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Abstract
The optical diffraction radiation that accompanies the motion of a modulated beam of elec-
trons near a dielectric and silver nanowire scatterers is investigated in the two-dimensional 
formulation. Our goal is to compute the field in the near and far zones and analyze how 
it depends on electron beam parameters. We demonstrate the excitation of internal reso-
nances of such a scatterer that can be useful in the design of nanoscale non-invasive beam 
position monitors.

Keywords Diffraction radiation · Nanowire scatterers · Smith–Purcell effect · Surface 
wave · Plasmon resonance · Total scattering cross-section · Absorption cross-section

1 Introduction

As known, charged particles, such as electrons, radiate electromagnetic waves when mov-
ing through the boundary between material media—this is called the transition radiation. 
The radiation of electrons moving in vacuum without crossing any material boundaries has 
also attracted the attention of researchers. The most known example of such effect is the 
Smith–Purcell radiation (Smith and Purcell 1953; van den Berg 1973; Nosich 1981; Veliev 
et al. 1977; Castellano 1997; Potylitsyn 1998; Castellano et al. 2001; Karataev et al. 2004; 
Goponov et  al. 2018; Bobb et  al. 2018; Baryshevsky and Gurnevich 2017; Talebi 2017; 
Leedle et al. 2015); it is associated with an electron beam flowing over a periodic grating, 
for instance, ruled on a metal surface. Still the Smith–Purcell radiation is only a particular 
case of more general phenomenon: the radiation of the surface and polarization currents 
induced on the metal and dielectric objects by the electron beams flowing in their vicinity 
however without touching them. This type of electromagnetic-wave radiation is commonly 
called the diffraction radiation (DR) (Nosich 1981; Veliev et  al. 1977; Castellano 1997; 
Potylitsyn 1998; Castellano et al. 2001; Karataev et al. 2004; Goponov et al. 2018; Bobb 

 * Dariia O. Yevtushenko 
 dariia.yevtushenko@gmail.com

1 Department of Photonics and Laser Engineering, Kharkiv National University of Radio 
Electronics, Kharkiv 61066, Ukraine

2 Laboratory of Micro and Nano Optics, Institute of Radio-Physics and Electronics NASU, 
Kharkiv 61085, Ukraine

http://orcid.org/0000-0001-6569-1226
http://crossmark.crossref.org/dialog/?doi=10.1007/s11082-018-1741-4&domain=pdf


 D. O. Yevtushenko et al.

1 3

   29  Page 2 of 14

et  al. 2018; Baryshevsky and Gurnevich 2017; Talebi 2017; Leedle et  al. 2015). DR of 
the microwave range finds application in the design of beam position monitors of various 
particle accelerators. As known, the characteristics of such monitors can be enhanced if the 
scatterers are shaped as cavities, thanks to the associated high-Q resonances (Nosich 1981).

Detection of DR in the visible wavelength range, called the optical DR, is the most 
promising technique for application to noninvasive beam diagnostics (Potylitsyn 1998; 
Castellano et al. 2001; Karataev et al. 2004; Goponov et al. 2018; Bobb et al. 2018). Here, 
the emergence and rapid development of nanotechnologies opens the way to use nanoscale 
scatterers as sensitive antennas (Baryshevsky and Gurnevich 2017; Talebi 2017). Indeed, 
such antennas radiate the optical waves, characterized with the far-field patterns and the 
carried power values depending on the electron-beam bunching, velocity, and fine distance 
to the beam trajectory. For instance, for the configuration in Fig. 1, the measurement of the 
DR pattern can deliver the information on the beam position shift h and velocity v.

Note that the nanowires can be designed resonant and, moreover, tunable by covering 
the wires with the graphene (Leedle et al. 2015; Bohren and Huffman 2004; Velichko and 
Natarov 2018). Nanoscale size of such beam-sensor antennas introduces negligible distor-
tion to the beam energy characteristics, which can be considered as fixed. This makes pos-
sible the analysis of sensing antenna elements in the same way as within the traditional 
antenna theory, i.e. as the scattering of the given electromagnetic field of the moving beam 
by the conducting and dielectric scatterers of given shapes and material properties. The lat-
ter parameters can be manipulated to optimize the beam-diagnostics antenna performance.

Such scatterers can be also designed to display the resonances from ultraviolet to infra-
red wavelengths. The associated resonances are then either on the low-order internal modes 
of dielectric objects or the localized surface plasmon (LSP) modes of noble-metal objects 
(Bohren and Huffman 2004; Velichko and Natarov 2018). Note that the plasmonic scatter-
ers can be designed tunable if covered with the graphene (Riso et al. 2015; Cuevas et al. 
2016; Naserpour et al. 2017; Fesenko et al. 2018). Nanoscale dimensions of such beam-
sensor antenna elements help reduce distortion to the electron beam velocity and power, 
which therefore can be assumed fixed. Under such assumption, called fixed-current approx-
imation, one can perform engineering analysis of the beam monitors like it is done in the 
traditional antenna theory: DR can be treated as the wave scattering phenomenon.

In this work, we apply the outlined approach to study the optical DR in the presence 
of circular silver and dielectric nanowires as the simplest nanocavities. Some preliminary 
results of this analysis, however only for a dielectric wire, were presented in the contrib-
uted conference paper (Yevtushenko et al. 2018). In following, we explain the details of 

Fig. 1  Cross-sectional geometry 
of an electron beam moving near 
a circular dielectric nanowire



Optical diffraction radiation from a dielectric and a metal…

1 3

Page 3 of 14    29 

derivations, formulate better grounded conclusions, and support them with comprehensive 
numerical results.

2  Scattering configuration and beam field

We assume that two-dimensional (2-D) electron beam with the harmonic time dependence 
e−iωt is moving over a circular dielectric nanowire with radius a, and dielectric permea-
bility ɛ at the distance h from it’s surface. Hence, the beam distance from the x-axis is 
p = h + a. Besides, we denote the inner and the outer domains of the wire as domains (1) 
and (2), respectively, and introduce the Cartesian and the polar coordinates as shown in 
Fig. 1.

Consider the diffraction radiation, which accompanies uniform motion of a plane 
unbounded electron beam along the straight trajectory with fixed velocity v = βc(β < 1) near 
the dielectric wire. If the charge density function is modulated in time in the harmonic 
manner, then it is given by

where δ(·) is the Dirac delta function, ω and ρ0 are the frequency and the amplitude of 
beam modulation, k = ω/c is the free-space wavenumber, and c is the light velocity.

We will consider the electromagnetic-field problem in the given-current approximation. 
In this case the incident wave is the field of the sheet current beam (1) moving in the free 
space. As it was shown in van den Berg (1973), this field has the form of a slow inhomoge-
neous plane wave of the surface nature, the only nonzero component of the magnetic field 
of which is

where q = kγ/β, γ = (1 − β2)1/2, function sign(y − p) is the sign of the expression in the brack-
ets, time dependence is omitted, and A is a constant. This is a surface wave running along 
the beam trajectory in the positive direction of the x-axis.

Note that finite thickness of electron beam can be taken into account following the 
considerations of Palocz and Oliner (1965). In that case the beam is viewed as a veloc-
ity-dependent and frequency-dependent anisotropic dielectric slab, with the correspond-
ing boundary conditions at the interfaces. The modulation of the electron beam can be 
achieved by its preliminary bunching in periodic waveguide or through direct modulation 
by a laser emission (Potylitsyn 1998; Talebi 2017).

3  Problem formulation

In the presence of the scatterer, the total field in the external medium is characterized by 
the sum Htot

z
= Hin

z
+ H(2)

z
 . In addition, in the scatterer the field Hz

(1) is different from (2).
The unknown field function must satisfy the conditions:

1. The Helmholtz equation with coefficient k1 = αk in domain (1) and k2 = k = ω/c in domain 
(2), 

(1)� = �0�(y − p) exp[i(kx∕� − �t)],

(2)Hz(x, y) = Asign(y − p)e−q|y−p|ei(k∕�)x
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2. The boundary conditions at r = a and 0 ≤ φ < 2π, 

 note that from Maxwell’s equations it follows that 

 where the polar coordinates (r, φ) relate to the Cartesian ones as x, y = r(cos, sin)φ and 
Z0 = (μ0/ɛ0)1/2 is vacuum impedance,

3. The condition for the local power finiteness,
4. The radiation condition at infinity (outgoing wave behavior), 

  These conditions guarantee the solution uniqueness.

4  Basic equations

The circular shape of the boundaries between different materials suggests the use of the 
method of separation of variables. This means we expand the field functions in each 
domain in terms of Fourier series in the angular coordinate φ, in particular, if r sin φ < p 
and r > a then

where we introduce the complex incidence angle ψ, such that

and, according to the Anger formula, obtain

The scattered field is expressed as

where am, bm are unknown coefficients and Jm and Hm
(1) are the Bessel and Hankel (first 

kind) functions. The coefficients are found using the conditions 1–4 in analytical form as

(3)

(
Δ + k2

1,2

)
H(1,2)(r⃗) = 0

(4)H(1)
z

= Hin
z
+ H(2)

z
, E(1)

�
= Ein

�
+ E(2)

�
;

(5)E(1,2)
�

= Z0
(
ik�1,2

)−1
�H(1,2)

z

/
�r,

(6)H(2)
z
(r,�) ∼ 21∕2(i�k2r)

−1∕2eik2 rΦ(�) at r → ∞,

(7)Hin
z
(r⃗) = −Ae−qpeikr cos(𝜑+𝜓),

(8)cos� = 1∕�, sin� = i�∕�,

(9)Hin
z
(r⃗) = −Ae−q(h+a)

+∞∑

m=−∞

imJm(kr)(1 − 𝛾)m𝛽−meim𝜑

(10)Hsc
z
(r⃗) =

+∞∑

m=−∞

{
amJm(k1r), r < a

bmH
(1)
m
(kr), r > a

}
eim𝜑,

(11)am = C
[
fm(ka)H

�

m
(ka) − Hm(ka)f

�

m
(ka)

](
Δm

)−1
,

(12)bm = C
[
fm(ka)�J

�

m
(k�a) − Jm(k�a)f

�

m
(ka)

](
Δm

)−1
,
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where the superscripts of the Hankel functions and their derivatives are omitted, and other 
notations are

Here, characteristic equations of the considered scatterer,

may have only complex solutions, kmn, which form a discrete set with negative imaginary 
parts. These are complex natural wavenumbers of the modes of dielectric wire as open cav-
ity, usually denoted as Hm,n where m = 0, 1, … and n = 1, 2, ….

We characterize the scatterer with its total scattering cross-sections (TSCS) (17) and 
absorption cross-sections (ACS). TSCS is the result of integration of the Poynting vector 
flux of the scattered field over all space directions,

ACS is obtained with the aid of the Optical Theorem (a.k.a Complex Poynting Theo-
rem) applied to the total field function and its complex conjugate. With account of (8), it 
takes form of

Presented further results for (17) and (18) are normalized by 4a that is the limit value of 
σsc at β = 1 and a/λ → ∞.

5  Numerical results

We have studied  the DR characteristics for the scatterer shaped as a circular dielectric wire 
shown in Fig. 1.

The plots in Fig. 2 demonstrate the dependences of the normalized TSCS on the modu-
lation wavelength in the visible range, for the silicon wire with the radius 50 nm, relative 
dielectric constant ε = 12, the separation distance h = 10 nm, and several values of the rela-
tive beam velocity β. As one can see, due to rather high optical contrast of silicon, even 
such a tiny wire behaves as an open nanocavity.

Indeed, for all values of the relative beam velocity β the spectra of TSCS display three 
distinctive peaks in the visible and ultra-violet ranges. Their wavelengths positions at 
464 nm, 306 nm, and 225 nm do not depend on the relative beam velocity β.

To clarify the nature of these peaks of TSCS, we have calculated the complex eigenval-
ues of the dielectric nanowire. They are presented in Fig. 3. There are four modes which 
have their wavelength between 150 and 900 nm. The most “blue” of them,  H21, has the 
largest Q-factor. The mode denoted XH1 corresponds to the so-called external mode of a 

(13)C = −Ae−q(h+a),

(14)fm = imJm(ka)(1 − �)m�−m, f
�

m
= imJ

�

m
(ka)(1 − �)m�−m,

(15)Δm = Jm(k�a)H
�
m
(ka) − �J�

m
(k�a)Hm(ka),

(16)Δm(k) = 0, m = 0,±1,±2,… ,

(17)�sc =
4

kA2

+∞∑

m=−∞

|bm|2,

(18)�abs = −
4

kA2
e−qpRe

+∞∑

m=−∞

imbm

(
1 − �

�

)m

− �sc
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circular dielectric cylinder, the existence of which was mentioned, for instance, in Dett-
mann et al. (2009). They have very low Q-factors and do not produce any distinctive peaks 
in the spectra of TSCS and ACS. Other internal modes with high Q-factors are found in 
the deep ultraviolet range below 200 nm. The near field patterns of the internal modes with 
complex eigenvalues are presented in Fig. 4. 

The panels of Fig. 5 show the in-resonance near field patterns for the same dielectric 
nanowire as in Fig. 2 and two values of β. One can clearly see the straight trajectory of the 
beam at the distance h = 10 nm above the wire. The bright spots of the field inside the wire 
enable one to identify the resonating modes. The lowest of them, in frequency, is the H01 
mode at 464 nm that is certified by the single bright spot near to wire’s center. The next, in 
frequency, is the dipole mode H11 at 306 nm showing two bright spots. The most high-fre-
quency peak at 225 nm is on the quadrupole mode H21. This field pattern is well visible for 
the relativistic beam DR, as at 1 − β < < 1 the beam field (2) is very close to a plane wave, 
albeit with a jump at the beam trajectory.

Fig. 2  Normalized TSCS of the 
50-nm in radius lossless silicon 
nanowire (ε = 12) versus the 
wavelength in the visible range, 
for several values of the electron 
relative velocity β. Note the reso-
nances on the wire modes

Fig. 3  Complex eigenvalues of 
the 50-nm in radius lossless sili-
con nanowire in the visible range
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Here, it is necessary to remind that if β ≠ 0 the incident field (2) is not symmetric with 
respect to the wire section by the x-axis. Indeed, for instance, the field (10) inside the wire 
can be rewritten as

where

Therefore, at the resonance wavelengths, the beam field excites not a single one of two 
degenerate wire modes Hm,n (m > 0) but the both, and the contribution of the anti-symmet-
ric with respect to y = 0 component gets larger with smaller β. This leads to the overlap 
of two modal patterns so that the resulting field portrait resembles a continuous ring. The 
reason is that if β < < 1 (non-relativistic beam) then Bm

±(β) = ± (2/β)m[1 + O(β2)]. Hence the 
inner field pattern takes the form of the rotating wave, Jm(kαa)(cos mφ − i sin mφ) + O(β), 
instead of the standing-wave Jm(kαa) cos mφ, observed in the plane wave scattering.

This feature is also well visible in the far zone, where the normalized by maximum 
value angular scattering patterns are also shown in Fig.  5 at the same wavelengths. If 
β < < 1, then the in-resonance radiation becomes omnidirectional. Note that this is not true 
for the resonance on the H01 mode (Fig. 5a, b) because in this case the contribution of anti-
symmetric field component is close to zero.

We have also studied the DR characteristics of the same beam (1) moving near a circu-
lar metal (silver) nanowire. The complex-valued bulk dielectric permittivity of silver has 
been taken from the paper of Johnson and Christy (1972) and combined with a cubic spline 
interpolation (Fig.  6). In computations, the associated series have been truncated at the 
number ± 10 that well exceeds the maximum of the values ka and ka|α| in the whole optical 
range and provides 6 and more correct digits.

(19)Hsc
z
(r⃗) =

2C

𝜋ka

∞∑

m=0

imJm(k1r)
[
B+
m
cosm𝜑 + iB−

m
sinm𝜑

]
,

(20)B±
m
(�) =

[
(1 − �)m ± (1 + �)m

]
�−m

H01, λ=471.88+i42.26, nm H02, λ=199.42+i9.80, nm H11, λ=297.66 +i19.71, nm

H12, λ=156.84+i6.78, nm H21, λ=224.21+i5.73, nm H31, λ=177.37+i0.97, nm

Fig. 4  Near field patterns of the lowest-order internal eigenmodes of 50-nm in radius silicon nanowire with 
the wavelengths between 150 and 900 nm
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Fig. 5  Total near magnetic field patterns (left panels) and normalized far-field scattering patterns (right 
panels) of the lossless silicon nanowire of the radius a = 50 nm and β = 0.9 (a, c, e), β = 0.5 (b, d, f) in the 
resonances on the modes H01 for λ = 464 nm (a, b), H11 at λ = 306 nm (c, d) and H21 at λ = 225 nm (e, f)

Fig. 6  Complex permittivity 
function of silver as a function 
of the wavelength in the visible 
range
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Note that the silver nanowire’s dielectric function varies between 0.93 (at λ = 306 nm) 
and − 40 in the visible range and that the losses are quite considerable, between 0.2 and 
3.9.

The plots in Fig. 7 demonstrate the dependences of the normalized TSCS and ACS on 
the modulation wavelength in the visible range, for the wire with the radius 50 nm, the sep-
aration distance h = 10 nm, and several values of the relative beam velocity β. For all β, the 
plots of TSCS show the maximum at λ = 347 nm preceded by the minimum at λ = 318 nm 
and the plots of ACS—at λ = 343 nm. Note that ACS is quite comparable with TSCS, espe-
cially in the blue and violet parts of the spectrum.

As expected, the wavelengths of the peak scattering and peak absorption are very 
close to the root of the “textbook” quasi-static equation, Re �(�) = −1 (Bohren and Huff-
man 2004; Velichko and Natarov 2018), found at λ = 338 nm (Johnson and Christy 1972). 
This is a collective resonance caused by the infinite number (m = 1, 2,…) of the transverse 
LSP modes of a circular wire with negative dielectric function, because if a/λ → 0, then 
Δm(λ) ≈ ɛ(λ) + 1 + O(m−1a2λ−2) (Velichko and Natarov 2018). The peaks of separate LSP 
resonances merge together because of the losses in silver.

The minimum of TSCS (and to lesser extent of ACS) is typical for the plasmonic 
scatterers, see Cuevas et al. (2016), Naserpour et al. (2017), Fesenko et al. (2018) and 
Yevtushenko et al. (2018). Its location in wavelength corresponds to the value, at which 
the dielectric function of silver comes near to 1, Re �(�) = 1 . Here the metal placed 
in the vacuum becomes optically transparent although still not invisible due to small 
absorption. According to Johnson and Christy (1972), that happens at λ = 308 nm, and 
the red shift of the minimum in Fig. 7 is the effect of the finite wire radius. As can be 
found after inspection of the works (Byelobrov et  al. 2012; Natarov et  al. 2014a, b; 
Zinenko et al. 2016), this “invisibility” effect is equally well observable in the scattering 
of light by finite and infinite arrays of circular silver nanowires. Potentially such optical 
transparency can be also useful in the design of beam velocity sensors.

To clarify the nature of the peak of TSCS, we have calculated the complex eigenval-
ues of the silver nanowire using the rigorous characteristic Eq. (15). Here, Johnson and 
Christy data for ε(λ) cannot be used directly because they were measured for the real 
frequencies. To overcome this difficulty, we have used the modified Drude + two Lor-
entzians formula presented in Vial and Laroche (2008) that provides reasonably good 

Fig. 7  Normalized TSCS (a) and ACS (b) of the 50-nm in radius silver nanowire versus the wavelength in 
the visible range, for several values of the electron relative velocity β 
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approximation of the measured data in the range between 200 and 400 nm, and contin-
ued it to the complex frequencies.

The results are presented in Fig. 8. As expected, for all m the complex wavelengths 
of the plasmon eigenmodes Pm are located between 330 and 360 nm and have similar 
imaginary parts of λ. Their Q-factors are between 5 and 15. They correspond to the 
localized plasmon modes of the metal wire P1 to P5. The notations X4 and X5 correspond 
to the so-called secondary plasmon modes, the existence of which was apparently men-
tioned first time in Natarov (2014). They have comparable Q-factors however produce 
very small peaks in the spectra of TSCS and ACS. The near field patterns of the plas-
mon modes P1 to P5 are presented in Fig. 9.

We have also computed the total near magnetic field patterns and the normalized DR 
far-field angular scattering patterns of the same silver nanowire excited by the beam of 
particles (1), at the fixed values of β and λ. As one can see in Fig. 10, at the resonance 

Fig. 8  Complex wavelengths 
of plasmon eigenmodes of the 
50-nm in radius silver nanowire 
in the visible range

P1, λ=346.8+i29.1, nm P2, λ=346.7+i11.2, nm P3, λ=351.3 +i11.8, nm

P4 , λ=345.7+i11.5, nm P5, λ=345.4+i11.7, nm

Fig. 9  Near field patterns of the lowest-order plasmon eigenmodes of the 50-nm in radius silver nanowire 
with the wavelengths between 330 and 350 nm
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wavelengths the total field is dominated by the field of the corresponding plasmon 
mode. Its bright spots are located near the surface of the nanowire and do not penetrate 
into it. This is explained by the surface nature of the plasmon modes.

At the “invisibility wavelength” of λ = 318 nm, the total field in the near zone shows 
the beam field (2) only slightly perturbed by the wire—see Fig. 11.

The shape of the far-field DR patterns can be explained by the contribution of the 
field part, which is anti-symmetric with respect to the wire center (along the y-axis). Its 
maximum is always oriented in the normal direction to the beam trajectory.

6  Conclusions

If one can neglect the action of the field on the electrons, then the electromagnetic field of 
a modulated 2-D beam takes form of a surface wave propagating along the beam trajectory. 
This wave induces the polarization and surface currents on the local obstacles and hence a 
radiation occurs even if the beam does not touch the obstacle. In fact, an obstacle plays the 
role of optical nanoantenna, which makes the beam of particles visible. As we have shown, 
a nanowire behaves as an open resonator, thanks to which the radiated power is enhanced 
near the natural-mode wavelengths.

Fig. 10  Near magnetic field patterns (left) and normalized far-field scattering pattern (right) of the silver 
nanowire of the radius a = 50 nm for β = 0.8 (a), β = 0.5 (b) in the collective LSP resonance at λ = 347 nm
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For the dielectric nanowire, unlike the more conventional plane-wave scattering, the in-
resonance fields (except of the resonance on the H01 mode) are shaped as rotating cylindri-
cal waves. This happens because of three circumstances: (1) the beam field depends on y, 
and hence there are no “dark modes” of the wire that remain not excited because of orthog-
onal symmetry with respect to the incident wave, (2) the symmetric and the anti-symmetric 
natural modes of the wire remain degenerate, and (3) if β → 0, then the phase shift between 
two field components becomes π/2.

We also have studied, in the same framework, the optical diffraction radiation that 
accompanies the motion of the charged-particle beam near a plasmonic silver nanowire. As 
we have shown, both the radiated and the absorbed powers are enhanced near the natural-
mode wavelengths of the plasmonic nanowire open resonator. In this case, in-resonance 
fields are shaped as rotating surface cylindrical waves made of two degenerate LSP modes 
with nearly π/2 phase shift. The obtained results can be useful for monitoring of variation 
of beam parameters. Unlike the diffraction radiation in the presence of a dielectric nanow-
ire, a metal nanowire placed in vacuum also displays the effect of “invisibility” at the wave-
length close to the optical transparency of metal.

Fig. 11  “Invisibility effect:” the same as in Fig. 10 however at λ = 318 nm in the minimum of TSCS plots
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