
Highly efficient design of spectrally engineered

whispering-gallery-mode microlaser resonators

S . V . B O R I S K I N A 1 * , T . M . B E N S O N 1 , P . S E W E L L 1 A N D

A . I . N O S I C H 2

1School of Electrical and Electronic Engineering, University of Nottingham, University Park, Nottingham

NG7 2RD, UK
2Institute of Radio Physics and Electronics of the National Academy of Sciences of Ukraine, Kharkov 61085,

Ukraine

(*author for correspondence: E-mail: eezsb@gwmail.nottingham.ac.uk)

Abstract. We present an accurate, reliable and versatile method for studying the effect of deformations on

the characteristics of the high-Q whispering gallery (WG) modes supported by two-dimensional dielectric

resonators (DR). An eigenvalue problem is formulated in terms of contour integral equations and further

discretised with the method of analytical regularisation. Such a procedure significantly reduces the number

of unknowns whilst providing high and controllable accuracy. Natural frequencies, Q-factors and field

patterns of elliptical, flower- and egg-shaped DRs are calculated. Methods to enhance the Q-factors,

provide directional light output, and parasitic mode suppression are discussed. The identification of WG

modes is simplified by the symmetrical/asymmetrical mode separation included into the formulation of the

problem and solution algorithm.
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1. Introduction

The ability to support high-Q whispering gallery (WG) modes has promoted
a widespread use of circular disk and cylindrical dielectric resonators (DRs)
in optical and microwave applications. The mechanisms that can affect the
high Q-factors of circular WG-mode DRs are intrinsic material absorption,
radiation loss caused by the DR surface roughness and shape deformations,
and coupling from the resonator to adjacent waveguides. Two classes of
shape deformations of DRs can be considered, distinguished by their origin.
The first class is deformations appearing during the fabrication, i.e., surface
roughness or an imperfect circular shape. The second class is deliberately
formed deformations in order to split, otherwise double-degenerate, WG
modes of circular DRs, to suppress parasitic (e.g., nonlasing) modes or to
enhance coupling with transmission lines. Furthermore, substantial devia-
tions from spherical or circular cylindrical symmetry can be introduced to
obtain directional emission from WG-type lasers.
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All WG modes of a circular DR are double degenerate due to the
symmetry of the resonator. Such modes have the same radial and azi-
muthal mode orders and the same resonant frequencies, but have diffe-
rent phases in the azimuthal direction. However, in practice, any
imperfection in the shape of the DR or the presence of mechanical supports
may remove this degeneracy and cause undesired coupling between such
modes. Therefore, special deformations of the symmetry have to be intro-
duced to distinctly separate the resonant frequencies of the degenerate
modes. The most common technique used to split degenerate modes is to
break the symmetry of a DR, i.e., to elongate one of the axes of the circle to
obtain either an elliptic or racetrack cross-section (Nöckel et al. 1994; Ko-
gami et al. 1996; Boriskina et al. 2000). Elliptic and racetrack resonators are
widely applied as bandstop and bandpass filters (Van et al. 2001), provid-
ing better coupling to optical waveguides due to the enlarged interaction
region.

However, improving lasing characteristics or rarefication of the dense
spectra of circular DRs not only requires separation of the degenerate modes
but also the suppression of other, parasitic, modes. This goal has been
achieved by making narrow sectorial cuts or inserts (Filipov et al. 1995),
cutting the edge of a DR (Heide et al. 1994), or by corrugating the rim of the
DR (Boriskina et al. 2000; Fujita and Baba 2001). Ring DRs, where all the
volume oscillations and WG modes with more then one radial field variation
are suppressed, find applications as filters and oscillators (Hagness et al.
1997; Boriskina and Nosich 1999). To couple light out of a WG-mode laser in
a preferred direction, gratings and small indentations on the circumference of
the DR are used (Levi et al. 1993). Another way to emit light in a certain
direction and pattern is to increase the radius of curvature of the DR at
certain points. This leads to the idea of egg-shaped (Levi et al. 1993) or fan-
shaped (Sakai and Baba 1999) DRs.

The deformations of DR briefly described above, range from small
contour imperfections, the effects of which can be studied by perturbation
theory (Leung et al. 1994), through to substantial shape modifications that
require more accurate treatment. Ray dynamics in highly asymmetric res-
onant cavities have been studied by Kolmogorov–Arnold–Moser theory in
(Nöckel et al. 1994). However, ray-optics models seem to be more appli-
cable to high-order modes of electrically large DRs, whereas in practice it is
the smaller DRs that are of more interest as these offer lower threshold
currents, stable single-mode operation, and compact optical designs. Ver-
satile numerical techniques such as FDTD, have been applied to single-
mode ring (Hagness et al. 1997), and rim-corrugated (Fujita and Baba
2001) DRs. Unfortunately, these require large computational and memory
resources, and staircasing errors, introduced by mapping the geometry onto
a discrete grid, can be significant for structures with many smooth corru-
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gations. Another idea exploited in some previous work is to expand the
field of a deformed DR in terms of the modes of unperturbed symmetric
resonator (Filipov et al. 1995; Kogami et al. 1996). However, if large de-
formations are considered, the modes of a deformed DR can substantially
differ from those of the circular one and such approaches can become
inefficient.

Hence, to study the modal spectra of a wide class of optical cavities with
arbitrarily smooth deformations from circular symmetry we apply an accu-
rate and efficient technique developed in (Nosich 1999; Nosich and Boriskina
2002). The technique is based on the formulation of an eigenvalue problem in
terms of singular contour integral equations (IEs), which are further cast into
the Fredholm second kind matrix form by means of the method of analytical
regularisation (MAR). At the core of the method lies the decomposition of
the original integral operator into the main part, which has an explicit
Fourier representation, and a remaining integral operator with a smooth
kernel. Then, by applying the method of moments procedure with angular
exponents as basis and trial functions, we obtain a discrete regularised
homogeneous matrix equation. Such a discretisation scheme can have arbi-
trarily high convergence rate on the analytical contours (Saranen and
Vainikko 1996). Although in the case under consideration here, the original
integral operators do not have such main parts, the decomposition can ac-
tually be achieved by adding and subtracting an operator with the desired
properties. The natural choice for a convolution part of the integral operator
is the same operator defined on the circular contour as the scattering problem
for a circular DR which has a well-known analytical solution in terms of
series of cylindrical functions.

In (Nosich and Boriskina 2002) the MAR has been applied to a problem of
a plane wave scattering from elliptical and super-elliptical dielectric cylinders,
and the merits of the algorithm have been demonstrated. In this paper, we
apply such a technique to searching for the natural frequencies of deformed
optical cavities. Unlike a scattering problem, here the final matrix equation is
a homogeneous one with solutions only existing for certain allowed values of
the frequency parameter. These values are the natural frequencies of WG
modes being sought. However, the problem must now be formulated in the
complex domain, since all the modes of open DR are characterised by
complex-valued natural frequencies. This reflects the fact that such modes
lose energy due to evanescent leakage out of the DR. A further novel feature
of the present approach is in accounting for degenerate mode splitting in
deformed DRs by solving the determinantal equations for symmetrical and
antisymmetrical modes separately. The complex natural frequencies of
several interesting DR designs for practical applications are considered and
the physical mechanisms of mode splitting, nonlasing modes damping, and
directional light coupling out of DRs are discussed.
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2. Outline of the computational technique

2.1. EIGENVALUE PROBLEM FORMULATION

The simplest and the most common WG-mode DR is a circular cylinder or
disk made of low-loss dielectric where the light is confined due to the total
internal reflection mechanism. Such resonators are characterised by high Q-
factors and find numerous applications in optoelectronic and microwave
technology, spectroscopy, and metrology. Due to the spatial symmetry of the
circular resonator, the wave equation describing its modes can be solved
analytically with the separation of variables. Circular WG mode DRs sup-
port a series of WGH�

mn or WGE�
mn resonances where the principal field

component lies in the plane of the DR cross-section. The subscripts n and m
denote the number of azimuthal and radial variations of the mode field,
respectively. All the WG modes are double degenerate due to the DR sym-
metry, which corresponds to a cos(nu) or sin(nu) angular field dependence.
These two different relative phases of the same mode are denoted by the
superscript ±. However, the modes of deformed DRs have to be found by
means of numerical techniques.

A dielectric cylindrical resonator with an arbitrarily smooth deformation
from the circular cross-section is depicted in Fig. 1. The contour of the
resonator is described by a smooth 2-D closed curve L, which can be pre-
sented in the parametrical form as follows:

L : x ¼ alrðtÞ cos t; y ¼ arðtÞ sin t; 0 � t � 2p: ð1Þ

Here, a is the characteristic size of the resonator and l is an elongation
parameter along the x-axis. To make the following analysis complete and

Fig. 1. Geometry of the deformed DR and its analytically solvable circular counterpart as well as a

definition of the coordinate system used.
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general, material absorption loss is taken into account ðe ¼ e0 þ e00Þ as well as
leakage of the field into the outer space.

The total field can be represented as a single scalar function U describing
the z-component of the electric or magnetic field, depending on the polari-
sation and which should satisfy the Helmholtz equation in every region,
together with continuity conditions across the resonator contour and the
conditions at infinity. Expressing the fields inside and outside the DR in
terms of single-layer surface potentials over the DR contour (Colton and
Kress 1983) and following the technique of (Nosich and Boriskina 2002), the
eigenvalue problem can be formulated in terms of two coupled IE for the
unknown surface potential densities

Z2p

0

uðtsÞGeðt; tsÞLðtsÞdts �
Z2p

0

wðtsÞGðt; tsÞLðtsÞ dts ¼ 0; ð2Þ

uðtÞ
2aEðHÞ þ

wðtÞ
2

þ 1

aEðHÞ

Z2p

0

uðtsÞ
o

on
Geðt; tsÞLðtsÞ dts

�
Z2p

0

wðtsÞ
o

on
Gðt; tsÞLðtsÞdts ¼ 0: ð3Þ

Here, uðtÞ and wðtÞ are the unknown potential density functions; Ge is
Green’s function of the homogeneous medium with permittivity e, G the free-
space Green’s function; aE ¼ 1; aH ¼ e; LðtÞ is a Jacobian of the parametric
curve describing the DR contour. The 2-D Green’s functions in kernels of the
IEs have logarithmic singularities at t ! ts, whereas their normal derivatives
have finite limit values at t ! ts on contours with a continuous curvature.
The presence of these singularities makes a direct discretisation of IEs (2), (3)
ineffective. To avoid the singularities, we exploit the fact that Green’s func-
tions and their derivatives for the case of a circular DR of radius b have the
same set of orthogonal eigenfunctions: feimtg1m¼�1. Therefore, adding and
subtracting these circular-shape kernels to the actual kernels of the arbitrary-
shape IEs, and using the exponents as an infinite global basis in Galerkin’s
scheme results in a regularised Fredholm second kind block-matrix equation
for the Fourier coefficients

aEðHÞumH
e
mJ

e
m � wmHmJm þ

X1
n¼�1

ðAmnun � BmnwnÞ ¼ 0; ð4Þ

kb
ffiffi
e

p
umH

e
mJ

e0
m � kbwmH

0
mJm þ

X1
n¼�1

ðCmnun � DmnwnÞ ¼ 0; m ¼ 0;�1;�2; . . . ;

ð5Þ
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where Jn ¼ JnðkbÞ, J e
n ¼ Jn kb

ffiffi
e

p
ð Þ, Hn ¼ H ð1Þ

n ðkbÞ, H e
n ¼ H ð1Þ

n kb
ffiffi
e

p
ð Þ are the

Bessel and Hankel functions, respectively; um and wm are the Fourier coef-
ficients of the potential density functions; and Amn–Dmn are the Fourier co-
efficients of the integral operators A–C defined as differences between the
values of the operators on the original contour L and on the circle of radius
b, respectively.

It can be proven (Saranen and Vainikko 1996; Nosich and Boriskina 2002)
that all the discretised operators are compact on smooth contours and that
the algorithm converges exponentially with respect to truncation number N
of the matrix. If, however, the DR contour L has sharp corners, then matrix
operators C and D loose compactness. Therefore, the application of the
method is limited to smooth contours. This restriction does not mean that
smooth bends or points of high however finite curvature are prohibited.
Another limitation of the method is that a DR contour L should be described
by a single-valued parametrical function, i.e., it is applicable to star-like
shapes only. Thus, the method can still be successfully used to study natural
frequencies of polygonal DRs with rounded convex or concave corners with
high and controlled accuracy.

2.2. CALCULATION OF RESONANCE FREQUENCIES

Almost every practical resonator has symmetry of some kind. All DRs
considered in this paper are symmetrical about the x-axis. The modes of such
resonators are either symmetrical or asymmetrical about this axis. Thus,
modal fields can be expanded in terms of either sines or cosines. Such a
consideration allows us to split the problem into two uncoupled matrix
equations, thus reducing the computational complexity of the algorithm and
simplifying the mode identification. After the discretisation, the sine and
cosine expansions of the density functions yield two systems of linear
homogeneous algebraic equations

X1
n¼0

ðdmn þ CmnÞxcn ¼ 0;
X1
n¼1

ðdmn þ SmnÞxsn ¼ 0; ð6Þ

where Cmn and Smn are block moment matrices and xcðsÞn are column vectors
containing the nth Fourier coefficient of the potential densities. The matrix
equations (6) have nontrivial solutions only when the determinants of the
matrices are zero

detðdmn þ CmnÞ ¼ 0; detðdmn þ SmnÞ ¼ 0: ð7Þ

Equations (7) are solvable only at discrete complex values of the dimen-
sionless parameter ka ¼ f þ iw, where k is the free-space wavenumber. In the
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further discussion, we shall call the real part of the complex natural fre-
quency, f, a resonant frequency, and the imaginary part, w, a resonance
width. We assume the time dependence as expð�ixtÞ and thus w can have
only negative values. The search of the roots of Equations (7) has been
performed in the complex plane of the parameter ka by means of the Powell
hybrid method (Press et al. 1986), thus providing information for resonant
frequencies and quality factors of the DR modes:

Q ¼ �f =2w: ð8Þ

After the complex natural frequency is found, the near-field pattern can be
calculated within a multiplicative constant. Although in practice the matrices
used in Equation (7) are truncated, the analytical regularisation procedure
reduces the impact of this and the method shows guaranteed and fast con-
vergence with increasing truncation number.

2.3. CONVERGENCE AND ACCURACY OF THE ALGORITHM

Table 1 gives information on the numerical algorithm stability, accuracy, and
efficiency of the method just described. It can be seen that the size of the DR
and especially the smoothness of its contour affect the accuracy of the
computations and, hence, the CPU time and memory requirements. The
method works better for smooth contours like ellipses, and requires greater
computational effort for the curves with higher curvature variations. Fur-
thermore, the larger the size of the resonator, the greater the number of
unknowns required to achieve the same level of accuracy. High accuracy is
required if one is interested in both the resonant frequency and the quality
factor. If, however, only resonant frequencies are of interest, the CPU time
can be significantly smaller.

Table 1. Computational information

Shape l d N ErrI ErrR Mem CPU

Ellipse 1.1 11 4.27e-5 2.92e-9 2.0 5

WGH6,1 1.5 13 9.99e-5 5.07e-8 2.05 5

Ellipse 1.1 17 9.85e-5 5.99e-9 2.1 6

WGH11,1 1.5 21 1.61e-5 4.64e-9 2.15 6

Egg 1.1 48 9.26e-5 4.49e-8 2.55 15

WGH11,1 1.5 55 3.74e-5 1.88e-9 2.6 15

Flower 1.0 0.05 53 2.25e-4 2.29e-6 4.4 54

WGH6,1 1.0 0.2 78 9.51e-4 4.57e-6 4.45 56

l – DR elongation along x-axis; d – corrugation depth; N – total number of unknowns; Err – relative

error; ErrR ¼ jf ðNÞ � f ðN � 1Þj=f ðNÞ, ErrI ¼ �jwðNÞ � wðN � 1Þj=wðNÞ; CPU – CPU time per iteration,

s; Mem – memory requirements, Mb.
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All computations have been done with double precision on a 1.0 GHz PC
with 128 Mb of RAM. For a more detailed analysis on the uniqueness and
convergence properties of the algorithm the reader is referred to (Nosich and
Boriskina 2002). However, due to the separation of modes with different
symmetry, here we have to solve matrices that are half the size of those in
(Nosich and Boriskina 2002). Moreover, it should be noted that due to super-
convergence of the trigonometric projection methods (Chatelin 1981), the
rate of convergence of eigenvalues is twice that for the scattering or eigen-
vector problem solution.

3. Deformed optical cavities design

3.1. SPLITTING OF DEGENERATE MODES

In the following sections, we demonstrate the applicability of the algorithm
developed to study the characteristics of several practical resonator designs.
First, we consider an elliptical resonator (rðtÞ ¼ 1) as the simplest example of
a deformed DR. Fig. 2 shows the dependence of the resonant frequencies and
Q-factors of two split WGH�

6;1 (a) and WGH�
11;1 (b) modes on the DR

elongation. One can see that the increase of the ellipse aspect ratio shifts the
resonance frequencies and spoils the Q-factors of the WG modes.

Electric field distributions for WG modes of two different orders and
symmetries are plotted in Fig. 3. For both resonances the main part of the
leakage occurs in the regions around the points u ¼ 0 and u ¼ p, which has
been previously observed by (Nöckel et al. 1994; Kogami et al. 1996).
However, unlike for very-high-azimuthal order WG modes in large optical
DRs studied in (Nöckel et al. 1994), a distinct difference in the directional
emission patterns can be observed for modes of different symmetry. Com-
paring the intensity patterns in Fig. 3(a) and (b) and Fig. 3(c) and (d), it can
be noted that deformations of the same magnitude affect the lower-azi-
muthal-order modes more than the higher-order ones. Thus, low-azimuthal-
order WG modes can only survive in those DRs that are only slightly de-
formed from a circle. If the deformation is increased further, the Q-factors of
the WG modes decrease dramatically (Fig. 2a) due to increased leakage out
of DR. The higher-azimuthal-order modes demonstrate better confinement
and therefore can still survive even in DRs with severe deformations from
circular symmetry (Fig. 2b).

Furthermore, it can be clearly seen that efficient splitting of high-order WG
resonances does not occur for small or moderate DR deformations. How-
ever, for the more significant shape deformations, the Q-factors of both
symmetrical and antisymmetrical modes are damped to a very low level. This
reduces efficient practical applications of a resonator operating on such
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modes. The next section offers an analysis of another promising design of a
deformed DR, which provides a more efficient way to separate the WG
modes.

3.2. SUPPRESSION OF PARASITIC MODES

The spectrum of WG modes in circular DRs is very dense. The existence of a
large number of high-order modes affects the efficiency of filtering and lasing
operations. As was shown in the previous example, symmetrical deforma-
tions (elliptical, quadrupolar, etc.), affect all the modes of DR. Therefore,
they cannot be effectively used to widen a parasitic-mode-free range of WG-
mode DRs. To suppress parasitic modes without disturbing the preferred
operational ones, it is desirable to introduce a deformation that is tailored to

Fig. 2. Resonant frequencies and Q-factors of WGH�
6;1 (a) and WGH�

11;1 (b) modes of the elliptical DR

versus the elongation parameter l (e ¼ 10þ i10�3Þ.
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account for the different field distributions of the modes. One of the popular
approaches to achieve such a goal is to make a narrow sectorial cut in the DR
(Filipov et al. 1999). Another design that has recently been suggested is a
corrugated disk resonator with a grating of the same period as that of the
azimuthal field variation of the lasing mode (Boriskina et al. 2000; Fujita and
Baba 2001). Such a design provides splitting of a degenerate resonance and
suppression of only one of two modes.

In contrast to the rectangular grating proposed in (Fujita and Baba 2001),
here we study a smooth cosinusoidal corrugation of the resonator rim
(flower-shape DR). A smooth contour corrugation fits more closely the WG
mode field pattern and seems to be more attractive for fabrication purposes.
The contour of the flower-shape resonator can be described by the following
parametric function: rðtÞ ¼ ð1þ d cos mtÞ, where m is the number of the cor-
rugations along the contour of DR and d is the corrugation depth.

Fig. 4 shows the dependence of the resonant frequencies and Q-factors of
the WGH�

6;1 modes on the corrugation depth, d. The corrugation period is
chosen so that the number of maxima in the intensity pattern of the lasing
mode is equal to the number of flower petals. The antisymmetrical WGH�

6;1

mode is considered a parasitic one, and therefore is to be suppressed. Fig. 5
demonstrates the field profiles of the lasing, WGHþ

6;1, and parasitic, WGH�
6;1,

modes. It can be seen that the lasing mode has maxima of the field in the
convex regions of the DR contour and practically is not disturbed by such a

Fig. 3. Near-field intensity patterns of WGH�
6;1 (a,b) and WGH�

11;1 (c,d) modes in the elliptical DR with

parameters: l ¼ 1:2, e ¼ 10þ i10�3.
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deformation. The effective DR radius for such a mode is increased and,
therefore, its resonant frequency drops (Fig. 4). At the same time, the reso-
nant frequency of the parasitic mode with different symmetry rises due to the
decreased effective radius. Furthermore, the radiation loss is greater for the
parasitic mode with maxima in the concave regions, which causes a damping
of the mode quality factor. The most interesting fact is that the Q-factor of
the lasing mode is not only unspoiled but even increased in the 0–30% range
of the contour deformation. Thus, an efficient mode separation together with
suppression of the parasitic mode and enhancement of the operational one
can be achieved by corrugating the DR contour in a specific pattern ac-
cording to the azimuthal order of the resonance.

Fig. 4. Resonant frequencies and Q-factors of WGH�
6;1 modes of the flower-shaped DR versus the cor-

rugation depth d. (e ¼ 10þ i10�3, m ¼ 12).

Fig. 5. Near-field intensity patterns of WGH�
6;1 modes in the flower-shape DR with parameters: m ¼ 12,

d ¼ 0:05, e ¼ 10þ i10�3.
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However, the spectrum of DR also includes modes of higher radial orders.
The natural frequencies of these modes are also affected by the DR con-
tour corrugation and can be shifted into the close vicinity of the lasing
mode. This can cause a coupling between the first and higher-radial-
order modes (Levi et al. 1993). Moreover, the Q-factors of higher-radial-
order modes are spoiled less by the contour deformations than Q-factors
of the first-order ones because they are not closely confined to the peri-
meter of the resonator (Hagness et al. 1997). An efficient approach to sup-
press such modes and to rarefy the spectrum of the DR, is to make a hole in
the central part of resonator. First-radial-order WG modes are characterised
by a strong energy confinement within a small region between the outer rim
and inner caustic and therefore are not affected (Hagness et al. 1997; Bo-
riskina et al. 1999). Thus, we believe that a ring resonator with a corrugated
outer rim will provide effective suppression of all the parasitic nonlasing
modes.

3.3. DIRECTIONAL EMISSION

Another problem arising in the practical design of microdisk lasers is the
extraction of the light with a strong spatial directionality. For large semi-
conductor WG-mode lasers directional light output can be achieved by
means of Y-couplers or cleaved facets. Unfortunately, fabrication of such
output couplers for microdisk lasers presents a fabrication challenge (Levi
et al. 1993). An egg-shape DR can be used to provide a directional coupling
of WG mode out of the microdisk laser. The egg-shape is obtained by
elongating one of the axes of a circle in one direction only: rðtÞ ¼ 1,
�p=2 � t � p=2; rðtÞ ¼ 1=l, p=2 � t � 3p=2. The orientation and intensity of
radiation can be controlled by changing the DR elongation parameter.

Fig. 6 presents the resonant frequencies and Q-factors of the WGH�
11;1

modes of the egg-shape DR as a function of the elongation parameter l. It
can be noted that the splitting of the WG mode occurs for smaller defor-
mations than in the case of the elliptical DR. Moreover, the Q-factors of the
modes decrease at a higher rate, which suggests more intensive leakage of the
modal energy out of the egg-shape DR. Fig. 7 shows directional emission
patterns of symmetrical and antisymmetrical WGH�

11;1 modes of the egg-
shaped resonator. From the ray-optics point of view, light confined in the
resonator by a total internal reflection mechanism is more likely to escape at
the regions of higher curvature of the DR contour. For the egg-shape, the
region of the highest curvature is located near the point u ¼ 0. However, one
can see that a directional beam in the positive direction of x-axis forms only
for a symmetrical WG-mode. Apart from this beam, the emission patterns of
both modes consist of several directional beams going in approximately the
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same directions. This important property of such a resonator can be useful
for the designs of multimode lasers.

4. Conclusions

An efficient method of calculating natural oscillations in DR deformed from
circular symmetry has been presented. The approach is based on the contour
IE formulation and the procedure of analytical regularisation applied to IEs.
The final, fully discrete, scheme is proven to be stable and to have a very high
convergence rate. Thus, the number of the unknowns required to reach a
desired accuracy is significantly smaller than that of the conventional MoM,
finite-difference or finite-element methods. The computational complexity
of the algorithm was further reduced by solving the eigenvalue problems

Fig. 6. Resonant frequencies and Q-factors of WGH�
11;1 modes of the egg-shaped DR versus the elon-

gation parameter l. (e ¼ 10þ i10�3).

Fig. 7. Near-field intensity patterns of WGH�
11;1 modes in the egg-shaped DR with parameters: l ¼ 1:4,

e ¼ 10þ i10�3.
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separately for the WG modes symmetrical and antisymmetrical with respect
to the y-axis of the resonator. Such a procedure also simplifies the identifi-
cation of WG modes. Our results show that the approach presented is very
fast and economic in terms of computer resources. It enabled us to achieve
very accurate solutions to a variety of eigenvalue problems on a desktop PC
in reasonable amounts of time.

We have demonstrated on a number of practical examples that our ap-
proach can be successfully applied to study the dielectric microcavities and to
the design of novel structures with improved characteristics. The shift of
resonant frequencies and degradation of Q-factors of WG modes due to
various deformations of DR contour was observed and we studied the
characteristics of several spectrally engineered DR designs that enable one to
improve the performance of microlaser resonator or to obtain a directional
emission pattern.

The method is directly applicable to calculating threshold currents of WG
modes, including field sources in the analysis (Nosich and Boriskina 2002),
and can be generalised to consider a multilayered environment similar to
(Boriskina and Nosich 1999). Furthermore, the method allows studying of Q-
spoiling and shifting of WG-modes due to the DR sidewall roughness caused
by the finite fabrication precision.
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(*) The field representation in terms of only the single-layer potentials that lead to IE (2), (3) is not the most general one. The same is true for the representation 
in terms of only the double-layer potential. Either of these representations leads to the appearance of the spurious (real-valued) eigenvalues of resulting IE that 
spoil the algorithm because the IE condition number has poles at the spurious-eigenvalue frequencies. The lowest of them, as can be easily found, lies near to 
the value where the largest "diameter" of the scatterer equals to one-half of the free-space wavelength. The severity of assocoated numerical error depends, 
however, on the details of the IE discretization scheme used. 

In the wave-scattering problems, if it is a MAR-based scheme as in the current paper then the error is inacceptably large only in the domain whose width is of 
the same order as MAR's error and can be squeezed to machine-precision width by taking the matrix truncation order larger. However if the IE is discretized 
using a rougher scheme like a BEM or Galerkin MoM with local basis functions, then the domains of huge errors are much wider and overlap one another at the 
frequencies slightly larger than the first spurious-eigenvalue frequency. This makes any computations with such an algorithm completely senseless. 

In the eigenvalue problems, the existence of real-valued spurious eigen-frequencies spoils the search for the complex-valued eigen-frequencies that may lay in
the vicinity of a spurious frequency, i.e. those that have small imaginary parts or high Q-factors. For the frequencies that have considerable imaginary parts, the 
presented here algorithm works out quite well. Unfortunately, the modes with high Q-factors, like WGM modes, are the most interesting and important for
applications in lasing and sensing.

The full remedy is the use of the Muller IE which is completely equivalent to the original boundary-value problem and thus free of spurious eigenvalues.
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