel functions the singular kernels of the obtained IE (10), (11)

for the small values of the argument can be approximated as follows:

H t t t t
0

1

0 02
( )

( | | ) ~ ( / ) | | ,) *� �i ln t t� 0,

H t t

t t
t t

t t

1

1

0

0

0

0

2

2
( )

( | | )

| |

~ ln| |

| |

)

)

*

*)

�

�

� �

�

i i
, t t� 0.

Hypersingular integrals are regarded in the sense of Hadamard finite part.

Note that the problem of wave scattering by strip grating in the case of E-polarization ( ( , , )

�

E Ez� 0 0 ,
�

H H Hx y� ( , , )0 ) is likewise reduced to the IE system, which is similar to (10), (11), with the difference

consisting in the fact that the resistivities R and Q are interchanged.

4. DISCRETE MATHEMATICAL MODEL

Numerical solution of the IE (10), (11) we find in the form of interpolation polynomials with the further

utilization of quadrature formulas of interpolation type with the highest algebraic accuracy. For the

discretization of integrals with respect to the unknown functions v tj ( ), j N�1,... , , one uses

Gauss–Legendre quadrature formulas [11] of nv order with nodes{ }1 k and corresponding collocation points

{ }1 0i at the zeros of Legendre polynomials 1 k : P k nn k vv
( ) , ,... ,1 � �0 1 , respectively.
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In turn, for the discretization of integrals with hypersingular kernels with respect to the unknown

functions
~

( ), ,... ,w t j Nj �1 one uses more efficient quadrature formulas (with weight function 1
2

� t ) of

interpolation type with higher algebraic accuracy [10, 11] of nw order with nodes { }tk and corresponding

collocation points { }t i0 at the zeros of Chebyshev polynomials of the second kind t k nk w� cos( / )* :

T tn jw
( ) � 0, k nw�1,... , . As the result of discretization of mentioned hereinabove IE, we obtain two

independent systems of linear algebraic equations (SLAE) of order Nnv and Nnw with respect to for the

unknown values v j i( )1 , i nv�1,... , and
~

( ), ,... ,w t k nj k w�1 (for all j N�1,... , ) for a planar grating and a

coupled SLAE of the order N n nv w( )� for a blade grating, respectively. It should be noted that in the case of

the blade grating in order to solve the corresponding SLAE one must choose equal discretization orders

(n nv w� ). Having solved the above-mentioned SLAE, we obtain an approximate solution of the initial IE

(10), (11) in the form of interpolation polynomials.

Therefore, the developed mathematical model for the problem of light waves scattering by finite-sized

gratings made of thin strips allows one to reduce the two-dimensional boundary problem to the systems of IE

with singular or hypersingular kernels at the system of intervals. The developed numerical algorithm based

on the Nystrom-type technique possesses guaranteed convergence (which is not worse than1/ nv or1 / nw,

respectively) [13]. Thus, the accuracy of the calculations is easily controlled by the interpolation order. In

this case in order to provide computational error at the 10
–4

level in the whole optical band it is enough to

utilize n nv w� = 50 [10, 11].

5. MAIN SCATTERING CHARACTERISTICS

Using the asymptotic representation of Hankel functions for large values of the argument, the scattered

far field may be rewritten in the following form

U kr r
kr

sc

i
i e( ) ~ ( / ) ( ),

/
2 * 22

1 2
3 � �,

where2 denotes the observation angle,3( )2 stands for the radiation pattern of the scattered far field, which

for the planar grating equals

3( ) [ ( ) ( )]
cos

2 2

2

� �

�

�

&

�

i
isin e d

ik
v x w x x

j

N

j j

kx

S j

4
1

,

and for the blade grating

3( ) ( )
( cos sin )cos

2

2 2 2

�

�

� �

&

�

i
e d

ik
v y y

j

N

j

k x y

S

j

j

4
1

�

�

� �

&

�

i
i

e d
i

cos ( )
( cos sin )cos

2

2 2 2k
w y y

j

N

j

k x y

S

j

j

4
1

.

Total scattering cross section is determined using the integration of normal component of the Poynting

vector on a circle of large radius and it is represented in the form

�

*

2 2

*

sc d�

�

2 2

0

2

k
| ( )|3 .

Absorption cross section is calculated as

� abs d� �

�

&

�

j

N

j j

S

Q v x R w x x

j
1

2 2
[Re | ( )| Re | ( )| ] .
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6. NUMERICAL RESULTS

6.1. Planar grating

Strip gratings, which consist of a finite number of silver nanostrips, demonstrate characteristic

resonances on the surface plasmons in the optical wavelength range in the case of scattering of H-polarized

plane wave. Their intensity and wavelength depend mainly on the properties of material of the strips and of

the surrounding medium, as well as on the width and the thickness of nanostrips. This allows one to tune the

nanostrips for the effective interaction with the light.

In turn, the gratings, which consist of several tens or hundreds of nanostrips, in addition to the plasmon

resonances also show novel effects associated with the periodicity of the scatterer. Fig. 2a presents a

dimensionless (normalized to 2Nd) cross section of total scattering, which has been calculated as a function

of the wavelength for the gratings consisting of N = 50, 100, 200 strips with the parameters d = 250 nm, h =

20 nm, p = 450 nm.

It is evident that in the entire visible range in the case of normal incidence of a plane wave ( /� �� 2) two

plasmon resonances are excited on the wavelengths: �P1 = 633.1 nm, �P3 = 379.4 nm, and an additional

resonance on the wavelength �G = 450.85 nm. The latter one corresponds to the so-called grating mode

(grating resonance), whose wavelength is located in the vicinity of the Rayleigh anomaly for an infinite

grating � �R.A. � �p m( cos ) /1 for m � 1 [6]. In the general case the grating resonances have the form of

asymmetric Fano-type resonances, whose wavelengths depend weakly on the shape and the size of grating’s

elements. In contrast to the plasmon resonances, which are explained by the collective oscillations of free

electrons in the metal, the grating resonances are attributable to the collective oscillations of grating’s

elements (in this case of metal nanostrips).

Figure 2b presents the corresponding plots of |Hz| function, i.e. of the absolute magnitude of the total

magnetic near field for the grating made of N = 100 strips for two plasmon resonances �P1, �P3, as well as for

the grating resonance �G (in the vicinity of four central strips Nos. 48–52). The plots, which correspond to

the plasmons, demonstrate a high localization of the fields along each strip.

Note that these plasmon resonances correspond to Fabry–Perot modes, which are formed due to the

reflection of its own surface plasmon waves of the corresponding metal layer from the edges of each strip of

the grating. Therefore, at the resonances an integer number of half-wavelengths of the corresponding layer’s

eigenwave falls within each strip.
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In contrast to the plasmons, in the case of grating resonance the magnetic field has the form of an

intensive standing wave, that is formed by �1-st Floquet harmonics, which propagate along the grating, i.e.

by two quasi-plane waves. As one can see, this intensive field extends over several periods in the direction,

which is normal relative to the grating.

6.2. Blade Grating

Similarly to the planar grating, Fig. 3a presents the plots of normalized to 2Nd scattering cross sections

for the blade grating, which consists of N = 50, 100, 200 strips with the parameters d = 300 nm, h = 50 nm, p =

500 nm.

It should be noted that in the case of H-polarization the blade grating compared to a planar one has higher

Q-factor grating resonances near the wavelengths, that are multiple of the period. This is caused by the fact

that the geometry of a blade grating facilitates much stronger interaction between the adjacent strips, than it

does in the case of the planar grating. It is apparent that the blade grating consisting of N = 50 strips

demonstrates more narrow grating resonance than a similar planar grating consisting of N = 200 strips

(Fig. 2a).

On the profile of the normalized cross section of total scattering (Fig. 3b) there is a sharp pronounced

“ridge” along the line� � p, which corresponds to the grating resonance, and an intense “hill” in the vicinity

� � 330nm, that corresponds to the main plasmon resonance. In this case d = 300 nm and h = 50 nm are fixed

(� = �/2).

Figure 3c shows the plots of the magnetic near-field for the plasmon resonance at �P1 = 312.3 nm, as well

as for the grating resonance at �G = 512.1 nm. Similarly to the planar grating, the location of the grating

resonance for the blade grating depends on the grating’s period and on the angle of incidence, while its

quality factor depends on the total dimensions of the grating, namely on the amount of strips, their width and

thickness.

As is known, in the case of scattering of E-polarized plane wave (vector

�

E is parallel to the plane of a

strip) the excitation of surface plasmon waves and plasmon resonances is absent at the single thin strips

made of precious metals, as well as at the finite gratings consisting of them (both planar and blade ones) [11,

14]. In this case the gratings made of silver strips do not demonstrate grating resonances generated by the

presence of periodicity, which are clearly visible for H-polarization.
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The explanation for this may be found from the analysis of the problem of diffraction of plane waves on

an infinite grating [6]. In this problem one can successfully find the approximate complex eigenfrequencies

for the grating modes and make sure that in the case of E-polarization their quality factor is | ( )|� �r

2
lower

than for the H-polarization. Because of the absence of plasmons and resonances for the grating modes this

paper does not present the results of calculations of the cross section of total scattering in the case of

E-polarization.

A numerical experiment has been carried out. It consisted in the comparison of the spectra of cross

sections of total scattering and of total absorption, as well as of far-field radiation patterns, which have been

calculated using the presented hereinbefore model and the commercial simulation software FEM (Finite

Elements Method) based on the finite elements method. The comparison results, which have been obatined

by the two techniques, are practically the same over the whole visible frequency band except the narrow

vicinities near the plasmon resonances, where the difference equals 1–7% depending on the strip thickness

(the thinner the strip is, the less the differences are).

Note the significant advantage of the GBC technique, which consists in its fast performance and low

insistence to the computer resources. Thus, to calculate the main characteristics of scattering and absorption

for the H-polarized wave by a single silver strip with parameters d = 250 nm, h = 20 nm with the

above-mentioned accuracy using GBC and further discretization of IE by Nystrom-type technique it took 8

seconds on a PC equipped with a processor Intel Centrino Duo 2.2 GHz and 1 GB of RAM. The calculation

of the same quantities using the FEM software took approximately 4 hours, i.e. about 1800 times longer. The

high efficiency of the suggested technique allows one to calculate quickly the scattering characteristics for

gratings consisting of 200 and more such strips, i.e. for the composite object with the size of 200 and more

wavelengths.

7. CONCLUSIONS

This paper suggests an efficient and rapidly convergent numerical algorithm for the investigation of

scattering and absorption of light taking into account the resonance phenomena for the gratings consisting of

a finite number of thin silver nanostrips (which are thinner than the wavelength in free space). The model,

which is based on the approximate GBC, allows one to exclude from consideration the field within each

strip. Because of this, it is possible to reduce the two-dimensional boundary problem to two independent or

dependent IE systems (for a planar or a blade grating, respectively) with singular and hypersingular kernels.

The solution of IE is sought in the form of interpolation polynomials of some degree, whose coefficients

satisfy the SLAE. The further utilization of quadrature formulas of interpolation type with the highest

algebraic accuracy provides rapid convergence of approximate solutions to the exact ones.

With the aid of the developed numerical algorithm it is possible to predict the performance of optical

nanoantennas, which consist of a finite number of thin nanostrips made of precious metals, with the accuracy

sufficient for practical applications. The investigation of properties of the surface plasmon resonances, as

well as of the grating resonances, which are generated by the periodicity, near the Rayleigh anomalies,

allows one to design the grating scatterers and absorbers, that can more efficiently interact with the light.
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