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Abstract. Microdisk lasers are investigated for their thresholds characteristics. We present a novel ap-

proach for studying the threshold gains of the whispering-gallery (WG) and other modes based on solving

the boundary value problem for the Maxwell’s equations. The novelty is that we consider the real-value

pairs of frequencies and material gains as eigenvalues. In the two-dimensional (2D) approximation this

problem is reduced to the set of independent transcendental equations. A Newton’s method is further used

to calculate the thresholds and natural frequencies numerically.
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1. Introduction

The laser, as a source of light, is a complicated device whose operation is
based on the joint action and interplay of several physical mechanisms. The
main are considered to be the transport of carriers, the quantum-mechanical
stimulated emission, the processes of heating and cooling, and the optical
(i.e., electromagnetic) field confinement. It is hard to simulate a laser with a
model that takes full account of all these mechanisms, although this is the
ultimate goal of the comprehensive modeling. Therefore, to reduce com-
plexity, attention is normally paid to one of these effects neglecting the
others. Here important place is occupied by the cold model associated with
purely electromagnetic features of the laser as an open cavity containing an
active material.

Since the pioneering research into lasers, a growing understanding had
appeared that the cold-cavity modeling could bring extremely useful infor-
mation on the lasing spectra. More recently this has been proven by the
dozens of papers featuring modal analyses of VCSELs (Hadley et al. 1996;
Burak and Binder 1997; Deng et al. 1997; Chang et al. 1998; Liu et al. 1998;
Noble et al. 1998) and microcavity lasers (Frateschi and Levi 1995; Corbett
et al. 1996; Li and Liu 1996; Sakai and Baba 1999; Fujita and Baba 2001).
Here, a vast variety of approaches and methods have been tried: from
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analytical descriptions in simple geometries (Frateschi and Levi 1995; Chang
et al. 1998) to purely numerical ones with commercial FDTD solvers in the
case of complicated boundaries and host media (Li and Liu 1996; Sakai and
Baba 1999; Fujita and Baba 2001). Thorough inspection of these publica-
tions, however, reveals that all of them addressed the lasing indirectly, by
studying the frequencies and Q-factors of the natural optical modes (i.e.,
electromagnetic modes able to exist in the absence of excitation) of the
passive open resonators. FDTD studies are even further from the lasing
effect, as they need a transient source placed into the cavity and evaluate Q-
factors through the time-domain characteristics, instead of directly studying
the complex-valued natural frequencies.

Semiconductor microdisks with quantum wells or boxes are of interest as
potentially ultra-low-threshold laser devices. This is commonly attributed to
the small volume of the cavity. Microlaser designs based on high-reflectivity
WG modes around the edge of a thin semiconductor microdisk have been
studied since the early 1990s (McCall et al. 1991; Frateschi and Levi 1995;
Fujita et al. 1999). Here, the optical pump was normally arranged with a wide
external laser beam (McCall et al. 1991; Frateschi and Levi 1995), hence the
gain over the disk could be considered as uniform. The same, although less
justified, was assumed for the injection lasers (Fujita et al. 1999). Still sur-
prisingly, it appears that an accurate study of the circular-cavity lasing modes
is absent, as the simplified analysis of (Frateschi and Levi 1995) was based on
the rough assumptions, and FDTD simulations of (Fujita et al. 1999) dealt
with the time-dependent excitation problems. Therefore such a full-wave
Maxwellian analysis, within the 2D model, is our goal.

2. Eigenvalue problem formulation

The modes of a thin dielectric disk are complicated solutions to the 3D
Maxwell equations. However, if the disk thickness is only a fraction of the
wavelength the modes can be studied in the 2D formulation with the aid of
the effective refraction index. Here, the bulk refraction index is replaced with
the effective one, which depends on the material parameters, the thickness of
resonator and the frequency (Buus 1984). This enables us to consider the
lasing eigenvalue problem (LEP) for a circular resonator of radius a with a
uniform refraction index and gain all along the cavity (Fig. 1) as a 2D model
of the microdisk laser.

We look for the non-attenuating time-harmonic electromagnetic field
� expð�ikctÞ, k ¼ Re k > 0 in and out of a circular microcavity. Position in
the cavity is specified by the axial, radial, and azimuth coordinates, z, r, u.
We assume that the field does not vary along the z axis and can be charac-
terized by a scalar function U , which represents either Ez or Hz component
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depending on the polarization. Off the boundary, this function must satisfy
the Helmholtz equation:

½Dþ k2m2ðr;uÞ�Uðr;uÞ ¼ 0; ð1Þ

where step-wise function mðr;uÞ is assumed 1 outside the cavity and a com-
plex value inside: m ¼ aeff � ic, where aeff > 0 is the effective refraction index
and c > 0 is the material gain. The field must satisfy the continuity conditions
across the boundary of resonator:

U� ¼ Uþ;

oU�

or
¼ b

oUþ

or
;

ð2Þ

where b ¼ 1 if U ¼ Ez or b ¼ m�2 if U ¼ Hz, and U� ¼ Uða� 0;uÞ. In view
of the real value of the wavenumber k, we impose the Sommerfeld radiation
condition at infinity that selects outgoing field solutions:

lim
r!1

ffiffi
r

p
ik þ o

or

� �
Uðr;uÞ ¼ 0: ð3Þ

We shall consider the set of Equations (1)–(3) as an eigenvalue problem and
look for the eigenvalues as pairs of real-valued parameters, ðj; cÞ. The first of
them is the normalized frequency of lasing, j ¼ ka, while the second is the
threshold material gain.

This formulation is different from the ‘classical’ formulation of the
eigenvalue problem for an open cavity, when the complex-valued frequency k
is the eigenvalue parameter. In this case, the long-living natural oscillations
with the higher Q-factors (i.e., smaller jIm kj, Im k < 0) are of the main
interest; however the condition at infinity should be modified to permit the
field growing up at r ! 1. In the case of our formulation of LEP, there is no
need of such admission of non-physical behavior (Nosich 2002). Besides, the
threshold gain directly characterizes a laser operation while the Q-factor
makes this indirectly.

Fig. 1. Reduction of the disk electromagnetic problem to the 2D circular-cavity model.
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3. Numerical results and discussion

We shall study the simplest LEPs for the modes in the GaAS/InAs microdisk
assuming that the disk thickness is 200 nm and the lasing wavelength is
k ¼ 1550 nm. The effective refraction index is then 2.63 in the case of Hz

polarization and 1.31 in the case of Ez polarization. As the effective refraction
index of the Ez-polarized modes is only slightly greater than 1, the light
emitted from a microdisk is always coupled to the Hz-polarized modes
(Frateschi and Levi 1995). We shall consider both the Ez and Hz polarizations
in detail and obtain the lasing frequencies and thresholds of the corre-
sponding modes.

Separation of variables, assuming that Uðr;uÞ ¼ RðrÞUðuÞ, reduces the
Helmholtz equation (1) to two independent differential equations

d2R
dr2

þ 1

r
dR
dr

þ m2k2 � m2

r

� �
R ¼ 0; ð4Þ

d2U
du2

þ m2U ¼ 0; ð5Þ

where m ¼ 0; 1; 2; . . . and (4) is the Bessel differential equation.
Guided by these considerations and condition (3), we seek the field func-

tion as

U ¼ AJmðjmr=aÞ cosmu; r < a;
BH ð1Þ

m ðjr=aÞ cosmu; r > a:

�
ð6Þ

Therefore all the modes split into separate families according to the azimuth
index m. Then the boundary conditions (2) lead to a set of independent
transcendental equations for the eigenvalues in terms of the real and complex
argument cylindrical functions of the integer index:

JmðkamÞH 0ð1Þ
m ðkaÞ � bmH ð1Þ

m ðkaÞJ 0mðkamÞ ¼ 0: ð7Þ

We shall use another index, n ¼ 1; 2; . . . , to number the eigenvalues within
one family. We shall see that n will characterize the modal field variations
along the disk radius.

The theory of complex variables tells that the set of eigenvalues ðjmn; cmnÞ is
discrete; each of them may have only finite multiplicity; there are no finite
accumulation points of eigenvalues in the plane ðj; cÞ. Maxwell’s equations
guarantee that all cmn > 0 (Nosich 2002).
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Further we use 2-parametric Newton’s method to obtain the eigenvalues
numerically. Computation of the complex-argument Bessel functions pre-
sents no problem; this can be done with machine precision, for example, by
the inverse-recursion algorithm (du Toit 1993).

Figs. 2 and 3 show the found eigenvalue pairs in the plane ðj; cÞ within the
strip 0 < j ¼ ka < 13. One of the main points of the obtained results is that
each mth family of modes displays two different types of behavior depending
on the lasing frequency.

If m=a < ka < m, then the modes are the WG ones and have exponentially
small thresholds. This is explained by the quasi-total-reflection mechanism of
the WG mode field forming. It is seen that the higher the azimuth index m of
the lasing mode, the smaller the threshold gain. The smallest threshold in
each family is observed for the WGm1 mode, whose E-field has a single
maximum inside or near the cavity boundary. The type of the modal
behavior changes as ka approaches m. If ka > m, much larger values of cmn
are observed. Therefore we call corresponding modes as non-WG ones; in
this range, the thresholds are inverse proportional to the lasing frequencies.
In the case of the Ez polarization, all the thresholds of each mth family of
modes are nearly inverse proportional to the lasing frequency due to the fact
that the refractive index is only slightly greater than 1. For the very small
cavities, namely if ka < m=a, no lasing modes of the mth family can be found.

Each eigenvalue continuously depends on the refraction index a. As one
can see in Fig. 4, the thresholds and lasing frequencies get smaller with
greater values of a.

The modal field patterns of the circular microcavity are given by the
expression (4), where j ¼ jmn, m ¼ aeff � icmn and, A � Amn ¼ BH ð1Þ

m ðjmnÞ=
JmðjmnmÞ.

Fig. 2. Lasing spectra and thresholds of the Hz-polarized modes in a GaAs/InAs circular cavity.

MATHEMATICAL STUDY OF THE TWO-DIMENSIONAL LASING PROBLEM 217



Fig. 3. Lasing spectra and thresholds of the Ez-polarized modes in a GaAs/InAs circular cavity.

(a)

(b)

Fig. 4. Dependences of the characteristics of the WGEm1 (a) and WGHm1 (b) modes on the refraction

index a.
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Fig. 5 shows the near-E-field intensities of the non-WG and WG modes of
the both polarizations, for the mentioned GaAs/InAs disk. Once again one
can clearly observe the difference in the Ez and Hz-polarized modes due to the
different values of the effective refraction index.

Additionally, the cavity stability against the mode switching is a practically
important parameter in the laser design. This quantity is determined by the
relative threshold difference among the nearest modes. For example, for the
modes of the same mth family,

smn ¼ ðcmn � cmn0 Þ=cmn: ð8Þ

Fig. 6 shows stabilities for the modes of the several mth families of both
polarizations. The modes with n ¼ 1 are the most stable in the Hz polarization

Fig. 5. Near E-field patterns: (a) E1;1, ka ¼ 1:98, c ¼ 0:38, (b) E2;1, ka ¼ 2:9, c ¼ 0:28, (c) E5;1, ka ¼ 5:43,

c ¼ 0:14, (d) E10;1, ka ¼ 9:58, c ¼ 5:97� 10�2, (e) H1;1, ka ¼ 1:4, c ¼ 0:28, (f) H2;1, ka ¼ 1:8, c ¼ 0:2,

(g) WGH5;1, ka ¼ 3:2, c ¼ 9:3� 10�3, (h) WGH10;1, ka ¼ 5:4, c ¼ 2:1� 10�5.

Fig. 6. The cavity stability against the mode switching.
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while the less stable ones are those having jmn � m. In the case of the Ez

polarization the modes with n ¼ 1 loose stability with growing index m due to
the small index difference between the disk material and surrounding air.

4. Conclusions

We have studied the LEPs for the Ez and Hz-polarized modes in a circular
dielectric microcavity as the 2D model of a realistic GaAs/InAs microdisk
laser. This cold-cavity analysis has revealed that, unlike previously published
observations, not all the modes of the disk are automatically the WG ones.
More precisely, the free spectral range (the distance between the nearest
modes in frequency) is nearly the same for all modes of each mth family and
depends mainly on the cavity radius and its effective refraction index.
However, in terms of thresholds the WG and non-WG modes display very
different behavior. The WG modes, whose near-field patterns are governed
by the quasi-total-reflection mechanism, have exponentially small thresholds
getting down with the azimuth index m. Non-WG modes have drastically
higher thresholds coupled to the frequencies by a hyperbolic relation. The
ranges of the WG and non-WG mode spectra are approximately divided by
the value jmn � m, thus ma�1 < 2pak�1

mn < m for the WG modes and
m < 2pak�1

mn for the non-WG ones. In each mth family of the either polari-
zation, the WGm1 (n ¼ 1) mode is the most stable and has the lowest
threshold. In the range j < m=a, lasing modes are not found. Based on the
presented analysis, we can conclude that the ultra-low material-gain thresh-
olds of the Hz-polarized WG modes are explained by the almost total internal
reflection rather than only by a low volume of the laser cavity. Note that, as
our cavity is axially symmetric, all the orthogonal modes having m > 0 are
twice degenerate. In other words, optical modes with cosmu replaced with
sinmu in (6) have the same lasing spectra and thresholds.

Finally, we would like to emphasize that the thresholds obtained from the
LEP analysis cannot be simply transformed to the Q-factors or the radiation
losses (given by Im kmn) of the ‘classical’ eigenvalue problem. The reason is
that the parameter m is present not only in the Helmholtz equation (1), where
it enters as a product with wavenumber k, but also in the boundary condi-
tions (2). However, an ‘asymptotic’ observation takes place for the very high-
Q modes: the higher Q-factor, the lower the threshold.

References

Burak, D. and R. Binder. IEEE J. Quantum Electron. 33 1205, 1997.

Buus, J. IEEE J. Quantum Electron. 20 1106, 1984.

220 E.I. SMOTROVA AND A.I. NOSICH



Chang, K.Y., J. Woodhead and P.N. Robson. Appl. Phys. Lett. 72 335, 1998.

Corbett, B., J. Justice, L. Cosidine, et al. IEEE Photonic Technol. Lett. 8 855, 1996.

Deng, Q., D.G. Deppe, et al. IEEE J. Quantum Electron. 33 2319, 1997.

du Toit, C.F. IEEE Antennas Propag. Mag. 35 19, 1993.

Frateschi, N.C. and A.F. Levi. Appl. Phys. Lett. 66 2932, 1995.

Fujita, M. and T. Baba. IEEE J. Quantum Electron. 37 1253, 2001.

Fujita, M., A. Sakai and T. Baba. IEEE J. Select. Topics Quantum Electron. 5 673, 1999.

Hadley, G.R., et al. IEEE J. Quantum Electron. 32 607, 1996.

Li, B.J. and P.L. Liu. IEEE J. Quantum Electron. 32 1583, 1996.

Liu, G., J.-F. Seurin, et al. Appl. Phys. Lett. 73 726, 1998.

McCall, S.L., A.F. Levi, R.E. Slusher, et al. Appl. Phys. Lett. 60 289, 1991.

Noble, M.J., J.P. Loehr and J.A. Lott. IEEE J. Quantum Electron. 34 1892, 1998.

Nosich, A.I. Proc. Int. Conf. NUSOD, Zurich, 76, 2002.

Sakai, A. and T. Baba. J. Lightwave Technol. 17 1439, 1999.

MATHEMATICAL STUDY OF THE TWO-DIMENSIONAL LASING PROBLEM 221


