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Abstract We consider the two-dimensional (2-D) scattering
of the H- and E-polarized plane waves by several discrete
configurations made of M>>1 periodically arranged circular
cylindrical silver wires. To find the scattered field, we use the
field Fourier expansions in local coordinates and addition
theorems for cylindrical functions. Resulting M ×M block-
type matrix equation is cast to the Fredholm second-kind form
that guarantees convergence of numerical solution when each
block is truncated to finite dimensions and truncation order is
taken larger. The scattering and absorption cross-sections and
the near-field patterns are computed. The interplay of plasmon
and grating-type resonances is studied for finite in-line and
stacked arrays, corners, and crosses made of nano-size silver
wires in the visible range of wavelengths, with the refractive
index of silver taken from the experimental data.

Keywords Wave scattering . Absorption . Silver wire . Finite
grating . Plasmon resonance . Grating resonance

Introduction

Periodically structuredmetallic and dielectric scatterers including
gratings, arrays or chains of particles, and holes in the screens (in

3-D) or wires and slots (in 2-D) are attracting large attention of
researchers in today's nanophotonics—for instance, see [1–25].
This is caused by the effects of extraordinarily intensive reflec-
tion, transmission, emission, and near-field enhancement that
have been found in the scattering of light by periodic scatterers.
A certain controversy still exists around the explanation of these
phenomena. If the particles or wires are metallic and the distance
between the neighboring elements is small in comparison to the
period (dense gratings), so that the scatterer can be viewed as a
perforated metal slab, the mentioned effects are frequently attrib-
uted to the excitation of the delocalized surface-plasmon waves
on both sides of the periodically deformed slab. This explanation
is not free of ambiguity [26] and clearly does not work out well if
the elements of the grating are well separated one from
another (sparse gratings). In that case, it is more natural to
talk about the excitation of the localized surface plasmon
oscillations on each metal element of the grating. However,
this mechanism cannot explain all associated effects, espe-
cially if a grating of subwavelength metal scatterers is
located in a homogeneous medium, i.e., is not supported
by a dielectric substrate; it fails completely if a grating is
made of purely dielectric elements.

Recently, a growing understanding has emerged that the
mentioned optical effects can be attributed to the so-called
grating resonances (a.k.a. geometrical, collective, lattice,
trapped-mode, and Bragg resonances [1–25]) explained by
the existence of specific poles of the field as a function of
wavelength [16–19, 24, 25]. If the size of elementary scatterer
is a fraction of the period, their wavelengths are just above
(however do not coincide with) the Rayleigh wavelengths
λRA
±m=(p /m )(1±cosφ0),m =1,2,…, where p is the period

and φ0 is the angle of a plane-wave incidence counted from
the grating. The values of λRA

±m appear in the theory of wave
scattering by infinite gratings and are the real-valued branch
points for the field function. They are known as those in which
one of the higher diffraction orders (Floquet harmonics) is
“passing over the horizon”, i.e., is approaching the onset of
radiation [27]. For the normal incidence of a plane wave, these
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values are integer divisions of the grating period, p /m , m=1,
2,…. Unlike the branch points at λRA

±m, the grating mode poles
have complex wavelengths corresponding to the radiation
losses. They have been found explicitly, in the form of asymp-
totic series, for the infinite grating of circular wires in [17] and of
thin flat strips in [24]. In the plane-wave scattering by infinite
gratings, these poles lead to almost total reflection of the incident
field by a sparse grating of subwavelength elements in a narrow
band [1–25]. Important is that the grating mode resonances of
enhanced reflection have been found on the gratings made of
both metallic and dielectric elements and in the latter case in the
both of two alternative polarizations [1, 3, 7, 16–19, 22].

As mentioned above, there exist the scattering resonances
of another type, better known by now, which are caused by
localized surface plasmon modes (plasmons, for brevity)—
they are observed on stand-alone subwavelength particles and
wires provided that they are made of noble metals (for in-
stance, silver and gold) in the mid-infrared and optical bands
[28]. In the case of wires or strips that are infinite along one
dimension in 3-D space, plasmon resonances exist only in the
H-polarization, i.e., when the electric field is normal to the
wires. These resonances are electrostatic in nature [29], there-
fore, in the leading terms, the plasmon resonance wavelengths
depend on the noble metal object shape but not on its dimen-
sions. Excitation of plasmons results in powerful enhance-
ment of scattered and absorbed light that is used in the design
of optical antennas, biochemical sensors, broadband ultra-thin
absorbers, and other advanced applications.

Quite naturally, if a periodic array is made of many noble
metal elements of subwavelength size, both type of reso-
nances (i.e., associated poles of the field function) exist to-
gether. Apparently because of this, the grating resonances had
been frequently misinterpreted either as an effect of specific
plasmons [4–6, 10–12, 14, 15, 21] or of Rayleigh anomalies
[14, 23]. Still another important question is how large a finite
grating should be to develop observable grating resonances in
the scattering and absorption. The scattering properties of
pairs (a.k.a. dimers), short arrays, and clusters of metal nano-
wires are well documented (see [30–32]) and reveal only the
hybridization of conventional plasmon resonances. This
means the formation of the so-called supermodes split into

different classes of symmetry and having the wavelengths,
which are red-shifted and blue-shifted with respect to the
similar mode of a stand-alone wire. Therefore, it is clear that,
to be observable, the grating resonances need large number of
elementary scatterers.

In the paper [17], we have presented an improved algo-
rithm able to compute finite-size collections of dielectric or
metal wires of circular cross-section and applied it to the study
of the H-polarized wave scattering by finite one-periodic
gratings of silver nanowires in the visible range. We have
found an interesting interplay of the low-quality plasmon
resonances on each nanowire and the grating resonances,
whose Q-factors become quite large if the number of wires
in the grating goes to dozens and hundreds.

The goal of our paper is to study several more complicated
periodically structured configurations of parallel silver wires
of circular cross-section. This includes the scatterers that
contain not a single but two gratings with the same or different
periods, stacked or in-line, and also finite periodic corners and
crosses. Besides, we consider briefly the E-polarized plane
wave excitation of silver-wire gratings in the free-space envi-
ronment where plasmon modes do not exist and the grating
modes have too small Q-factors to be visible in the scattering
and absorption characteristics.

Generic Scattering Problem

Formulation and Basic Equations

Consider a finite collection ofM parallel wires illuminated by
a plane wave as shown in Fig. 1. The wires are assumed to be
identical infinite circular cylinders, each having radius a and
and complex relative dielectric permittivity ε =ν2, where v is
refractive index. It is convenient to introduce M local
Cartesian (xq,yq) and polar coordinates (rq,φq), q =1,…M
with the origins in the centers of each ofM wires, and also the
global coordinates with the origin, say, in the center of the wire
number 1. As known, for a 2-D problem, two alternative field
polarizations are essential: one deals with the light that is
polarized across the wires (H-polarization) and the other with
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the light polarized along the wires (E-polarization). In the H-
case, one has to find a scalar function Hz r!� �

that is the
scattered magnetic field z -component. It must satisfy the 2-D
Helmholtz equation with wavenumbers kv and k inside and
outside the cylinders, the tangential field components conti-
nuity conditions on the wire contours, the radiation condition
at infinity, and the condition of the local power finiteness.
These conditions guarantee the solution uniqueness.

The full-wave numerical solution can be obtained, similar-
ly to [33–39], by expanding the field function in terms of the
Fourier series in azimuth exponents in the local polar coordi-
nates associated with each wire (Fig. 1).

Uint qð Þ r;φð Þ ¼
X
n¼−∞

∞

y qð Þ
n J n kνrq

� �
einφq ; rq < a; q ¼ 1;…M ð1Þ

Uext r;φð Þ ¼ U0 þ
X
q¼1

M X
n¼−∞

∞

z qð Þ
n H 1ð Þ

n krq
� �

einφq ; rq > a ð2Þ

where U0=exp[−ikr cos(φ −φ0)] is the incident-wave field
function.

On using the addition theorems for cylindrical functions,

H 1ð Þ
n krq
� �

einφq ¼
Xþ∞

m¼−∞
Jm kr j

� �
H 1ð Þ

m−n kdjq
� �

ei n−mð Þψjq eimφ j ; rq > r j; ð3Þ

applying the boundary conditions on the surface of each ofM
wires,

U rq ¼ aþ 0
� � ¼ U rq ¼ a−0

� �
; ∂U=∂rq

��
rq¼aþ0

¼ ε−1∂U=∂rq
��
rq¼a−0

ð4Þ

and introducing the constants βE,H =ν ±1, one obtains an
M ×M block-type matrix equation where each block is infinite,

Z þ PX ¼ Q; ð5Þ

Z ¼ Z qð Þ
n oM

q¼1
; Z qð Þ ¼ z qð Þ

m

n oþ∞

m¼−∞
ð6Þ

P ¼ P q; jð Þ
n oM

q; j¼1;
P q; jð Þ ¼ P q; jð Þ

m;n

n oþ∞

m;n¼−∞;
Q ¼ Q qð Þ

n oM

q¼1;
Q qð Þ ¼ eB qð Þ

m

� �þ∞

m¼−∞;
ð7Þ

P q; jð Þ
m;n ¼ H 1ð Þ

n−m kdjq
� �

Vm ka; νð Þ
Fm ka; νð Þ ei m−nð Þψjq ; eB ðqÞ

m
¼ −ið ÞmVm ka; νð Þ

Fm ka; νð Þ e−iksqcos ζq−φ0ð Þ−imφ0 ð8Þ

FE;H
m ¼ βE;HH 1ð Þ

m kað ÞJ 0
m νkað Þ−H 1ð Þ

m

0
kað ÞJm νkað Þ ð9Þ

VE;H
m ¼ βE;H Jm kað ÞJ 0

m νkað Þ−J 0
m kað ÞJm νkað Þ ð10Þ

The matrix Eq. (5) or similar ones can be found in the great
majority of the previous papers (see, for instance, [33–39]).
They have been used to generate many numerical results that
seem reasonable, although some of the authors complained to
what they called “accumulation of round-off errors” when the
block truncation number N was taken larger. A close inspection
shows that (5) cannot guarantee the convergence of numerical
solutions. Here, we understand the convergence in mathemati-
cal sense, as a possibility of minimizing the error of computa-
tions by solving progressively larger matrices. Frequently, con-
vergence is mixed up with accuracy. Many divergent numerical
schemes are able to provide a few first digits correctly; however,
fail when a better accuracy is required. Indeed, the matrix
elements in (5) decay along the columns (i.e., with index m),
however, exponentially grow along the lines (i.e., with index n).

Therefore, strictly speaking, one cannot replace the matrix (5)
with a truncated counterpart. This behavior of solutions of (5)
has been studied in [39] where it is demonstrated that the best
achievable accuracy at “too large” values of N is somewhere
around 10−2—see section 3.4 of [39].

The reason of this poor performance is easily understood:
the boundary conditions at the q th wire contour bring together
two coefficients in each azimuth order n : yn

(q)Jn(kνa ) and
zn
(q)Hn

(1)(ka). To satisfy this condition for large n , the coeffi-
cients yn

(q) must balance the exponential decay of the Bessel
functions for n >>kva while the coefficients zn

(q) must balance
the exponential growth of the Hankel functions. When these
oppositely behaving coefficients are collected together, the
common matrix equation happens to be misbalanced and
cannot be truncated to provide convergence.

We have found, however, that this defect of earlier publi-
cations can be fixed by re-scaling the unknown coefficients.
Indeed, we introduce new unknowns xn

(q) as follows:

z qð Þ
n ¼ x qð Þ

n J n kað Þ ð11Þ
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The obtained, in such a way, matrix equation

X þ AX ¼ B; ð12Þ

X ¼ X qð Þ
n oM

q¼1
; X qð Þ ¼ x qð Þ

m

n oþ∞

m¼−∞
ð13Þ

A ¼ A q; jð Þ
n oM

q; j¼1
; A q; jð Þ ¼ A q; jð Þ

m;n

n oþ∞

m;n¼−∞
; B ¼ B qð Þ

n oM

q¼1
; B qð Þ ¼ B qð Þ

m

n oþ∞

m¼−∞
; ð14Þ

A q; jð Þ
m;n ¼ H 1ð Þ

n−m kdjq
� �

Vm ka; νð ÞJn kað Þ
Fm ka; νð ÞJm kað Þ ei m−nð Þψjq ; B qð Þ

m ¼ −ið ÞmVm ka; νð Þ
Fm ka; νð ÞJm kað Þ e

−iksqcos ζq−φ0ð Þ−imφ0 ð15Þ

is a block-type Fredholm second kind equation that follows
from the properties

Xþ∞

n;m¼−∞
A q; jð Þ
mn

�� 2 < ∞
�� ;

Xþ∞

m¼−∞
B qð Þ
m

�� 2 < ∞
�� ; q; j ¼ 1;…Mð Þ ð16Þ

which hold true provided that all djq>2a , i.e., if the wires do
not touch each other. This can be proved analytically after
replacing the cylindrical functions with the first terms of the
corresponding series in powers of the arguments.

After rescaling, the Fredholm theorems of the operator
analysis guarantee that the solution of Eq. (12) with each
block truncated to finite order N converges to exact solution
if N→∞. This is the property which does not hold for the
solutions of truncated Eq. (5).

The results presented below were computed with N =4–6;
this provided three correct digits in the far-field characteristics
of the sparse gratings of silver wires with radii a ≤75 nm and
periods p ≥200 nm.We have considered three sparse (p −2a >
a ) configurations of finite number of subwavelength silver
nanowires as follows: linear gratings (discrete line), discrete
right-angle corners, and discrete crosses—see Fig. 2. Dense
configurations are also interesting objects; however, they de-
serve a separate study; they need larger values of N to achieve
the same accuracy.

The scattered field is represented by the second term in (2).
In the far zone, large-argument asymptotics of the Hankel
functions lead to the following outgoing cylindrical wave
representation, with Φ (φ ) being the scattering pattern as
follows:

Usc r;φð Þe 2

iπkr

� �1=2

Φ φð Þ; Φ φð Þ ¼
Xþ∞

n¼−∞
−ið Þn Jn uð Þ

X
q¼1

M

x qð Þ
n e−i2πκsqcos ζq−φð Þ

" #
einφ ð17Þ

The scattering properties of finite-size objects are conven-
tionally characterized with the aid of the total scattering cross-
section (TSCS) and absorption cross-section (ACS),

σsc ¼ 2

πk

Z 2π

0
Φ φð Þj j2dφ ð18Þ

σabs ¼ 2πa

νj j2
X
q¼1

M Xþ∞

n¼−∞
y qð Þ
n

�� ��2Im ν Jn kaνð ÞJ 0
n kaν*
� �h i

ð19Þ

It should be also noted that the sum of the latter two values
is called the extinction cross-section. The Green's formula,
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Fig. 2 Cross-sectional geometries of the discrete-wire configurations
considered in the paper
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applied to the total-field function and its complex-conjugate
counterpart in a finite domain whose outer boundary is stretched
to infinity, leads to the so-called Complex Poynting Theorem
[40]. If the incident field is a plane wave, then some of the
associated integrals can be taken analytically and the extraction
of the real part of the final expression yields the Optical
Theorem. According to it, extinction is directly responsible for
the scattered-field amplitude in the forward direction , i.e., at the
angle of φ0+π , in our notations as follows:

σsc þ σab ¼ − 4=kð ÞRe Φ φ0 þ πð Þ ð20Þ

Interestingly enough, recalling that the forward direction is
the direction of the shadow beam of the far-field scattering
pattern, Φ(φ), one can conclude that both components of ex-
tinction are equally responsible for the shadow of the object
illuminated by a plane wave. Expression (20), together with (18)
and (19) can be used for a partial validation of the numerical
results. In the computations presented below, the identity (20)
has been satisfied with accuracy close to machine precision.
Thanks to this property, one can compute ACS not by using
relatively slow-convergent series (19) but as a difference be-
tween the right-hand part of (20) and σsc.

The complex-valued dielectric function of silver in the
visible range was taken from paper [41] and supplemented
with Akima spline code to provide the values between the
experimental points.

Results and Discussion

Two-Layer and Three-Layer Gratings

We have considered the optical resonances on a single row of
periodically placed circular silver nanowires in [17, 18]. This
study has shown that the optimal radius of the wires is between
30 and 70 nm, and the minimum number of wires necessary to
produce well-observable grating resonances lies between 100
and 20, respectively. Keeping this in mind, we have computed
the scattering of an H-polarized plane wave by finite gratings

consisting of two and three parallel rows of identical wires, in the
wavelength range between 300 and 500 nm—see Figs. 3 and 4.

If the wire positions along the rows of two-layer grating (i.e.,
the x-coordinates) coincide for the lower and upper row, then
such a grating can be viewed as consisting of M layer=M /2
dimers (pairs of wires with the distance along the y-axis between
their centers, or the gap, py) located with period px along the x-
axis. Similarly, a three-layer grating has M layer=M /3 trimers,
i.e., three-wire sub-arrays aligned in parallel to the y-axis. In
Fig. 3a, we present the plots of TSCS of such configurations,
normalized by the total number of wiresM , as a function of the
wavelength, illuminated in broadside manner (φ0=π /2). All
plots show broad resonance peaks near to λ=340 nm—this is
the plasmon resonance on each on the silver nanowires.

However, there is one other resonance peak on each plot,
slightly red-shifted from the value of the main period, px; this is
the grating or lattice resonance. Note that the plasmon resonance
has the shape close to Lorentzianwhile the grating resonancemay
display any of various Fano shapes, especially for the two-layer
and three-layer gratings. The most intensive scattering occurs if
the grating resonance is detuned from the plasmon resonance by
some 20–30 nm to the red side. It is also worth to emphasize that
the absorption is a finer instrument for locating the resonance
wavelengths because is displays only the Lorentz-shape peaks.

Note also that the stacking of the gratings damps the
plasmon-resonance peak in the per-wire TSCS and ACS at
λ =340 nm, apparently because of the shadowing of the
deeper rows of nanowires by the frontal row.

In Fig. 4, we present the near-zone magnetic field amplitude
patterns for two-layer (a) and three-layer (b) gratings with px=
400 nm and py=300 nm at the wavelengths of the correspond-
ing grating resonances, i.e., λ =403 nm (a) and λ =409 nm (b).
One can see that the largest field maxima (bright spots) are
located near the wires of the second from the illuminated side
layer both for two-layer and three-layer gratings.

The field pattern has the features characteristic for the
grating resonance of the first order, with other maxima be-
tween the wires that corresponds to the standing wave built on
two oppositely propagating Floquet harmonics of the grating
(see [17] for details).
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Discrete Corners

Figures 5, 6, 7, and 8 show the results computed for several
discrete right angle corners made of parallel silver wires with

a =30 and 60 nm and illuminated by the H-polarized plane
wave.

In Fig. 5, presented are the plots of per-wire TSCS (a) and
ACS (b) as a function of the wavelength for discrete corners of
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101 silver wires with period 400 nm for different angles of
incidence. Here, φ0=±π /2 corresponds to the case of the
incident wave “looking inside the corner” (this is default case)
or “looking at the apex” in symmetric matter, respectively, and
φ0=π /4 corresponds to the wave incident along one of the
corner arms. As in the previous sections, one can see two
types of resonances on the TSCS plots in all cases.

The first broad resonance is at the wavelength near to
348 nm; this is the plasmon resonance which can be observed
at the same location for a stand-alone silver wire. The second
sharper resonance can be seen at 403 nm for φ0=π /4, i.e., at
the wavelength just above the period value because this is the
normal incidence at one of corner's arms. If φ0 is arbitrary, then
the wavelength of the grating resonance is shifted further from
the period value. For instance, ifφ0=0 or ±π /2, then it is located
slightly above the value that corresponds to the expression for
the +2nd Rayleigh anomaly (for a similar infinite grating) and
the incidence angle of 45°: λRA

+2=(p /2)[1+cos(π /4)].

These two types of resonances are also well visible on the
plots of ACS per one wire (Fig. 5b); here, the peaks at longer
wavelengths are hindered by the lower values of the bulk
absorption in silver. Note that the peak values of TSCS and
ACS in the plasmon resonance atφ0=±π /2 are approximately
twice larger than at φ0=0 or ±π /4 because the former angle of
incidence provides direct illumination of all wires while the
latter only one arm of the corner.

In Fig. 6, similar dependences are presented for the two
discrete corners made of 21 and 101 wires and illuminated by
the plane wave in symmetric manner, coming either into the
corner or on the apex. The plasmon resonance sits on its usual
place while grating resonances of the +1 and +2 order are
found at 440 and 357 or 403 nm, respectively; their locations
are determined, in the leading term, by the equations for the +
1st and +2nd Rayleigh anomalies with the incidence angle of
45° and the value of the period (250, 410, and 460 nm). The
height and sharpness of these peaks become greater with
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Fig. 8 Near fields (a , c) and far-field scattering patterns (b , d) for the discrete right corners made of 21 wires with a =60 nm and p=460 nm at the
grating-resonance wavelength 403 nm, under symmetric incidence of the H-polarized plane wave, φ0=π /2 (a) and φ0=−π/2 (b)
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largerM . Note that the solid and dotted curves in Figs. 5 and 6
corresponding to two opposite directions of the incident wave
propagation do not coincide. The difference is caused by non-
zero absorption in the silver (for lossless scatterers similar two
curves of TSCS coincide because of the reciprocity).

To visualize this enhancement in terms of two parameters,
the wavelength and the period, Fig. 7a, c present reliefs of
TSCS as a function of two arguments for discrete right-angle
corners made of 51 silver wires of two values of radius, 30 and
60 nm, respectively.

Reliefs in Fig. 7b, d present similar information about
ACS.We recall that here the incident plane wave “looks inside
the corner” in symmetric manner with respect to its arms
(φ0=π /2).On these reliefs, one can see two areas of intensive
scattering. They stretch along the straight lines associated with
the +2nd and +1st Rayleigh anomalies, where the correspond-
ing Floquet harmonics are grazing.

In Fig. 8, presented are total-field near-zone and
scattered-field far-zone patterns for discrete corners of
21 silver wires computed at the wavelength correspond-
ing to the grating-resonance peak in TSCS shown in
Fig. 6. One can see bright spots near the wires on the
illuminated side of the corner arms and characteristic
standing waves along the arms, formed by the grazing +
2nd Floquet harmonics. More complicated four-wave
standing pattern is seen inside the corner, formed by
the specular reflections (i.e., by the bouncing 0th

Floquet harmonic). The configuration presented in
Fig. 8b has the incident wave coming at the corner
apex along the symmetry line (in Fig. 3c, this is the
case of φ 0=−π /2). In this case, in the grating reso-
nance, there is a deep shadow inside the discrete corner
of silver nanowires.

Note also intensive beams leaving the upper ends of the corner
arms in the directions of φ=π/4 and φ=3π/4. They appear due
to the +2nd Floquet harmonics of the arm gratings in the grazing
regime, and the corresponding sidelobes in the far-field scattering
patterns Φ(φ) are the signature of the grating resonance.

Discrete Crosses

As another configuration where the grating resonances
are well developed, we have studied the cross-shaped
scatterers with M up to 101 wires in four arms of the
cross, i.e., with one central wire and four 25-wire arms.
As known, even several dozens of nanowires assembled
in a straight chain are able to demonstrate visible peaks
on these resonances in the scattering and absorption [17,
18]. The corresponding Q-factors grow up with larger M
and approach their (finite) limit values associated with
infinite gratings.

In Fig. 9, we present the spectra of per-wire TSCS (a), (c)
and ACS (b), (d) for the sparse discrete crosses with the radius
of each wire 30 nm (a)-(b) and 60 nm (c)-(d), in the visible
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discrete crosses made of silver
nanowires with radius 30 (a , b)
and 60 nm (c , d)
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Fig. 11 The same as in Fig. 10
for “along-the-diagonal”
incidence of plane wave, φ0=π /4

300 400 500 600 700 800
200

300

400

500

+2

Wavelength, nm

Pe
ri

od
, n

m

5.500

18.20

30.90

43.60

56.30

69.00

81.70

94.40

107.1

119.8

132.5

TSCS/M, nm

+1

300 400 500
200

300

400

500

Wavelength, nm

Pe
ri

od
, n

m

0.000

9.550

19.10

28.65

38.20

47.75

57.30

66.85

76.40

85.95

95.50

ACS/M, nm

300 400 500 600 700 800
200

300

400

500

Wavelength, nm

Pe
ri

od
, n

m

23.00

56.20

89.40

122.6

155.8

189.0

222.2

255.4

288.6

321.8

355.0

TSCS/M, nm

300 400 500
200

300

400

500

Wavelength, nm
Pe

ri
od

, n
m

0.000

15.90

31.80

47.70

63.60

79.50

95.40

111.3

127.2

143.1

159.0

ACS/M, nm

a b

c d

Fig. 10 Normalized TSCS (a , c)
and ACS (b , d) as a function of
the wavelength and the period for
crosses made of 101 silver
nanowires with radius 30 (a , b)
and 60 nm (c , d), φ0=π /2

398 Plasmonics (2014) 9:389–407



range, under two cases of the H-polarized plane wave inci-
dence: along a cross arm (φ0=π /2) and along a diagonal
(φ0=π /4). Note that the wavelength scan of ACS is a better
tool for visualization of the resonances of all types than TSCS
[6].

If a plane wave is incident along one of the cross
arms, it means that the other two arms are illuminated in
the broadside manner. From Fig. 9, one can also see that
increasing the number of wires in the cross arm slightly
inhibits the averaged value of TSCS and, especially,
ACS in the plasmon resonance. Under such illumination,
the principal grating-type resonance has the wavelengths near
the period value, which has been taken, in computations, as p =
350 and 370 nm for crosses with wire radius 30 and 60 nm,
respectively, i.e., just to the right from the plasmon resonance.
Unlike plasmon, this resonance is getting sharper and more
intensive if the number M increases.

If the plane wave illuminates the same discrete cross of
silver wires along its diagonal, the mentioned-above reso-
nances in the scattering and absorption are kept. The plasmon
and the grating-type resonances are clearly identified by their
different dynamics with respect to the growth of the number of
wires. Here, the grating resonance is best visible near to the
Rayleigh anomaly wavelength corresponding to the grazing
regime of the +2nd Floquet harmonic.

The mentioned features of the light scattering and absorp-
tion by a discrete cross of silver wires are presented in more
complete way in the reliefs in Figs. 10 and 11.

Here, they have been computed for the “along-the-arm”
incidence and “along-the-diagonal” incidence, respectively,
and two values of the wire radius, 30 and 60 nm. In each case,
the bright “ridges” of enhanced scattering and absorption
approach the straight lines corresponding to the Rayleigh
anomalies if the period gets larger. The marks on reliefs
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Fig. 12 Near-zone magnetic field amplitude patterns (a , c) and far-field scattering patterns (b , d) for the discrete crosses made of 21 wires with radius
30 nm and period 350 nm at the resonance wavelengths of 347 (a , b) and 380 nm (c , d)
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indicate the indices of the Rayleigh anomalies, i.e., the num-
bers of Floquet harmonics which are grazing.

In Figs. 12 and 13, presented are the near-field amplitude
patterns for several discrete crosses made of 21 silver wires
with radius 30 nm at the wavelengths of plasmon resonances
(Figs. 12a and 13a) and grating resonances (Figs. 12c and 13c)
for two angles of the plane-wave incidence marked with black
arrows.

In the plasmon resonances (see panels 12a and 13a), the
near-field maxima are seen just at the illuminated side of each
wire, and in the far zone, the specularly scattered wave is
dominating. In contrast, in the grating resonance (see
panels 12c and 13c), the illuminated arms of the cross
demonstrate the Floquet-mode standing waves and in-
spection of the far-zone scattering pattern reveals char-
acteristic strong sidelobes along the illuminated arms.
Note that the maximum near-field amplitudes are

reached not in the plasmon resonance but in the grating
resonance. This suggests using this type of resonance, instead
of the conventional localized surface-plasmon one, in the
advanced designs of surface-enhanced Raman scattering sen-
sors and optical nanoantennas where enhancement of the near
field is the primary goal.

Besides, a refractive-index sensor based on the grating
resonance is also attractive [23, 43] because its bulk sensitivity
is comparable with the conventional localized plasmon
resonance-based sensors; however, the Q-factor can be much
larger if the number of periods M >>10.

This combination boosts the figure-of-merit of such a
sensor well over all other designs provided that the analyte
medium makes a thick enough layer (in fact, thicker than the
wavelength—see [23]). Note that if the sensing device uses a
corner or cross-like configuration of nanograting, it is possible
to place the light-collecting unit in the plane of one of the arms
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Fig. 13 Near-zone magnetic field amplitude and far-field patterns for the discrete crosses made of 21 wires with radius 30 nm and period 430 nm at the
resonance wavelengths of 348 (a) and 372 nm (b)
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Fig. 15 Near-field amplitude and far-field patterns for the central wires of the L2P gratings from 99 wires with radius 60 nm and periods p1=420 nm,
p2=380 nm at the grating-resonance wavelengths of 382 (a , b) and 419 nm (c , d) φ0=−π /2
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and, hence, spatially separate the directions of illumination
and reception.

The grating resonances are also attractive in the design of
nanoscale thin absorbers for novel solar cells. This is because
they can be tuned, by adjusting the values of period, to specific
wavelengths in order to provide higher absorption in the
spectral bands where the surface-plasmon resonances are ab-
sent. Additional opportunities may appear if using more com-
plicated configurations containing not one but several differ-
ent period sub-gratings.

Double-Period Gratings: Inline and Stacked

We have also investigated two types of finite gratings com-
posed of silver nanowires with two different periods: inline
(we will label them as L2P) and stacked (this will be indicated
as S2P).

In Fig. 14, the wavelength scans of the per-wire TSCS and
ACS are presented, computed for the in-line grating with the
left arm of M =99 wires having the period of 420 nm and the
right arm of the equal number of wires having the period of
380 nm, for several angles of incidence from π /2 (normal or
broadside incidence) to 0 (grazing or edge-on incidence).

In the broadside illumination case (φ0=π /2), for the grat-
ing made of thin wires (30-nm radius, upper panels), one can
see only one broad resonance at the usual plasmon wave-
length. Thus, a grating of 50 thin silver wires is apparently
too short to produce clear grating resonances.

However, if the angle of incidence gets smaller, then one
and further two (at φ0=π /8) additional sharp and intensive
resonance peaks appear. They are the grating resonances at the
wavelengths slightly to the red from the Rayleigh anomalies
associated with +2nd and +1st Floquet harmonics at grazing.

If the wires are twice thicker, of the 60-nm radius (lower
panels), then even 50 wires is enough to produce well-visible
grating resonances both at the normal and inclined incidence.

Note that for the in-line configuration of the composite
grating, all the wires are illuminated and there is no significant
shadowing effect except in the grazing-incidence case ofφ0=0.

The near-field patterns shown in Fig. 15 have been com-
puted at the wavelengths of two grating-type resonances cor-
responding to the periods of the left and the right parts of the
grating. Therefore, in panel (a), one can see that the right half
of the grating is shining, with a characteristic Floquet-mode
standing wave along the grating plane, while the left half is off
the resonance and thus remains dark. In similar manner, in
panel (c), it is the left half of the grating that is tuned to the
incident wavelength and shines brightly and the right half is
dark. Note that in each case, the shadow is deeper behind the
dark part of the grating.

It is also helpful to visualize the far-field scattering patterns
Φ (φ) at the resonance wavelengths. Figure 15b, d correspond
to the near fields presented in Fig. 15a, c, respectively, and
show these patterns in the normalized form. They display
intensive narrow beams of the shadow and specularly
reflected waves (0-th Floquet harmonics). Here, we remind
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Fig. 16 The same as in the
previous figure, however, for S2P
gratings made of M =105 (M1=
50) nanowires, py=5a
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that the total size of the composite grating is 99λ that makes it
a truly large scatterer. Besides of them, in both cases, there are
intensive beams along the plane of the grating—they appear
because of the radiation of the ±1st Floquet harmonics from the
ends of the finite resonant grating. Still besides, in the panel (b),
one can see additional intensive sidelobes at the angles of
approximately 28° to the plane of the grating that are absent in
panel (d). These sidelobes correspond to the ±1st Floquet har-
monics scattered by the non-resonant part of the composite
grating. They are absent in panel (d) because here the mentioned
Floquet harmonics are below cutoff as the wavelength is larger
than the period of the non-resonant (dark) part of the grating.

Unlike in-line grating, for the stacked configuration of a
composite two-period grating, the shadowing of a part of
wires by the other directly illuminated part has certain effect.
Here, in fact, only approximately a half of all wires are
illuminated directly. This leads to the reduced (by some
20 %) off-resonance and in-resonance values of both TSCS
and ACS per one wire with respect to the same values for a
single silver wire—see Fig. 16. Still, one can see additional
grating resonances appearing at the inclined incidence (for

thinner wires) or even at the normal incidence (for thicker
wires) near to the wavelengths corresponding to the +2nd and
+1st Floquet harmonics “passing over horizon.”

Note that if the wire radius is as small as 30 nm (upper
panels), then the plasmon resonance remains a dominating
feature in the spectral dependences of the per-wire scattering
and absorption. This is apparently because 50 or 55 thin wires
in a grating are still small number to produce more intensive
grating resonances. Making them twice thicker, of 60-nm
radius (lower panels) leads to the scattering spectrum where
all resonances have comparable peak values; in the absorption
spectrum, the plasmon resonance is still the most intensive
one because the bulk losses in silver get larger in the violet
range where it is located.

The near-field patterns shown in Fig. 17 have been com-
puted again at the wavelengths of two grating-type resonances
corresponding to the periods of the upper (illuminated) and the
lower (shadowed) rows of the S2P grating. Therefore, in panel
(a), one can see that the upper row of the grating is shining,
while the lower row is shadowed and tuned off the resonance
and thus remains dark. In contrast, in panel (c), it is the lower
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Fig. 17 Near-field amplitude and far-field patterns for the central wires of the S2P gratings from 105wires (M1=50) with radius 60 nm and periods px1=
420 nm, px2=380 nm, py=5a at resonant wavelengths 380 (a , b) and 419 nm (c , d), φ0=−π/2
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row of the grating that is tuned to the incident wavelength and
therefore its shadowing by the upper row does not have any
visible effect—the whole grating shines brightly.

The far-zone normalized scattering patterns at the same
wavelengths are shown in panels (b) and (d). Their main

features are the narrow shadow and specular-reflection
beams—they are the most intensive because of the ~50-λ size
of composite scatterer. The broader but also intensive beams
are also present in the plane of the grating, produced by in-
resonance Floquet harmonics.
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Fig. 19 Near and far-zone patterns for the central four wires of the grating of 100 wires with radius 60 nm and period 700 nm at the wavelengths of 350.1
(a , b) and 700.4 nm (c , d)
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E-Polarization

For the sake of completeness, we have also investigated the
scattering and absorption of the visible-range plane wave by
simple one-period finite gratings of circular silver nanowires
in the case of the E-polarization illumination (i.e., with the E-
field along the wires). The wavelength dependences of the
per-wire TSCS and ACS are presented in Fig. 18, where the
broadside incidence is assumed (φ0=π /2). Here, the number
of wires M varies from 10 to 100, and period is fixed at
800 nm. The wire radius values are given in the inset. Two
curves corresponding to the inclined incidence are also added
for comparison.

The plots in Fig. 18 quantify a well-known fact: in the case
of the E-polarized illumination, even one metal wire is a
strong non-resonant scatterer (no plasmon resonances). What
is less predictable, any peaks associated with the grating
resonances are also absent. The explanation follows from the
fact established in [24]: the Q-factors of the grating resonances
of E-type are lower, by a factor of |ε |2, than the similar grating
resonances of H-type. For the silver in the visible range, this
factor can be as large as 400 at λ =800 nm that spoil the
resonances.

Thus, the only pronounced feature, in the E-case, of
the spectral dependences of the per-wire scattering and
absorption is sharp minima exactly at the wavelengths
of Rayleigh anomalies. This is in agreement of the
findings of the paper [42] where an infinite grating of
rectangular gold bars was analyzed using a surface-
impedance method.

This effect can be partially explained if the near field (in
terms of the |Ez|) is visualized at the wavelengths correspond-
ing to the scattering and absorption minima. Figure 19a, c
correspond to the wavelength tuned to the ±2nd and ±1st
Rayleigh anomalies, respectively.

As one can see, in each case, the lossy silver wires happen
to be located in the deep minima of the electric field that
entails reduced scattering and absorption.

In the far zone, the normalized scattering patterns shown in
panels (b) and (d) demonstrate two intensive narrow beams,
shadow and specular-reflection ones (corresponding to the 0-
th Floquet harmonics) plus two broader sidelobes in the plane
of the grating caused by the grazing Floquet harmonics. In
panel (b), additionally, there are four narrow sidelobes corre-
sponding to the ±1st Floquet harmonics in the scattered field;
such lobes are absent in panel (d) because here they are below
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grazing. Note that the amplitudes of all beams are much
smaller than in the grating resonances on the same gratings
in the H-polarization regime (see above).

More information on this effect can be inferred from the
reliefs of the per-wire TSCS and ACS as a function of two
variables: wavelength and period (Fig. 20). The upper and
lower panels correspond to the gratings of 30- and 60-nm
wires, respectively. As visible, at the Rayleigh-anomalies
wavelengths, both the scattering and the absorption are sig-
nificantly damped.

Conclusions

Today, periodic arrays of noble-metal nanogratings are used
mainly in two application areas: the nanosensors of the chang-
es in refractive index of host medium and the ultra-thin ab-
sorbers for novel solar cells. In the first case, the principle of
operation is based on measuring the position of the plasmon
peak in the scattering or extinction. This is considered as key
enabling technology in biological and chemical nanosensing
[43–46]. The gratings of a few hundred metal particles were
originally viewed as a way to collect the many plasmon-
resonance contributions of the scattered light. The grating-
mode resonances were, therefore, a sort of parasitic phenom-
enon. However, their higher Q-factors have attracted attention
of researchers and recently new type of refractive-index sen-
sors has been proposed [23, 43, 44]. Additionally, extraordi-
nary near-field enhancement in the larger domain than for the
surface plasmons makes the grating resonances attractive for
advanced substrates for the surface-enhanced Raman scatter-
ing [2].

In the second case, novel solar-cell absorbers were at
first using the surface-plasmon resonances on randomly
distributed metal particles embedded into a dielectric
layer [47]. However, their periodic placement has soon
revealed the role of the grating resonances. Indeed,
combining nanogratings with several values of periodic-
ity, one can introduce additional absorption resonances
and hence engineer the spectral behavior of the absorber
[48, 49].

The optical properties of large periodic ensembles of
coupled metal wires are quite different from those of
dimers, short arrays, or small clusters of them. The
latter configurations demonstrate only the low-Q reso-
nances on the localized surface plasmon modes, which
have been well documented. The chains, arrays, and
gratings of many dozens and hundreds of such wires
remain less studied and possess additionally the grating-
mode resonances, which are caused by the periodicity
and have much higher Q-factors. Although these reso-
nances have been frequently mixed up with Rayleigh
anomalies or interpreted as specific plasmons, today

their interpretation is less controversial. We have pre-
sented results of accurate calculations of the electromag-
netic wave scattering and absorption by several different
periodically structured configurations made of many sil-
ver nanowires, in the visible range: corners, crosses, and
finite gratings with two different periods. We would like
to emphasize that our numerical results have been com-
puted using the algorithm whose convergence is guar-
anteed by mathematical theorems.

It has been demonstrated that corners and crosses of
silver wires provide enhanced scattering and absorption
in wider wavelength ranges and are less dependent on
the direction of arrival of the incident illumination than
a linear chain of nanowires. Further opportunities for
efficient spectral engineering of enhanced scattering and
absorption have been demonstrated on the finite wire
gratings containing two different periodic sub-arrays, which
support two separate types of grating resonances. These effects
can find applications, for instance, in the design of more effi-
cient multi-wavelength optical sensors and plasmonic solar cell
absorbers.
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