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Scattering and absorption of E- and H-polarized plane waves
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Abstract. An analytical-numerical method of analysis is presented for two-dimensional
wave diffraction by an open circular resistive strip. The method is based on the dual series
equations regularization approach and results in algorithms with accuracy limited only by
a computer’s digital precision. Scattering and absorption cross sections are computed as

functions of frequency for lossless and lossy strips.

1. Introduction

The scattering of waves from zero-thickness, per-
fectly conducting strips and surfaces has been a
traditional topic in diffraction theory. However, an
imperfect structure such as a resistive or conductive
strip is obviously of greater practical interest. Follow-
ing Senior [1978] and Senior and Volakis [1987], a
combination of resistive and conductive sheets can be
used for simulating magnetodielectric layers and im-
pedance surfaces. Due to a known duality, an electri-
cally resistive (conductive) strip is similar to magnet-
ically conductive (resistive) one. Hence it is sufficient
to analyze the scattering of electrically (E) and
magnetically (H) polarized waves by an electrically
resistive strip. Although flat resistive strips have been
studied in a number of papers, the curved ones seem
so far to have avoided any numerical analysis. An
analytical high-frequency study, however, was re-
ported by Biiyiikaksoy and Uzgoren [1988].

The scattering geometry is shown in Figure 1. A
circularly curved strip M of radius a, angular width
20,,, and aspect angle ¢, is exposed to an excitation
by a plane E- or H-polarized wave propagating along
the x axis. The resistivity is assumed to be Ry = ZR,
where Z is the free space impedance. Following
Senior [1979] and Bouchitté and Petit [1989], we can
imply that for a realistic metallic surfaces, R =
(ho) ™!, where o is the conductivity and & is the
thickness of an actual strip, which is simulated by a
zero-thickness one. Also, for a thin sheet of dielectric,
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R = i/[kh(e — 1)], and a lossless scatterer is realized
if we set Re R = 0.

Canonical scattering geometry like this has been
studied previously by many authors assuming a per-
fect electric conductor (PEC). A commonly accepted
way to obtain a numerical solution to such a problem
was initiated by Zakharov and Pimenov [1979] and
also by Beren [1983] who treated the electric field
integral equation (EFIE) (or the magnetic field inte-
gral equation) by the method of moments (MOM).
Later, Mautz and Harrington [1988, 1989] developed a
modified MOM procedure that remained stable in
case of a narrow slot, to study the resonances. Gog-
gans and Shumpert [1991] and also Sadigh and Arvas
[1993] extended this approach to solve the problem of
dielectric-filled two-dimensional (2-D) cavities of
more arbitrary shape. A close relative to the MOM
called a modified point-matching method was used by
Hosono [1991] to study the transient response of a
slitted PEC cylinder.

Another numerical approach involves greater ana-
lytical work but offers certain advantages. Sologub et
al. [1967] were the first to reduce the scattering by an
open circular cylinder with N periodic longitudinal
slots to a set of dual series equations, where they
made use of the so-called Riemann-Hilbert problem
(RHP) solution to obtain a regularized matrix equa-
tion. This article and a following paper by Kosh-
parenok et al. [1971] started the series of Soviet papers
on slitted circular PEC cylinders analyzed by the
method-of-regularization (MOR). Nosich [1978],
Johnson and Ziolkowski [1984], and Ziolkowski and
Grant [1987] used this approach later to analyze
numerically the far-field characteristics and surface
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Figure 1. Scattering geometry of a circularly curved strip.

current distribution for the slitted circular cylinder. A
partial list of relevant Soviet papers was given by
Nosich [1993] together with some extentions of the
method. Radar cross section (RCS) analysis of lossy-
material-lined and coated slitted PEC cavities was
presented by Colak et al. [1993, 1995].

Here a note should be made on the relation
between the MOM and MOR solutions. Generally,
MOR is considered to be more accurate but compli-
cated and restricted to circular geometries while
MOM as simpler and more universal. The bridge
between the two approaches has been established in
an important paper by Gestrina [1969], who obtained
the same matrix equation as that of MOR without
solving the RHP, but only through careful use of
certain properties of singular integral equations. The
key is to split the kernel of EFIE by extracting the
logarithmic part of the Green’s function and to use
the set of orthogonal eigenfunctions of this partial
kernel as the basis and testing functions in a Galerkin-
like procedure. Taking account of this, MOR can be
understood as a sophisticated version of MOM, due
to the judicious choice of expansion functions.

In contrast to MOM, MOR is free from any
problems of relative convergence, stability, or accu-
racy failure in the vicinity of resonance [see Hower et
al., 1993]. It works equally well for an arbitrary strip
(or slot) width and orientation and for the surface
current, near-field and far-field calculations. The gen-
eral relations as energy conservation and reciprocity
are satisfied in term-by-term manner; the errors in
such relations are at the level of digital precision. The
applicable range of frequency is sufficiently wide and
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is limited only by the memory available on a com-
puter. Moreover, the memory size requirement is not
severe: because the MOR results in a matrix equation
of the Fredholm second kind, it can be solved by a
conjugate-gradient method instead by matrix inver-
sion.

The aim of this paper is to present an efficient
MOR solution to resistive strip scattering. Mathemat-
ically, the problem of excitation by a known E- or
H-polarized field (time dependence e ™' is as-
sumed) can be formulated as follows. Define the z
component of the total electric or magnetic field as

()

assuming that the U in is the field in the absence of the
strip. Then the scattered field function must solve the
2-D Helmbholtz equation

U=U"+U*

(V2 + kDU*(r) = 0, (2)

where r € R?>/M, k = w/c, Im k = 0, with a set of
boundary, edge, and radiation condition:

9
(—iia)U=O, reM., 3)
ar
J (K} U*|* + |VU*|?) dr <=,  VBCR? 4)
B
U(r) ~ @*(¢)(2fimkr) 2™, r—o,  (5)

where a = k/R in the E polarization and « = kR in
the H polarization; and M .. denote the outer and the
inner surface of the strip, respectively. To simulate an
electrically resistive strip, we need to add the condi-
tion of tangential E field continuity across the strip,
ie.,

[E]1Z=0 (6)
or

[6H/or]~ =0, (7)
depending on the polarization.

We shall obtain regularized matrix equations for £
polarized (section 2) and for H-polarized (section 3)
scattering. In proceeding with analysis, an important
step is to reduce the original problem, equations
(1)—(7), to the dual series equations. Partial inversion
of the equations may be done based on the inverse
Fourier transformation in the E-polarized case. In the
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H-polarized case, however, we need a RHP-like
treatment that is similar to one employed in the
solution of scattering by a PEC strip. Verification of
the algorithm is presented. Sample numerical results
are given for lossless and lossy circular strips. The
results which include total, backscattering, and ab-
sorption cross sections.

2. E Wave Scattering and Absorption

The general scheme of treatment foliows one given
by Senior [1978]. We start by seeking the scattered
field as a single-layer potential with unknown density
function X(r’)

E*(r) = f X(e)Golr, r') dr’, 8)
M

where r’ is a point on M and the kernel function of
such a representation is the 2-D Green’s function, i.e.,

i
Golr, 1') = 7 Hy (klr = v')). ©)

Thus the original problem is reduced to the search
for the surface current density function X(r’). By
using the boundary condition (3) and the jump con-
dition (6), we obtain an EFIE as

X(r) + 2ia f X(r"Go(r, r') dr’' = —2iaE™(r), (10)
M

reM.

Note that because the kernel in (10) has a logarithmic
singularity, this integral equation is of the Fredholm
second kind provided that R # 0. Hence it can be
solved by a direct MOM-like algorithm. One fre-
quently met problem in MOM-based solutions is the
failure in the case of a narrow slot (or strip). To
overcome this difficulty, we treat the scatterer as a
complete circle, and redefining the function X(¢') to
be zero off the actual strip, we extend the integration
in (10) from M to an entire circle (r = a, 0 = ¢ =
2).

By expanding the current density and the kernel
function in terms of angular exponents, we arrive at
the representations

2 2 o
X(r')EX(¢>'):i—7-T; > xnet (11)

n=-—o
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r>a
(12)

r>a.

E*(r) = a ing
0= 2 e Tk HOka),

n=-—w

= [Jn (ka) H (kr),

After expanding similarly the incident field and cal-
culating the integral in (10), we obtain the following
dual series equations:

- -1 . - ‘
> xn(—waa +Jan)e'"¢: — > iYne™?, (13)
n=-—o n=-—oo
ld’ - d)Ol < Bap
2 xnemd) = 0: eap < Id) - (I)O' =7 (14)
n=-—o

where the argument of cylindrical functions J,, and
H, = H{Y is ka. Note that the appearance of (14) is
the price of simplifying the shape of the scatterer. The
expected gain is that the solution is equally efficient
for any value of 6,, and ¢,. In addition, the condition
of limited stored energy in any finite domain (4), if
applied to a circle r = a for example, yields a
requirement that

©

> beal2n] + 1) < o,

n=-—o

(15)

Due to the large-n behavior J,H,, ~ O(|n| 1), the
dual series equations, (13) and (14), can be subjected
to the partial Fourier-inversion procedure. This re-
sults in a matrix equation of the Fredholm second
kind:

(I - ABX = BE, (16)

where

Iy, =

6n‘li’l >

(17)
AL, = (ka/R)[(In] + V)/(Jm] + D]V ,H, S pn (0,5, d0)

En =x,(n| +1)7Y2,

(18)

[

Brﬁ = (ka/R)(lmI + 1)_1/2 Z ianSmn(eap’ ¢o0).

n=-—oo

The angular coefficients are given by
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Figure 2. Computational errors as functions of the matrix
truncation number for E polarization, ka = 10, R = —i0.1,
0., = 90° and ¢ = 170°.

sin [(n — m)(0,, — )]

oap -,

m¥n

(19)

Investigation of the large-index behavior of the
elements AL, reveals that

m=n

AE, = O[(Im — n| + 1) "Ymn| V2. (20)

Hence independently of the angular parameters 6,,
and ¢, the electrical radius ka, or of the resistivity R,
we have 2 __.|4%,|? < «. This guarantees that
the needed solution exists, is unique, and can be approx-
imated by solving a truncated matrix equation. The
estimation (20) guarantees also convergence of the
series (15), and hence the condition (4) is satisfied.

The quantities of practical interest are the far-field
scattering pattern ®*°(¢), the total scattering cross
section oy, the backscattering RCS ¢}, and the
absorption cross section o, (provided that Re R >
0). We find that the first three are given, respectively,
by the following series expressions:
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©

D= D x,(=i)T,e™, (21)
2 2m 4 =z
ez ], e @ra = 3 i @)
4 - ’
4
op = ¢<(mP =7 | 2wy (23)

n=-ow

Under a plane wave incidence, the total scattering
cross section of a localized scatterer has to satisfy the
optical theorem (power conservation law):

4
Oext = 0gc + Ogp = — % Re ®%(0). (24)
The scattering pattern, in addition, should meet the
reciprocity theorem, which in our case may be written as

D*(0, do) = (0, ™ — o). (25)

These relations can be used for checking the numer-
ical algorithm in order to avoid rough mistakes. Besides,
(24) may be used for calculating the absorption pro-
vided that o, and ®*°(0) have been computed.

Figure 2 gives the understanding of the main
features of the numerical algorithm based on the
equations presented above. The truncation errors for
the surface current and the RCS of a lossless strip are
defined, respectively, as functions of a given trunca-
tion order N by

N N+1 N N+1

max x, —x, | oy — oy |

A (N) = , Ap(N) = —Fx—.
x( ) max Ix’}l\/l b( ) 0'1},\, (26)

The accuracy in satisfying the general relations (24)
and (25) is estimated by
ko, + 4 Re ®*N(0)]

Ay (N) =2 ,
M) ko, — 4 Re ®*N(0)]

(27)
|D5N(0, do) — DN, m— o)
[DN0, $o) + DN, m— $o)|

Ay(N) =2

One can see that by taking the truncation number as
N = (1 + [R|"Y?)ka + 10, the relative accuracy of
the surface current computation is guaranteed to
0.01, while that of the RCS is 0.001. This rule is
applied when computing the scattering characteristics
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as functions of frequency (see Figures 3 and 4). At the
same time, the power conservation and the reciproc-
ity are satisfied in a numerically exact manner: the
errors are determined only by the digital precision of
the computer. Moreover, both seem to be satisfied in
a term-by-term manner; however, this is difficult to
prove analytically.

In Figures 3 and 4 the scattering and absorption
cross sections as functions of the normalized fre-
quency ka are presented for a semicircular strip/shell.
All the plots are normalized by the corresponding
high-frequency limit value for a closed PEC cylinder,

3.5 T T T T
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Osc/da
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Figure 3. Lossless resistive strip scattering characteristics
in E polarization: (a) total scattering cross section o./4a,
and (b) backward radar scattering cross section o,/ma, as
functions of normalized frequency ka. Solid curves corre-
spond to a resistivity R = —i0.01, dashed curves corre-
spond to R = —i0.1, and dotted curves correspond to R =
—i. Strip geometry is 8,, = 90° and ¢y = 170°.
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Figure 4. Lossy resistive strip characteristics in E polar-
ization: (a) total scattering cross section oy /4a, (b) back-
ward radar scattering cross section o/ma, and (c) absorp-
tion cross section o,,/4a as functions of normalized
frequency ka. Solid curves are for a PEC strip R = 0,
long-dashed curves are for R = 0.01(1 — i), short-dashed
curves are for R = 0.1(1 — i), and dotted curves are for
R =1 — i. Strip geometry is 0,, = 90° and ¢y = 170°.
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which is 4a for the total scattering and the absorption
cross section, and ma for the RCS. The values of the
resistivity were taken to be of the order of 0.01, 0.1,
and 1 in order to cover the range of practical interest,
and a comparison with the PEC case was made (see
Figures 4a and 4b) based on a separate treatment.
Generally, no resonances are seen in the total cross
section, but the RCS and the absorption cross section
(to a lesser extent) do show the resonances, which are
suppressed if the loss (Re R) becomes greater.

3. H Wave Scattering and Absorption

The treatment is similar, in part, to the previous
case. We seek the scattered field as a double-layer
potential [Senior, 1978], with an unknown density
function Y(r"):

H*(r) = f Y —- Gole, ¢) dr'. (28)
M ar

The kernel function here is the outer normal deriva-
tive of the 2-D Green’s function G . Thus the original
problem is reduced to the search for the surface
current density function Y(r'). By using the boundary
condition (3) and the jump relation (7), we obtain an
EFIE as

d J
iaY(r) + 2 — f Y(r') — Go(r, r') dr’, (29)
ar ar

M
reM.

Note that (29) is a hypersingular equation and hence
any direct MOM-like algorithm will have at best a
questionable convergence and stability. Similarly to
the E-polarized case, we treat the scatterer as the
circular one assuming the function Y(¢") to vanish off
the actual strip.

Expanding the current density, the kernel function,
and the incident field in terms of angular exponents,
we have expressions like

2 2z o
Y(r,)EY(d),):iqu 2 yaein?, (30)
” o I, (ka)HD(kr), r>a
sC — n
H*(t)= . yne L HY (), r<a (31)

n=-—o0
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Equation (29) is thus modified to the dual series
equations

- (e . ” .
2 y"( kz*+J',,H;,)em¢= — Y e, (32)
s, \mka i
|<b - ¢0| < Oap
2 yne™ =0, Oy <|o—dol=7 (33)
n=-—w

Here the prime denotes differentiation with respect to
the argument, which is ka and is omitted. The condi-
tion of limited stored energy (4) yields a requirement
that

D yal?(n] + 1) <.

n=-o0

(34)

Unlike the E-polarized case, the dual series equa-
tions, (32) and (33) cannot be inverted partially by the
inverse Fourier transformation because of the large-n
behavior J,H), ~ O(|n|). Instead, they can be han-
dled by an RHP-like procedure, which is similar to
one employed in the PEC case. The result is a matrix
equation of the Fredholm second kind:

(I - A" =BH, (35)

where
Imn = Smm A:n’n = Kn(ka’ R)Tmn(eap’ 4)0)’ (36)
K,(ka, R) = ikaR + |n| + im(ka)¥,H,,  (37)
B,IZ = iﬂ(kd)z 2 in-’hTmn(ea[n d)O) (38)

n=-—w

The angular coefficients are the same as that for the
H wave scattering from a perfectly conducting open
circular strip [Nosich, 1993}, i.e.,

Tyn = (_1)n—m €xXp [l(n - m)d)O]

. Pm-l(u)Pn(u) - Pn—l(u)Pm(u)
2(m —n)

: (392)

m¥*n
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In|

1
2 EO Ginfs @) P11,
(39b)

Tmn — (_1)n—mei(n—m)¢o

m=n+0

Ton = (=1)" ™ exp [i(n — m)do]—In2 (1 + cos Op),
(39¢)

m=n=0

where g9 = 1, q; = —uy,**+, g3 = Py —
2uP,_1(u) + P;,_,(u), and Ps(u) are the Legendre
polynomials of the argument u = cos 6,,.

Note that the leading contribution to the K,, coef-
ficient in (37) comes from the term ikaR, which
remains constant as [n| — o, while the last two terms
together decay as O(k2a?/|n|). Hence it is the large-
index behavior of the T,,, coefficient,

Ty = Ol(m = n| + 1) ~!mn| 712, (40)
that ensures the Fredholm nature of (35) and also the
needed edge behavior.

Far-field scattering pattern, scattering cross-sec-
tions, and general field relations are given by the
expressions similar to (21)-(25), where x, and J,
should be replaced by y,, and J,.

To illustrate the main features of the H-polarized
case algorithm, relative errors in computing the cur-
rent and the RCS and those of power conservation
and reciprocity for a lossless strip are shown in Figure
5 as functions of the number of matrix truncation.
One can see that by setting the number as N = (1 +
IR|Y?)ka + 10, the relative errors in the surface
current and the RCS, respectively, are less than 0.01
and 0.001.

This rule is applied in computation of frequency
characteristics of a semicircular strip/shell (see Fig-
ures 6 and 7). Note that the power conservation and
the reciprocity are satisfied again in a numerically
exact manner. A resistive curved strip, in general,
shows stronger resonances when illuminated by an
H-polarized plane wave than when illuminated by an
E-polarized wave. This is similar to the PEC case and
is explained by the circumferential flow of the surface
current. In these figures, plots for a corresponding
PEC obstacle are not shown just because they co-
incide with the plots for the |[R| = 0.01 case. The
resonances are well observable in the total, backscat-
tering, and absorption cross section.
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Figure 5. Computational errors as functions of the matrix
truncation number, for H polarization, ka = 50, R =
—i0.1, 0,, = 90°, and ¢, = 170°.

Due to the resonance, the overall absorption can be
enhanced in spite of a relatively small surface loss.
The lowest frequency resonance is known as the
Helmholtz resonance [see Nosich, 1978; Ziolkowski
and Grant, 1987; Colak et al., 1995]. The regularized
character of (35) offers a way of finding an approxi-
mate analytical solution provided that the norm of the
A operator is small. This is the case if the electrical
dimension of the strip tends to zero. Hence an
asymptotic eigenvalue analysis of (35), assuming ka
— 0, results in the following complex resonant
frequency

kya —k()tl[l + - (koa)2

. iR/2
"~ (=27VIn"Tsin (7w — 6,,)/2 - R4 2]
(41)

where
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Figure 6. Lossless resistive strip scattering characteristics
in H polarization: (a) total scattering cross section o./4a,
and (b) backward radar scattering cross section o,/ma, as
functions of normalized frequency ka. Solid curves corre-
spond to a resistivity R = —i0.01, dashed curves corre-
spond to R = —i0.1, and dotted curves correspond to R =
—i. Strip geometry is 6,, = 90° and ¢y = 170°.
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koa =|—31 “1p2) o lg 42

0@ ={=yIn""sin—> n SR (42)
One may see that the frequency given by (42) is
shifted toward a lower frequency range than in the
PEC case. Its Q factor is now governed together by
the radiation loss via the 6,,-dependent terms and

the ohmic loss via the real part of the resistivity R.

4. Conclusions

Method of regularization (MOR) numerical solu-
tions have been presented for the E- and the H-
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Figure 7. Lossy resistive strip characteristics in H polar-
ization: (a) total scattering cross section o./4a, (b) back-
ward radar scattering cross section o,/ma, and (c) absorp-
tion cross section o,,/4a as functions of normalized
frequency ka. Solid curves are for R = 0.01(1 - i),
long-dashed curves are for R = 0.1(1 — i), and short-
dashed curves for R = 1 — i. Strip geometry is 6,, = 90°
and ¢y = 170°.
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polarized wave scattering from an open circularly
curved resistive strip. The solutions are equally effi-
cient for an arbitrary angular width and orientation of
the strip. The range of the computable electrical size
ka and the resistivity |R| is decided only by the
computer used: a typical matrix size N = ka(l +
IR|=Y2) + 10 is needed for 3-digit accuracy for the
RCS prediction in the H/E polarization.

It may be interesting to compare the results with
that in the PEC case. In the H polarization, this is
done by setting R = 0. In the E polarization,
however, this limit is not directly accessible because
the matrix equation loses the regularized character
there. Nevertheless, a numerical solution shows that
if the normalized resistivity is sufficiently small, say,
IR| < 1073, a perfect agreement with the PEC case
is seen except for a narrow quasi-static range. The
root of the difference between the E- and H-polarized
case may be considered as follows: In the H-polarized
problem, it is the term o« = kR that perturbes the
PEC (Neumann) boundary condition; while in the
E-polarized problem, it is the ratio 1/a = R/k that is
perturbing the PEC (Dirichlet) condition. Hence the
latter perturbation is singular: at the static limit k —
0 it turns the E-polarized boundary condition into the
Neumann condition.

The numerical results presented show that a loss-
less resistive shell causes a series of scattering reso-
nances, stronger in the H-polarized case, but not so
sharp as in the PEC case because of the partial
transparency. A lossy resistive shell behaves like a
resonant absorber. In terms of the absorption cross-
section, a tenfold reduction in the surface loss can be
more than compensated by tuning the geometry to a
resonance. The RCS resonances, which are well ob-
served in a PEC cavity-backed aperture frequency
scans, can efficiently be suppressed by introducing a
resistive loss. In the H polarization case, the Helm-
holtz resonance occurs at a lower frequency than in
the PEC case. Due to the regularized character of the
matrix equation, an explicit expression for the shifted
complex resonance frequency has been obtained.
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