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Assuming that the current is given, we consider the radiation that occurs during the motion of  charged particles 
near an open hollow ideally conducting cylinder. It is shown that the particle causes an outburst of  radiation 
with a narrow effective frequency spectrum. We study the directionality diagram (radiation pattern) and the 
total energy of  the resonant radiation. 

The necessity of optimization of  output parameters of  the generators o f  diffraction radiation continues to stimulate 
the study of  diffraction lattices of  various forms [1 ]. For example, Veliev et al. [2] studied the radiation of  particles which 
pass above a lattice of  resonant elements (open hollow metal cylinders) and it was established that the radiation of charged 
particles above this lattice is more efficient than, e.g., above a comb or an echelette grating. 

Since the properties of  individual elements form the basis for the properties o f  the lattice, the properties of  individual 
elements should be studied in more detail. In addition, a hollow cylindrical resonator with a longitudinal slot is in itself 
very close to the model of  a real resonator of  uhf devices, e.g., the resonator element of  the magnetron. 

1. FORIVlULATION OF TIlE PROBLEM AND CONSTRUCTION OF THE 
FORMAL SOLUTION 

Assuming that the current is given, we consider the diffraction radiation which accompanies the motion of  a planar 
infinite electron current with the charge density 

f~ = p,,~ (y - -  p) exp [i (kx/~ -- o,t)] (1) 

near a hollow circular cylinder with a longitudinal slot (Fig. 1). Here ~o and o 0 are the frequency and amplitude of  the 

current modulation; k = o~/c,/3 = v/c, relative velocity of  motion of  the current; p = a +  b; and h, impact parameter. The 

cylinder is assumed infinitely thin and ideally conducting. 

We note that the problem of  radiation of  the current (1) can be viewed as a problem for individual spectral 
components of  the radiation of  an unmodulated beam, or a problem for a single particle, or more exactly, for its two- 
dimensional analogue, i.e., a charged wire [3]. 

It is known that the proper electromagnetic field of  the current (1) has a form of  a slow inhomogeneous plane 
surface wave [ 1 ] whose only nonzero component of  the magnetic field is equal to 

H ~  [ q - i / e x / ~ ) I Y - - P I / ( Y - - P ) ,  (2) 

where q = k'f~ -t, 7 = (1 --  ~2)1/2, and the factor e x p ( - i ~ t )  has been omitted. In a cylindrical coordinate system, the 
field (2) can be written in the following way: 

1:1~ ?.::!,.I~e-..qp ~ ln(kr)[i(I -- .i)/l~],e~,e. (3) 

In the fixed-current approximation, the study of  the diffraction radiation reduces to the determination of  the 
electromagnetic field H s which occurs as a result of  the scattering of  (2) from the open cylinder. The function HS(r, ~o) 

satisfies the known conditions (see, e.g., [2]), and can be written in the following form: 

eln~ , (4) 
H~ = --  2~p~ ~ Ix" H~Ir (ka) lAkr) (r ~ a) 
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Fig. 1 

where the quantities Un are the Fourier components of tbe surface current density induced on the cylinder which satisfy a 

system of  equations of  the first kind in terms o f  paired series (with a trigonometric kernel) of  tbe same type as in the 
problem of  diffraction of  a plane wave (see, e.g., [4]). The allowed solutions of  these equations belong to the class/2,  where 

n I '%[, 21 n l < o o ,  which follows from the condition that the energy at the sharp edges, of  the open cylinder is finite. The 
n 

regularization of  the paired equations can be achieved by inverting the statistical part of  the appropriate operator by the 
method of  the conjugation problem [5], and leads to a system of  algebraic equations of the second kind: 

P ro+  ~ A m , , ~ = B m ,  r e = O ,  4-1 . . . . .  (5) 
t l ~  - o o  

where 

Amn = ~n rm~,, A~ = Inl + ir:(ka)21",,(ka)H~W(lea), 

o o  

Bm=i,~(ka) 'De- '~"  ~ l 'n(ka)[ i (1-- .~/Sl"e '  .... ~ 1 ,  b 1 " , 

n ~ - o o  

D = - -  2=,%[~e-~ ~ , 

and the quantities V n-1 are defined in [5]. 
m - - I  

We note that a formal solution analogous to (5) was first given in [61. Tbe solution is rigorous in the sense that 
Eqs. (5) can be solved with any given accuracy. 

2. RADIATION OF PARTICLES MOVING NEAR A CIRCULAR 
CYLINDER 

System (5) allows a transition to the limiting case 0 = 0 which corresponds to the case of  radiation by a particle 
moving near a closed circular ideally conducting cylinder. In this case, Eq. (5) degenerates into a set of  eoualities for the 
quantities lan, and the result can be written down explicitly. For  example, the current induced on the cylinder is equal to 

jo('S) = cDe-q" (i2=ka) -I ~, Ii(1 - -  q')/~]~ ein~ [/-/]~)' (ka)]-1. (6) 

For  long wavelengths (ka </3)  the current density can be represented in the form of  the asymptotic  series 

Jo (~,) ~ cDe-q" (4~) -1 [ 1 + 2ka~ -1 (7 sin ? + i cos ,~)l [1 i- O (keae~-'-')l. (7) 

It is not  difficult to use (7) to verify that  the function I j 0 @) I reaches a minimum at the point ~ = - 9 0  ~ and a 
maximum at the point ~0 = 90 ~ The extremum values are proport ional  to 1 + 2ka~,~ -1, so that in this approximation,  the 
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Fig. 2. Current distribution at the 
surface of  the circular cylinder. 

Fig. 3 

mininmm can be equal to zero. In other words, in the scattering of  the surface wave (2) from a closed circular cylinder, 
the points so = +90 ~ play the role of  the "l ight" and "dark"  poles, by analogy with the points so = 0, 180 ~ in the diffractioa 
of plane homogeneous wave. This result is confirmed by the numerical summation of  series (6) using a computer whose 
results are shown in Fig�9 2. 

The directionality diagrams (radiation patterns) o f  the diffraction radiation for a closed cylinder (Fig. 3) disDlay a 
weak directionality. The total  power of  the radiation is obtained by evaluating the series 

P.,. - -  cD'-'(2~le) -~ e--'-'q" ~ Ip. , , l  ( k a ) f  :~ (8) 
rt = - - o l a  

and is in the long-wavelength case proport ional  to co 3: 

pO = (1/8) c~ a po 2 (2 q- }~) k a a 4 exp ( - -2qp) [  1 -k 0 (k 2 a = ~-2)1. (9) 

The frequency dependence of  po is shown in Fig�9 1 by the dashed line. $ 

3. UNIFORM ASYMPTOTIC BEHAVIOR AT LONG WAVELENGTHS. 
RESONANT DIFFRACTION RADIATION 

We now return to the case of  radiation of  a particle moving near an open resonator with. a coupling slot. It can be 
shown that an estimate of  the norm of the matrix element (5) gives the following hlequality which is valid in the long- 
wavelength region: 

g = m a x [ ~ l ' A  .... J [ ( l  --  A,,,,)] < ( l e a )  2C(':.o, 0). 
m # o  n 

For sufficiently small ka, system (5) can therefore be solved by iteration�9 The solution of  (5) can be represented in the 
form of  an asymptotic series which is uniform with respect to the parameters 0 and soo" In the zero approximation,  with 
accuracy up to term [1 + O ( k  2 a2~-2)], 

0 %(1 + - ~ ) S - ~ e x p ( +  i~,,) i ,~- I + s in- ' - -exp( -T-  2i,~.n)(1 -~ j)~3-'e- ',,.,i --- - -  D( l ea )  z cos 2 7 ' _ i , 2 ' ' 

tJ.o = D&: (lea)"- {4(ka) 2 --  4 (le, ct)'-' + (lea)" [i= - -  2 (le0a)' ~_ (0) 11-' • 

{ [ ( O : 3 s i n , @ ) ~ _ , i l l + . , , ) c o s 2 %  (10) X lea 2 - - ( k o a )  2 1 - -  4 sin ~ ~ -,- 

where (/e0a) 2 . . . .  2 In sin 

polynomial. 

- -  2 i~; sin 2 7,1 i 4t (le~:,a)- t~- cos ~ ~- 
J/ 

0 1 .... 1 
(0) =cos~- -2  - i - T  ~ n ( n  + I) [P,~(cosO) + P~_~(cos0)] 2, and Pn is the Legendre 

Expressions ( I0)  make it possible to obtain the following formula for the total energy of the diffraction radiation 

= :4 + i:O: 
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~ , ( 2 - - ~ 2 )  c o s 2 %  + 2 ~ . ( k a ) ~ - ~ c o s  ~ - % c o s ? 0  1 + 
' 2 k 

(ll)  

For 0 ~ 0, formula (11) reduces to the analogous expression (9) for the circular cylinder. If 0 -> 180 ~ Eq. (11) 
corresponds to the radiation of  a particle moving above a planar strip of  width 2a(Tr - 0): 

( ~ P s = ( 1 / 4 )  c~D~e -2q~k 3 a c o s ~ -  [~4[cos ~%_~(1  - ~2) (I + s i n  2% si n~%)l- (12) 

Formula (I 1) encompasses the region of Rayleigh scattering when k << k o < ~ and Ps = O(k3a~), as well as the 

resonant scattering at a frequency equal to k 0 for small 0. It is known that the latter case corresponds to the excitation of  

a quasiproper slot oscillation which can be conditionally denoted by H0o [4]. 

In resonant conditions, the efficiency of  radiation of  charged particles sharply increases: 

= --POP e-2qP 1 + 2koa ~ cos 2 - - s i n  % [1 + O(k2a2~-2)]. (13) 
k 0 ~ 2 

This is considerably larger (by four orders of  magnitude in frequency) than the energy (9) of  radiation which 
accompanies the motion of a charged wire near a planar ideally conducting cylinder: P~es/Ps~ = O(k "4 a 4) .  

The resonant increase of  the radiation energy can be expressed in terms of  the increase of  the effective dimensions 
of the scattering object. By equating (9) and (13) for fixed values of  parameters ~, h, k, Po, and % = 90 ~ we arrive at the 

conclusion that the radiation power of  an open cylindrical resonator is equivalent to a planar cylinder of  radius a eff, where 

x = aeff/a is the root  of  the equation 

In { ( k ~  - x ~  ,~ q-1)]I '4} = k o a ( i  l ) l ' 2 (x_ l )  " - 2 -  ~ , (14) 

For example, for ~ = 0.8 and 0 = 5 ~ we obtain from (14) a elf  = 2.7a. 

This phenomenon can also be described in terms of a change of  the impact Darameter on which the radiation energy 
depends exponentially. We compare (9) and (13) for fixed/3, a, k, and po. The result can be exvressed by saying that if a 

given radiation power is obtained for a particle passing at a distance h from a closed cylinder, this power can also be obtained 
if the particle passes at the distance 

h ~ = h + [~/[k,~(1 - -  ,~)~Z~]l in [4~(2 + ~2)-~'2/r. (/~)a)-~] (15) 

from a cylindrical resonator tuned to the frequency k o. For  example, for ~ = 0.8, 0 = 5 ~ h eft  = h + 5.5a, i.e., the suitable 
impact parameter increases by nearly three orders of magnitude. 

4. CALCULATION OF THE CHARACTERISTICS OF THE DIFFRACTION 
RADIATION ON A C O M P U T E R  

It is not  difficult to show that system (5) is of  the Fredholm type for arbitrary parameters and, consequently, can 
be solved by reduction. We note that, although the matrix operator  is independent of ~, the order of  termination of the 
infinite series for B m is determined by the parameter ka/13, whichcomplicates matters for small ~. This difficulty can be 
removed by the replacement ~. =: ~r,l~-~ i~(.~)'-' X DI' n[i (1 -- "l'),.~l ~ e ~o  . 

The results of  calculation of  the frequency dependences of  Ps on a computer  for various parameters ,6, 0, % = 90 ~ 

are shown in Fig. 1. All quantities are normalized to the magnitude P~r = 2C~p%~ e-~<f~,. Above we noted that tbese 

curves can be viewed as graphs of  the spectral density of diffraction radiation of a single two-dimensional "part icle,"  i.e., of  
a charged wire. By passing near an open hollow resonator, the wire induces an outburst  of  radiation with a continuous 

699 



I t  I k0.:0175 \ " . .  / / 

riO i20 II10 240 . % ,  deg 

Fig. 4. Radiation energy as a function of  the orienta- 
tion of  the coupling slot for 0 = 5 ~ The dashed line 
corresponds to calculation using formula (13). 

9~176 27~176 

Fig. 5 

frequency spectrum, and the energy emitted at the limits of  low and very high frequencies tends to zero. This is due to the 
fact that, for ~o -+ oo, the proper field (2) "sticks" to the trajectory of  the particle, and weakly perturbs the currents at the 
surface of  the obstacle. 

We define an effective width of  the radiation spectrum as the frequency band in which the dominant fraction of  
energy is emitted. An analysis shows that this width is determined by the frequencies of  the quasiproper regimes of  the 
cylinder and by the Q-factors (see Fig. 1). The largest contribution comes from the quasistatic resonant regime Hoo which 
was studied in [4]. In some cases, one can separate several isolated regions of  maximum emission which correspond to 
oscillations of  the type Hoo and H+I. Higher types of  oscillations manifest themselves weakly. Their contribution, however, 

is more important in the relativistic case (cf. [7]). 

We note that in the motion of  charged particles near nonresonant obstacles (strip, closed cylinder), the effective 
width of  the spectrum is determined mainly by the velocity of  the particle and by the impact parameter [ 11. In the present 
case, the role of  these quantities is considerably less pronounced. 

As expected, the resonant oscillations are excited most efficiently when the particle passes above the coupling slot 
of  a resonator (~0 o = 90 ~ (see Fig. 4). This conclusion follows also from formula (13). If  the slot is opened in the opposite 
direction @o = - 90~ the energy of  radiation sharply decreases, which is explained by the fact that the slot enters the region 
of  the "dark pole," i.e., the minimum of the current density function (7). It was noted earlier [2] that a similar phenomenon 
is observed also for the radiation of a current above a lattice of  open cylinders. It is natural to assume that it has an 
analogous explanation. 

Of particular interest is the distribution of  the emitted energy in space, i.e., the directionality diagram. As in the 
case of  scattering o f  a plane wave (see [7]), it is necessary to distinguish clearly the resonant and nonresonant diffraction 
radiation. When high-Q quasiproper oscillations are excited at the surface of  a circular cylinder, a powerful source of  
secondary radiation appears at the place of  the slot, and the directionality diagram therefore discontinuously changes its 
shape. The directionality diagrams shown in Fig. 5 refer to the case diffraction radiation in the most important case for 
k = k o , i.e., when the resonant regime Hoo is excited. They show that if the coupling slot has an optimum orientation 
@o = 90~ the directionality diagram is similar to that for the scattering of  a plane wave (/~ = 1), and for ~ ~ 0.2 it depends 
weakly on the change of  the velocity of  the current. If the slot is positioned in the region of  the "dark pole," the directionality 
diagram assumes a specific two-lobe character and is unstable, i.e., it changes strongly with changing/7. 
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Thus, we have established that the motion of a charged particle near an open resonator is accompanied by the out- 
burst of diffraction radiation with a narrow effective frequency spectrum concentrated around the frequency of the quasi- 
static resonant regime Hoo. The energy of the radiation is largest in the case when the particle passes above the coul~ling 
aperture of the resonator, which reflects the nonuniform character of the proper electromagnetic field of the particle. The 
directionality diagram of the resonant radiation is stable with respect to the change of velocity of the particle within wide 
limits. By turning the coupling slot one can control smoothly the energy loss of the particle by radiation. 

We note also that the carrier of the field of a nonuniform plane wave of the type (2) can be not only a Nanar 
modulated current of charged particles, but also a surface-wave transmission line, e.g., a planar dielectric waveguide [ 1 ]. 
Here the role of the function of the parameter/~ is played by the relative phase velocity Vph/C of the surface wave; the 
values/3 >/0.5 are most characteristic. In this case, the structure plays the role of a resonant slot antenna excited by the 
surface-wave transmission line. The above results correspond to the excitation of the characteristics of such an antenna in 
the approximation of fixed field of the transmission line. 

The author is grateful to V. P. Shestopalov for his guidance during this work, and to E. I. Veliev for useful 
comments. 
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