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Abstract We discuss the advantages of the conversion of electromagnetic field problems to the Fredholm
second-kind integral equations (analytical regularization) and Fredholm second-kind infinite-matrix
equations (analytical preconditioning). Special attention is paid to specific features of the characterization of
metals and dielectrics in the optical range and their effect on the problem formulation and on the methods
applicable to the mentioned conversion.

1. Introduction

Optical antennas, sensors, absorbers, lasers, and other devices of contemporary optics and photonics can
possess one or more dimensions comparable with and even smaller than the light wavelength and have
to be analyzed in infinite spatial domains. In terms of their modeling, this leads to the so-called exterior pro-
blems for the electromagnetic field. Further, by many reasons, the time-harmonic-field simulations (~ e� ikct, k
and c being the free-space wave number and light velocity, respectively) give the most important amount of
engineering information. This brings us to the analysis, which considers the wave scattering and radiation as
phenomena modeled with the aid of the boundary value problems for the time-harmonic Maxwell and
Helmholtz equations. Such problems possess a very valuable property: if the scatterer is passive (no active
regions), then the uniqueness of their solution is normally guaranteed by a sufficient set of boundary condi-
tions, edge conditions (or, equivalently, local power boundedness condition), and radiation conditions.

Today, there are many ways to look for solutions of Maxwell equations. For instance, one may try to find it by
using finite-difference discretizations of the partial differential equations. However, the associated problems
of domain truncation, “good” exterior meshing, and solving extremely large matrices block the ways for
achieving a high accuracy. To avoid these pitfalls, Green’s function methods can be used as explained, for
instance, by Colton and Kress [1983], leading to various integral-equation (IE) formulations. Of the many
advantages of IE approach, two main points have to be emphasized. The first is that the radiation condition
is automatically taken into account by the proper choice of the Green’s function that enters (generally speak-
ing, together with its derivatives) the kernels of IEs. The second is that only the finite domains or their bound-
aries need to be discretized. Still a direct discretization of IEs usually generates ill-conditioned dense matrices,
and so something should be done to adapt these formulations to meeting the combined challenge of high
speed (intrinsically, this implies small size of resulting matrices) and high accuracy of computations.

Many textbooks and journal papers on computational electromagnetics deal with IEs for determining the
surface or polarization currents of two-dimensional (2-D) and three-dimensional (3-D) metallic or dielectric
scatterers, respectively, given the incident field. Such IEs are obtained from the boundary conditions, and
many types of them are first-kind IE and always have logarithmic-type or higher singular kernels. In the fol-
lowing discussion, we shall assume that when passing from the boundary value problem to an IE, uniqueness
of solution is preserved (some types of IEs lose it on discrete sets of frequencies usually called “spurious
eigenvalues”). As a rule, IEs are further discretized for a numerical solution with method of moments
(MOM) by using the subdomain (collocations) or the entire-domain basis functions. Although this commonly
brings meaningful and useful results, unfortunately, there are no any theorems proving universal MOM
convergence or even the existence of an exact solution for such IEs, as noted by Klien and Mittra [1973]
and Dudley [1985]. A widespread rule of thumb of taking at least 10mesh points per wavelength is only a rule
of thumb and by no means does it guarantee any number of correct digits.

A simple example of this sort is the logarithmic-singular IE for the 2-D E-polarized wave scattering from a per-
fectly electrically conducting (PEC) flat or curved strip. It is well known that here the condition number of the
conventional MOM matrix grows with the number of equations [see Fikioris, 2001], thus making the matrix
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impossible to solve for accuracy better than several digits and a strip greater than 10–20 wavelengths
according to Klien and Mittra [1973]. Nearly the same can be said of the MOM discretizations of second-kind
IEs having strongly singular kernels. A good demonstration of what may sometimes happen to such algo-
rithms was given by Hower et al. [1993]. By the simple example of 2-D plane-wave scattering from a tubular
dielectric circular cylinder, it was shown that the MOM and finite difference time domain (FDTD) solutions
could be 1000% or more in error in a vicinity of sharp resonance. The “pain points” of the conventional
MOM approach have been excellently reviewed by Dudley [1985]; since then, essentially, nothing has chan-
ged. The final statement of Dudley [1985] is worth reciting: “It is misleading to refer to the result as solution
when, in fact, it is numerical approximation with no firm mathematical estimate of nearness to solution.”
Although it is possible to eliminate ill conditioning by using specialized discretization schemes based
on the Sobolev-space inner products, this appears to be a purely mathematical exercise, impractical in
computations.

Meanwhile, there exists a general approach to overcome all of thementioned difficulties. It consists in obtain-
ing the second-kind IEs of the Fredholm type, with smoother kernels, from the first-kind equations.
Discretization of these new equations, either by collocation or by a Galerkin-type projection on a set of basis
functions, generates matrix equations, whose condition numbers remain small when the number of mesh
points or “impedance-matrix” size is progressively increased. The approach mentioned is collectively called
the method of analytical regularization (MAR) and can be found in Nosich [1999] and Fikioris [2001]. The term
has apparently been introduced byMuskhelishvili [1953]; sometimes semi-inversion is used as a synonym. It is
based on the identification and analytical inversion of the whole singular part of the original IE or its most
singular component. It must be admitted that the whole idea of MAR can be traced back to the pioneering
work of the founders of singular IEs theory, Hilbert, Poincare, and Noether, well before the first appearance
of a computer.

For the sake of completeness, it should be also mentioned that convergent numerical solutions to electro-
magnetics IEs with smooth and singular kernels can be obtained using the Nystrom-type algorithms devel-
oped by Tsalamengas [2010a, 2010b, 2015], Balaban et al. [2012], Bulygin et al. [2012], and others. Such
algorithms do not use partial inversion and, instead, rely on the theorems of approximation of integrals with
quadratures. Their numerical performance is generally at the same level as those based on MAR although
they do not allow analytical solutions in specific circumstances (see section 5) of nearly canonical shape or
small optical contrast of a scatterer.

2. Electromagnetic Characterization of Materials in the Optical Wavelength Range

The optical range of wavelengths occupies the part of electromagnetic spectrum between 300 nm and
900 nm and presents specific features when it comes to the full-wave modeling of time-harmonic electro-
magnetic-wave scattering, absorption, and emission. These features are considerably different from what is
common at microwaves and relate to the characterization of material properties of media and components.
Explicitly, (1) there are no perfect electric conductors (PEC) in optics because even good metals like gold and
silver have considerable bulk losses; high-quality dielectric materials can be assumed lossless; (2) for metals,
both real and imaginary parts of their dielectric permittivities depend on the wavelength, i.e., they are func-
tions rather than constants; high-quality dielectrics can have almost constant permittivities; (3) Metals behave
like plasma (i.e., free electron gas in metal is responsible for its material properties); therefore, real parts of
their dielectric functions show negative values as certified by the measurements done, for instance, by
Johnson and Christy [1972]; and (4) for semiconductors under pumping, imaginary parts of dielectric permit-
tivities can be negative, which corresponds to thematerial gain and eventually provides the lasing; the gain is
a function of the wavelength.

From the viewpoint of modeling and computations all the above mentioned means that the PEC boundary
conditions (ubiquitous at microwaves) should be discarded. Instead, even for good metals either the surface-
impedance conditions [Colton and Kress, 1983] or dielectric-interface conditions [Muller, 1969] must be used.
The choice between them depends on the thickness of the metal. Thinner-than-skin depth layers are partially
transparent and hence call for the dielectric-interface description (although with one material treated as
“negative dielectric”). Thicker layers allow neglecting the transparency and using the surface-impedance con-
ditions, with metal’s impedance showing “inductive” behavior.

Radio Science 10.1002/2016RS006044

NOSICH METHOD OF ANALYTICAL REGULARIZATION 2



Other conditions, which are included in the formulations of the electromagnetic-field boundary value problems
in optics, remain as usual: the condition of local power finiteness and the radiation condition at infinity for the
scattered field. These conditions guarantee that the solution, if it exists, is unique. Note that both the electric
field IE for impedance scatterer and the Muller IE for dielectric scatterer are free of spurious eigenvalues.

It should be noted, in advance of further treatment that the “negative-dielectric” or “inductive-impedance”
behavior of metals in the optical range is absolutely unusual with respect to the common experience with
much lower microwave frequencies. It can be anticipated that this drastic difference can lead to something
unusual in the scattering properties. Indeed, it leads to the appearance of optical localized surface plasmon
natural modes [Raether, 1986] on metal particles of very small subwavelength size, i.e., on nanoparticles. If
a metal sample is long enough, in at least one dimension, to be considered as infinite, then metal surfaces,
nanostrips, and nanowires can guide the electromagnetic waves, i.e., possess the natural complex waves
called surface plasmon (SP) waves (here, sometimes adjective delocalized is added).

3. Regularization as Transformation to a Fredholm Second-Kind IE

To present a formal scheme of MAR, assume that the boundary condition and some suitable integral repre-
sentation of the unknown field function (e.g., using the potential theory) generate a first-kind singular IE. In
operator notation, this can be written as

GX ¼ Y; (1)

where X and Y stand for the unknown and given function, respectively. A direct analytical inversion of G is
normally not possible, while a numerical inversion, as has been mentioned, has no guaranteed convergence.
Now split operator G into two parts: G=G1 +G2 and assume that the first of these has a known inverse, G�11 .
Then, by acting with this operator on the original equation, one obtains a second-kind IE:

X þ AX ¼ B; (2)

where A ¼ G�1
1 G2 and B ¼ G�1

1 Y . However, this simply looking scheme is mathematically justified only if the
resulting IE (2) is of the Fredholm type. This means that the operator Amust be compact, e.g., has a bounded
L2 norm, jjAjjL2 < ∞, and the right-hand side Bmust belong to the same space L2, i.e., jjBjjL2 < ∞. It is easy to
see that compactness of A is achieved only if the inverted operator G1 contains at least the most singular part
of G, and hence, the operator G2 is less singular than G and G1. Then, all the power of the classical Fredholm
theorems, found, for instance, in Colton and Kress [1983] and generalized for operators by Steinberg [1968]
can be fully exploited. This proves both the existence of the exact solution, X= (I+ A)� 1B (where I stands
for the identity operator) and the convergence by the l2 norm of discretization schemes, without resorting
to residual error estimations as commonly done for the first-kind IEs (see, e.g., Dudley, 1985).

Indeed, suppose that we have discretized the second-kind equation (2) by projecting it on some set of local or
global expansion functions. Besides the obvious observation that such a set should possess the completeness
in L2, a matrix counterpart of (2) can be equivalent to IE only if this counterpart is infinite dimensional, and in
this case the latter is a Fredholm second kind in the discrete space l2 for the unknown expansion coefficients.
Considering its “truncated” counterpart, with a matrix A(N) filled in with zeros off the N×N square (and simi-
larly for the right-hand-part vector B(N)), it is easy to show the following estimation for the relative computa-
tional error, by the norm in l2:

e Nð Þ ≡ X � X Nð Þ�� ���� ��
Xj jj j ≤ cond I þ Að Þ A� A Nð Þ�� ���� ��

I þ Aj jj j þ B� B Nð Þ�� ���� ��
Bj jj j

 !
; (3)

where X(N) is the solution of finite-dimensional matrix equation, X(N) + A(N)X(N) = B(N), and cond C= ||C|| � ||C� 1||
is the condition number of matrix C; note that cond (I+A)<∞ thanks to Fredholm nature of (2).

It is clear that (3) is destined to go to zero with N→∞, as the first factor in the right-hand part above is a
bounded constant, while the second is decreasing. Theoretically, in finite-digit arithmetic, this decrement
is limited only by the machine precision. However, in practical computations it can be limited sooner by
the accuracy of intermediate operations—e.g., the accuracy of numerical integration for filling in A. The rate
of decay of e(N) determines the cost of the algorithm, and this rate can be different for different ways of select-
ing the invertible singular part, G1. Generally speaking, the best is to invert as much as possible of the singular
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part. Here comes a key question: how to select the operator G1? There are at least four basic principles for
extracting an invertible singular part of the original operator. This can be (i) the static part, as used in the scat-
tering by PEC and imperfect thin screens; (ii) a frequency dependent canonical-shape part, which corresponds
to either a circular cylinder or a flat PEC strip, in 2-D, and to a sphere, in 3-D, each solvable by separation of
variables in the cylindrical, degenerate elliptical, and spherical coordinates, respectively; (iii) the high-fre-
quency part, which corresponds to the PEC halfplane scattering and can be solved by the Wiener-Hopf
method; note that a PEC halfplane is also a sort of canonical-shape scatterer, however its size is infinite in
terms of any length parameter, including the wavelength; and (iv) the small-contrast part of the problem,
as used in the scattering by dielectric objects.

As mentioned in section 2, in optics and photonics all scatterers must be considered using either the surface
impedance or the dielectric-interface boundary conditions. In the first case, the choice of (i) or (iii) is natural,
while in the second case the choice of (iv) is usually the most obvious; the choice of (ii) can be very promising
if the shape is close to the corresponding canonical scatterer independently of other parameters.

The “small-contrast” regularization is based on the judicious combination of electric andmagnetic field IEs on
the dielectric-scatterer boundary, derived using the Green’s formulas in the interior and exterior domains and
the dielectric-boundary conditions (i.e., the continuity of the tangential field components across the bound-
ary). This procedure cancels the hyperorder singularities in the IE kernels. The remaining part of the Muller IE
operator has L2 norm, which behaves as O(ε� 1) for a scatterer with relative dielectric constant ε, placed in
the free space (see Burghignoli et al. [2003] for a shorthand derivation in 3-D and Smotrova et al. [2013] in
2-D). As already mentioned, the Muller IE is free of spurious eigenfrequencies, which infest other, non-
Muller, IE types and spoil all numerical algorithms based on them.

4. Preconditioning as Casting to a Fredholm Second-Kind Matrix Equation

Analytical inversion of the IE static or high-frequency part is usually based on quite specialized functional
techniques such as Titchmarsh, Wiener-Hopf, and Riemann-Hilbert Problem techniques. However, eventually
one always needs a discretized counterpart of IE, that is, a matrix equation, to find a solution numerically. This
suggests a general approach to treat all the above mentioned cases, outlined in Nosich [1999] and in more
detail in Fikioris [2001].

If it is possible to find a set of orthogonal eigenfunctions of the separated singular operator G1, then the
Galerkin-projection technique applied to the original singular IE of the first kind, i.e., to (1), with these func-
tions as a basis, immediately results in a regularized discretization scheme (i.e., yields a Fredholm second-kind
infinite matrix-operator equation). This is especially evident with canonical-shape inversion, as in this case,
the orthogonal eigenfunctions are just trigonometric (entire-order azimuth exponents or trigonometric poly-
nomials) or spherical polynomials (products of the former with the Legendre functions).

Another simple example is the 2-D scattering by a flat PEC strip—here the weighted Chebyshev polynomials
of the first- or the second-kind invert logarithmic or hypersingular static part of the full-wave IE operator, as
discussed byMedina et al. [1989], Fikioris [2001], and Florencio et al. [2013]. Such a judicious projection, in fact,
combines both regularization (semi-inversion) and discretization in one single procedure and avoids inter-
mediate step of a Fredholm second kind-IE. One may easily see that it bridges the gap between MAR and
conventional MOM solutions. Indeed, the intuitive idea that a good choice of expansion functions in MOM
can facilitate convergence obtains the form of a clear mathematical rule: to have the convergence guaran-
teed, take the expansion functions as orthogonal eigenfunctions of G1. The finding of such functions is called
diagonalization of a singular integral operator.

Similar techniques were developed by Losada et al. [1999] and Di Murro et al. [2015] in the scattering by a PEC
disk; here the weighted Jacobi polynomials were used as regularizing basis functions in MOM-like projection.
From the viewpoint of numerical analysis, this procedure plays the role of a perfect preconditioning of the
original hypersingular IE, the conventional MOM-like discretizations of which are ill conditioned. Therefore,
to distinguish it from classical MAR of the IE theory, one can call the outlined scheme a method of analytical
preconditioning (MAP).

Note also that similar ideas can be applied to the strip-scattering singular IE after its transformation to the
Fourier-transform (or “spectral”) domain as it was done by Matsushima and Itakura [1990] and Lucido
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[2012]. In view of linear character of such transform, the necessary basis functions become the Fourier-trans-
forms of the Chebyshev polynomials.

This very powerful andmathematically faultless technique can be also used, after modification, in the scatter-
ing by thin imperfect strips (resistive, thin-dielectric, and impedance) because here the strongest kernel
singularities are still the same as in the PEC-strip case. In fact, this is what one needs in the optical-range scat-
tering by the metallic strips and disks.

One other generalization of such advanced technique was developed by Lucido et al. [2010] in the analysis of
the scattering by polygonal dielectric cylinders. Here one can view a broken boundary of polygon as a collec-
tion of M strip-like elements, introduce local basis functions diagonalizing integral operators at these ele-
ments, and then obtain an M×M block-type infinite-matrix equation of the Fredholm second kind, in the

space of sequences lM2 .

5. Analytical Solutions

As noted by Nosich [1999], the analytical semi-inversion or the preconditioning results in the fact that the
norm of the compact operator A in (2) becomes proportional to certain small parameter. Depending on
the choice of the inverted part (see section 3), this is either electrical dimension of the scatterer (i), or its
inverse value (iii), or the normalized deviation of the surface from the canonical shape (ii), or the optical
contrast (iv). Therefore, denoting this parameter, say, as δ, one can see that jjA δð ÞjjL2 < const�δ . This
enables one to exploit one important feature of the Fredholm second-kind equations. Provided that jjA δð Þjj
L2 < 1 , which can always be satisfied for a small enough δ, an iterative solution to (2) is given by the
Neumann-operator series

X ¼
X∞
s¼0

�A δð Þ½ �sB; (4)

which converges by the corresponding norm to the exact solution. Hence, one can avoid inverting (2), at least
in a certain domain of parameters. Moreover, if the IEs based on the static and high-frequency parts inversion
have overlapping domains of the Neumann series convergence, then the need of solving a matrix is comple-
tely eliminated—one has only to perform amatrix-vector multiplication. Besides numerical efficiency, this has
another attractive consequence. On expanding (4) in terms of the power series of δ, one obtains, analytically,
rigorous asymptotic formulas for the low-frequency or high-frequency scattering, or the scattering from a
nearly canonical or small-contrast object, X= C0 + C1δ+C2δ

2 +…. Such asymptotics have been published
for zero-thickness PEC screens in 2-D: flat and circularly curved strips, and in 3-D: finite circular pipes, flat
and spherical disks, and also for PEC and imperfect strip gratings (see Nosich [1999] for the references).
What is worth noting is that this can be done for various excitations specified by different right-hand parts
B: plane or cylindrical waves, a complex source-point beam, a surface wave in the layered-media scattering,
etc.

6. Eigenvalue Problems

These problems are closely tied to the wave scattering problems. For the passive configurations, they can be
classified as natural-frequency or natural-wave problems, although other eigenparameters can be also
considered. The natural-wave problems appear only in the analysis of geometries, infinite along some axis,
and assuming a traveling-wave field solution, i.e., ~ eihz� ikct. Correspondingly, the (complex-valued) eigenva-
lue, which has to be determined, is either the wave number k or the natural-wave propagation constant h.
What is important, in either case, is that a MAR/MAP treatment leads to a homogeneous equation analogous
to the scattering problem:

X þ A h; kð ÞX ¼ 0 (5)

This is a Fredholm operator equation, with the compact operator A normally being a continuous function of
the geometrical parameters and a meromorphic function of the material parameters, k, and h. Hence, due to
theorems of Steinberg [1968], it is guaranteed that the eigenvalues form a discrete set on a complex k plane
(in 3-D case) or on the logarithmic Riemann surface of Ln k (in 2-D case) or on the more complicated Riemann
surface Ln (k+ h)(k� h) for the natural waves, respectively. There are no finite accumulation points;
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eigenvalues can appear or disappear only at those values of the other parameters where continuity or ana-
lyticity of A is lost. Moreover, after discretization, the determinant of the infinite matrix, Det[I+A(k,h)], exists
as a function of parameters, and its zeroes are the needed k or h eigenvalues. The latter are piecewise con-
tinuous or piecewise analytic functions of geometrical and material parameters: these properties can be lost
only at the points where two or more eigenvalues coalesce. From a practical viewpoint, it is important that
eigenvalues can be determined numerically: the convergence of discretization schemes is guaranteed, the
number of equations needed being dependent on the desired accuracy and the nature of the inverted part.
No spurious eigenvalues appear, unlike many approximate numerical methods. Note that nothing of the
above can be established for an infinite-matrix equation of the first-kind and non-Fredholm equations of
the second kind, which are common in conventional MOM analyses.

Additionally, if a corresponding parameter δ is small, then the matrix A(k, h; δ) is quasi-diagonal, and the
eigenvalues in terms of k or h can be obtained in the form of asymptotic series. Such analytical study has been
done, for instance, for a PEC axially slotted cylinder by Veliyev et al. [1977] and for a PEC spherical cap by
Vinogradov et al. [2002], assuming a narrow slot or a small circular aperture, respectively. These asymptotics
serve as a perfect starting guess when searching for eigenvalues numerically, with a Newton or another itera-
tive algorithm—this has been done, e.g., for the modes on planar and circular-cylindrical strip and slot lines,
and on arbitrary-cross-section dielectric fibers. Such treatment can be extended to imperfect thin-screen
objects, although this will need considerable human efforts.

Talking about eigenvalue problems, it is necessary to mention that in the optical range there appears a very
interesting version of such problem, adapted to the modeling of the phenomenon of lasing. As explained in
Smotrova et al. [2011], the lasers can be considered as open resonators equipped with active regions (for
example, filled in with a semiconductor or dye-doped polymer or Erbium-doped crystalline material under
pumping). In this case, the time-harmonic wave scattering loses the guaranteed uniqueness of solution
and hence cannot be studied any more. However, another extremely important analysis becomes possible
—this is extraction of lasing thresholds (more precisely, threshold values of material gain in the active region)
of the natural modes as eigenvalues, together with the emission wavelengths.

7. Convergence and Accuracy

As has been emphasized, MAR/MAP numerical solutions, based on the Fredholm second-kind matrix equa-
tions, have a guaranteed l2 convergence and thus a controlled accuracy of numerical results. Provided that
all intermediate computations necessary for filling in the matrix and the right-hand part have been done with
superior accuracy, the parameter controlling the final accuracy is just the size of thematrix, i.e., the order of its
truncation—see examples in Nosich [1999] and Di Murro et al. [2015]. Depending on the nature of the
inverted part, the number of equations needed for the usual in practice 3–4 digit accuracy is only slightly
greater than, respectively, the electrical dimension of the scatterer, or its inverse value, or the deviation of
the surface from the canonical shape, in terms of both distance and curvature.

Here the optical range brings a necessity of revision of the concept of “electrical dimension” of scatterer. In
the case of a thick dielectric object with relative dielectric permittivity ε, the wavelength in the material,
λε= λ0ε

� 1/2< λ0, becomes more important parameter than the wavelength in free space, λ0 (as with PEC scat-
terers). In the case of metal scatterers, the negative-dielectric nature of such materials leads to existence of
thementioned in section 2 SP waves. The length of such waves λSP is a function of λ0 and can bemuch shorter
than λ0. Therefore, in optics, there is no “nonresonant” range of wavelengths—even nanoscale metal objects
can display strong resonances.

As one can see, by using the MAR/MAP, it is possible to overcome many difficulties encountered in conven-
tional MOM treatments. Theoretical merits of the MAR/MAP are numerous: exact solution existence is estab-
lished, convergence is guaranteed, and rigorous asymptotic formulas can be derived. Computationally, the
MAR/MAP results in a small matrix size for practical 3–4 digit accuracy, and sometimes no numerical integra-
tions are needed for filling in the matrix. Thus, the cost of MAR/MAP algorithms is record low in terms of both
CPUmemory and time. A frequent feature is that both power conservation and reciprocity are satisfied at the
machine-precision level, independently of the number of equations, whatever it is. As the resolvent operator
(I+ A)� 1 is bounded, the condition number of (2) is small and stable, not growing with mesh refinement or
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with the number of basis functions. The latter fact means that conjugate-gradient iterative algorithms are
very promising even in spite of a squaring of the condition number, as was already emphasized by Rokhlin
[1990]. Nosich [1999, p. 43] suggested that using the fast iterative methods, applied to the MAR/MAP matrix
equations with static-part inversion, it would be possible to perform accurate full-wave analysis of the
Arecibo reflector with a moderate desktop computer. Five years later, this was demonstrated by Smith
et al. [2004]. Still the high-frequency part inversion can do the same thing more economically.

Sometimes, on observing that in electromagnetics, convergence proofs of usual MOM schemes remain
impossible, it is erroneously stated “accuracy is more important than convergence” [see Dudley et al.,
2002]. Here the accuracy remains not quantified and substituted with elusive “nearness” of solution to the
true one. However, there exists unambiguous definition of accuracy based on the convergence—this is the
distance, in the l2 norm, between X and X(N). This leads to conclusion that the convergence is primary. If it
takes place, then the accuracy is guaranteed within machine precision and in wide range of variation of geo-
metrical and material parameters.

From a practical viewpoint, it is also important that the accuracy of the MAR/MAP solutions is uniform, includ-
ing resonances, both in near-field and far-field predictions. Indeed, one must be reminded that near sharp
resonances (e.g., whispering-gallery modes of dielectric objects), conventional MOM, and FDTD solutions suf-
fer heavy inaccuracy as convincingly demonstrated by Hower et al. [1993], which cannot be removed, in prin-
ciple. All this makes MAR/MAP algorithms perfect candidates for computer-aided design software in the
numerical optimization of multielement or clustered 2-D and 3-D scatterers, where interaction between sepa-
rate elements plays important role, and in the quasioptical range, where both ray-like and mode-like phe-
nomena coexist. In fact, quite complicated 2-D models of reflector and lens antennas, radomes, and
microcavity lasers have been accurately studied, showing the features not predicted by ray tracing techni-
ques and inaccessible by rough numerical approximations (early references can be found in Nosich [1999]
and some of the later ones given in this paper). Many of the solutions developed originally for PEC scatterers
can be modified to treat the optics and photonics configurations.

8. General Remarks of MAR and MAP

One of reviewers of this paper requested to place the MAR in the context of other “regularization-related
approaches such as Calderon preconditioning” of Bagci et al. [2009]. Indeed, at the first glance one may
think that any preconditioning entails regularization. However, this is not true: the regularized equations,
either IE or equivalent infinite-dimension matrix equation, must be the Fredholm second-kind ones, while
the works employing Calderon regularisation and/or preconditioning approaches rarely achieve that prop-
erty, except under restricted circumstances: for example, it seems that smooth closed bodies can be treated
successfully whereas open bodies cannot. As a result, in these works the existence of the solution to the
resulting infinite matrix equations is not established, and the convergence of the solutions of their trun-
cated counterparts is out of the question. Note that in the mentioned and other relevant works the ques-
tion of convergence appears only for the iterative solutions, and it is not proved but illustrated numerically.
Full analysis of the shortcomings of the Calderon preconditioning is however out of the scope of this paper.
Similar comments can be made, of course, about all conventional MOM algorithms using the local basis and
testing functions. It should be emphasized that it is the convergence in the l2 sense that is needed to have
reliable and efficient computational instrument however is absent in the above mentioned works. Early
examples of clear understanding of the importance of the Fredholm second-kind property are rare and
belong mainly to Colton and Kress [1983] and Rokhlin [1990]. More recently, MAR/MAP related to the sta-
tic-part inversion in the scattering of electromagnetic (and acoustic) waves by zero-thickness PEC (and
rigid) screens was systematically presented and discussed by Vinogradov et al. [2002].

The other request of the same reviewer was to discuss the limitations of MAR/MAP and the scope of solvable,
though as yet unsolved, problems. Here it can be said that the limitations are obvious however not principal
and relate mainly to human efforts and preferences. While for writing an in-house FDTD code, knowledge of
four arithmetical operations is sufficient, the MAR needs good experience with mathematical physics and
special functions. In general, practically every 2-D scattering problem can be considered with this approach:
open and closed, single andmultiple scatterers, thin and thick, penetrable and impenetrable, and perfect and
imperfect. This is true, so far, as the scatterers are lossy or lossless; the active scatterers (made of gain
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materials) could be considered as well if the solution uniqueness were not undermined however this is a
defect of not the MAR but the time-harmonic formulation in general. Still, as mentioned, for active open reso-
nators one can study the lasing eigenvalue problems, which have mathematically faultless formulation.

MAR works especially well if the boundaries and contours (open or closed) are perfectly smooth (infinitely
differentiable) and can be characterized analytically. In 2-D, complicated contours can be tackled using the
spline approximations (at least cubic) that preserve sufficient degree of smoothness [see Nosich et al.,
2007]. Finite ensembles and infinite periodic arrays can be efficiently attacked with MAR as soon as each sin-
gle element is amenable to this approach. The same relates to scatterers placed into complicated environ-
ments, which still allow derivation of their Green’s functions analytically—say, a nanolaser configured as a
thin noble-metal strip encased by a circular shell made of the gain material.

Still the real-life configurations of electromagnetic scatterers, both at microwaves and in optics, have compli-
cated 3-D shapes. In 3-D, rotational symmetry of the scatterers enables one to split the azimuth orders,
reduce the problem to a set of independent IEs along the contour of rotation, and use the schemes typical
for 2-D scatterers of all sorts.

If a 3-D body has no rotational symmetry, the difficulty of tackling the boundary can be overcome or bypassed
in several ways although well-known Rao-Wilton-Glisson discretizations are not good candidates because they
introduce broken boundaries and display low-frequency collapse. It is apparently better to use a triangular
meshing combined with 2-D quadrature formulas as suggested by Burghignoli et al. [2003]. Then the Muller
boundary IE can be applied to study many important effects and configurations, for instance, to find the emis-
sion modes of a 10 by 10 wavelength finite-thickness 3-D dielectric slab perforated with 100 round holes and
equipped with an active region, as a model of photonic crystal laser. Further developments of this formulation
should consider the use of conformal patches for a more accurate simulation of arbitrary curved surfaces.

Problems presently unsolved but amenable to MAR are many; some of them were mentioned by Nosich
[1999] and are still untouched. The whole direction of MAR based on the inversion of the half-plane (high fre-
quency) scattering operators is still very little studied. Here the only configurations, solved in the 1970s, were
a flat PEC strip and a flat PEC disk, and even their circularly and spherically curved counterparts were only
marginally touched with this approach. More recently, systematic efforts were done by Kuryliak and
Nazarchuk [2008] to develop the MAR-based numerical solutions to the scattering by truncated PEC cones.

Still, even the much better developed static-part inversion solutions have not been systematically applied yet
to the scattering problems involving negative dielectrics (i.e., metals in optics) and patterned graphene con-
figurations. Instead, the bulk of researchers in optics and photonics resort to running COMSOL, LUMERICAL,
and other commercial codes which are based upon algorithms that are non-convergent, in the mathematical
sense (see the citation of Dudley [1985] in section 1). Fortunately, these codes are still able to deliver results
with a few-digit accuracy that is often enough to obtain a quick answer to “what if” questions.

As already mentioned, the Muller IE is the most adequate starting ground for many interesting problems in
optics and photonics because metals can be considered as negative dielectrics and pumped semiconductors
or dye-doped polymers can be considered as dielectrics with gain. Claus Muller derived and published his IE
for a 3-D object in the late 1950s. Applications of them to analysis of 2-D scatterers are published quite reg-
ularly although are still infrequent [see Rokhlin, 1990; Smotrova et al., 2013, and references therein]. However,
as concerns the 3-D objects, the promising MAR algorithm suggested in Burghignoli et al. [2003] seems so far
to remain applied only to the wave scattering by a sphere. Even the analysis of a finite smooth rotationally
symmetric dielectric body using the Muller IE was published only last year by Bulygin et al. [2015] and only
for the axially symmetric field case. The closely related problem of the electromagnetic-wave propagation
along an infinite uniform dielectric cylinder (fiber) of arbitrary smooth cross section was converted to 3-D
Muller IE only “very recently” by Lai and Jiang [2015], and their work is still not published in a regular journal.

9. Conclusions

We presented the essentials of the method of analytical regularization in computational electromagnetics
and discussed the influence of peculiar material properties of metals and dielectrics in the optical range.
These properties change the formulation of wave scattering problems, which cannot now involve the PEC
boundary conditions, common at lower frequencies. Besides, material parameters become dependent on

Radio Science 10.1002/2016RS006044

NOSICH METHOD OF ANALYTICAL REGULARIZATION 8



the wavelength, and both real (for metals) and imaginary (for semiconductors of dyes under pumping) parts
of dielectric functions can display negative values. Still all ideas and techniques associated with MAR are valid,
and the development of convergent numerical algorithms is possible. Moreover, it is possible to formulate
new class of eigenvalue problems tailored to the adequate modeling of self-excitation thresholds of lasers.
In the practical implementation of such algorithms, one has to remember that the “electrical size” of the scat-
terers, in optics, must be modified as even subwavelength (nanoscale) objects can be strongly resonating. All
these fascinating effects, which attract great attention of today’s electromagnetics researchers, can be and
are already studied with MAR-based techniques.
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