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The lasing spectra and thresholds of a selectively pumped photonic molecule composed of two microdisks is in-
vestigated using effective index approximation and full-wave 2-D electromagnetic equations. The lasing eigenvalue
problem formulation is used to find modal frequencies and threshold values of material gain. The influence of the
optical coupling between active and passive microdisks on the lasing eigenvalues and directionalities of emission is
studied. It is shown that for strong coupling the effect of making one of the resonators passive leads to the doubling of
the threshold. © 2013 Optical Society of America
OCIS codes: (140.0140) Lasers and laser optics; (140.3560) Lasers, ring; (140.3945) Microcavities; (140.3410)

Laser resonators.
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Optically coupled passive microcavities, also called pho-
tonic molecules (PMs), and their active counterparts, PM
microcavity lasers, keep attracting the attention of both
experimentalists and researchers engaged in their mod-
eling and simulation [1–12]. The reason for this is a hope
to achieve efficient power combining and overall im-
provement of performance needed in high-density pho-
tonic integrated circuits. The simplest configuration of
this sort is a pair of identical microdisks. If pumped, they
display the lasing on coupled optical modes (also called
supermodes) of different classes of symmetry [3–6].
To extract lasing frequency spectra and thresholds, a

specifically tailored lasing eigenvalue problem (LEP) was
proposed earlier [4,13,14]. In [4], we studied the LEP for a
PM formed by a pair of optically coupled identical active
microdisks with uniform gain supporting the whispering-
gallery (WG) modes. It was found that the threshold of
lasing for each supermode might be lower than for a
similar WG mode in a single microdisk. Later this study
was extended to cyclic photonic-molecule lasers made of
circular cavities [5], where an even larger threshold
reduction was found.
In this Letter we present some results of the LEP analy-

sis of a PM composed of one active and another passive
microdisk of the same diameter a and refractive index α,
as shown in Fig. 1. Such a configuration can be obtained
either if only one disk contains quantum wells or electro-
des or is doped with erbium, or if optical pumping is done
with a focused beam illuminating only one of two disks.
Our goal is a study of the effect of optical coupling on the
thresholds and directionalities of emission. Note that this
analysis is completely out of reach for the conventional
Q-factor study of a passive PM cavity.
Suppose that only the right-hand disk (No. 1) is active

and has uniform bulk material gain, γ > 0, so that its com-
plex refractive index is ν1 � α − iγ, while ν2 � α, and the
host medium is air. Separation between the disks is
denoted w, time variation is exp�−iωt�, free-space wave-
number is k � ω∕c � 2π∕λ, and λ is the wavelength.
Assume that the dimensionality of the modeling

has been already reduced from 3-D to 2-D using the

effective-refractive index approximation, as is usual for
thin flat dielectric cavities. In 2-D, one can treat two
polarization states separately with the aid of a function
U , which is either Ez- or Hz- field component. The LEP
statement implies (see [14]) that U must satisfy the Helm-
holtz equation with corresponding coefficients in each
material domain. At the disk rims, tangential components
continuity conditions are imposed. In addition, the condi-
tion of the local power finiteness is to be satisfied. Con-
sidering the LEP, we look for two real numbers, κ � ka
and γ. The first of them is the normalized frequency, while
the second is the threshold material gain needed to make
k real. Thanks to the real-valued k, we stipulate that U
obeys the usual 2-D Sommerfeld radiation condition at
�x; y� → ∞ and thus does not diverge at infinity. Each
eigenvalue depends on the separation w and refractive
index α in continuous manner on the plane �κ; γ�.

The geometry in Fig. 1 has one line of symmetry that
is the x axis. Therefore all possible field functions split
to two different independent classes of symmetry with
respect to that axis. Taking into account local power
finiteness, we expand the field function inside cavities
in the local polar coordinates �ρ1;2;φ1;2� as

U1;2�ρ;φ��
X∞

p��0�1
A1;2
p Jp�kν1;2ρ1;2�Sp�ϕ1;2�; ρ1;2;<a; (1)

Fig. 1. In-plane geometry of two optically coupled circular
disk microresonators, active (right) and passive (left).
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where Jm is the Bessel function, and Sp�φi� � cos pφi
for the x-even modes and sin pφi for the x-odd modes.
In free space, the field function is a superposition of
expansions generated by both resonators

U�ρ;φ� �
X∞

p�0�1�
B1
pH

�1�
p �kρ1�Sp�φ1�

�
X∞

p�0�1�
B2
pH

�1�
p �kρ2�Sp�φ2�; (2)

where H�1�
p is the Hankel function of first kind.

Then the substitution of Eqs. (1) and (2) into the
boundary conditions, use of the Graf addition theorems,
and rescaling of unknown coefficients as xm �
A1
mFm�κ; ν1�Jm�κ�, and ym � A2

mFm�κ; ν2�Jm�κ�, where

Fm�κ; νj� � Jm�κνj�H 0�1�
m �κ� − νjβ

E;HJ 0
m�κνj�H�1�

m �κ� (3)

and βEj � 1, βHj � ν−2j , leads to the matrix equations

x�m�
X∞

p�0�1�
μpy�p Kmp�κ;ν2��H�1�

m−p�κl���−1�pH�1�
m�p�κl��� 0;

(4)

y�m�
X∞

p�0�1�
μpx�p Kmp�κ;ν1��H�1�

m−p�κl���−1�pH�1�
m�p�κl��� 0;

(5)

where the upper indices � and − correspond to the
x- even and x-odd mode classes, respectively, l �
2�w∕a is the normalized distance between the centers
of resonators, μ0 � 1∕2, μp>0 � 1 and

Kmp�κ; νj� � Jm�κ�Vp�κ; νj��Fp�κ; νj�Jp�κ��−1; (6)

Vm�κ;νj��Jm�κνj�J 0
m�κ�−νjβE;Hj J 0

m�κνj�Jm�κ�; j�1;2;

(7)

where the prime denotes differentiation in argument.
In thin disks, Ez-polarized modes have much smaller

effective refractive indices than the Hz-polarized ones
and hence much higher thresholds. Therefore we will
further concentrate our analysis on the Hz-polarized
modes.
The search for the LEP eigenvalues is reduced to

finding the zeros of determinants of Eqs. (4) and (5) trun-
cated to the order N . Note that the cylindrical functions
in Eqs. (4) and (5) can be calculated to machine preci-
sion. As the equations obtained are the Fredholm
second kind matrix equations, the accuracy of finding
the eigenvalues is controlled by N , and the convergence
to exact eigenvalues is guaranteed if truncation num-
ber N → ∞.
As for the twin-disk PM laser (see Figs. 4 and 5 of [4]),

to achieve a practical accuracy of 4 or 5 digits one needs

a few more equations than the resonator’s optical size,
kaα. As an initial guess we took the values for κ and γ
in a single active resonator and then used a two-
parameter secant-type iterative method [4].

In Fig. 2, we present the dependences of the lasing
frequencies and thresholds on the separation parameter,
w∕a, four supermodes of two classes built on the �Hz�7;1
modes in each cavity. If the separation w becomes
smaller than ∼0.7a, then the modes obtain the same fre-
quency shifts as in a twin-disk PM laser, with their thresh-
olds being twice higher than in the twin-disk laser (not
shown here). This behavior is in full agreement with
the findings of [14]: if w∕a < 0.7, then the gain-field over-
lap coefficients are twice smaller than in a twin-disk PM
laser studied in [4].

If w is becoming larger, then both κ and γ tend to the
one-disk values (black lines) because the field in the pas-
sive disk fades off. In Fig. 3, we present the fading factor,
F , which is the ratio of the maximum value of jHzj inside
the passive resonator to the maximum value inside the
active one. Note that F ≈ 0.5 even if w ≈ a.

Near fields of two supermodes of the types
x-odd∕y-quasi-even (OqE) and x-even∕y-quasi-odd (EqO)
are shown in Fig. 4 for a relatively large separation value,
w∕a � 1.75, corresponding to the arrows in Figs. 3 and 4.
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Fig. 2. Threshold values of material gain and the normalized
lasing frequencies (inset) for the Hz-polarized supermodes of
the family �Hz�7;1 versus the relative distance,w∕a, between mi-
crodisks; α � 2.63 and N � 70.
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Fig. 3. Fading factors F for the Hz-polarized supermodes built
on the WG modes �Hz�7;1 versus the relative distance, w∕a,
between microdisks; α � 2.63 and N � 70.
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The other important parameter in applications of las-
ing is the directionality of emission. This quantity can
be characterized using the directivity borrowed from
antenna theory (see [4] for its definition). In Fig. 5, we
present the plots of the directivities of the same four
supermodes as in Figs. 2 and 3. They show that the direc-
tivity of emission can be several times higher than for a
single-disk laser value of 2. The maximum values are
found for rather closely spaced microcavities, i.e., when
both active and passive microcavities shine brightly. The
corresponding near and far fields are presented in Fig. 6
and show a noticeably smaller number of comparable
beams of emission than those in Fig. 4. Note that the most
directive supermode of the x-even family EqO has one
main beam of emission along the line of symmetry and
seven smaller intensive sidelobes. All x-odd modes have
a minimum two identical main beams.
The presented results highlight the role of the overlap

between the active region and the modal electric field, in
the control of the lasing threshold, and have predictive
power. Indeed, suppose that we have a cyclic PM of

M identical strongly coupled cavities; however, only
M1 of them are pumped.

Then one can foresee that the mode thresholds will be
M∕M1 times higher than for a uniformly pumped PM. This
effect can be helpful in the engineering of thresholds of
lasing with the aid of selective pumping of individual
cavities in PM microlasers [3].

This work was supported, in part, by the National
Academy of Sciences of Ukraine via the State Target
Program “Nanotechnologies and Nanomaterials.”
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Fig. 4. Near- and far-field patterns jHzj for the Hz-polarized
supermodes of the OqE (a) and EqO (b) types, built on the
WG modes �Hz�7;1 for widely spaced microdisks, w∕a � 1.75.
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Fig. 5. Directivities for the Hz-polarized supermodes built
on the WG modes �Hz�7;1 versus the relative distance, w∕a,
between microdisks; α � 2.63 and N � 70.
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Fig. 6. Near- and far-field patterns jHzj for the Hz-polarized
supermodes of the OqE (a) EqO (b) types, built on the WG
modes �Hz�7;1 for closely spaced microdisks, w∕a � 0.57.
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