
that the SHB effect of the RIM]DFB laser is much smaller
than that of the QWS]DFB laser.

IV. SUMMARY

In conclusion, we have proposed a new structure for reducing
the spatial hole-burning effect by introducing a different
refractive index in the center region of the upper cladding
layer. This structure has two effects. One is the distributed
effective phase shift effect that reduces the SHB effect, and
the other is the distributed coupling coefficient effect that
enhances the single-mode gain difference. We have calcu-
lated the above-threshold characteristics of the proposed
structure, and have compared them with those of other
structures. The normalized single-mode gain difference of the
RIM]DFB laser is larger than that of the CPM]DFB laser
over the whole range of injection current due to a distributed
coupling coefficient effect. The variation of the lasing wave-
length of the RIM]DFB laser as a function of injection
current is small compared to that of the QWS]DFB and the
CPM]DFB laser. The length of the center region that en-
ables large normalized single-mode gain difference at a high
injection current is calculated to be 0.2]0.4 of the total cavity
length.
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ABSTRACT: A mathematically accurate method of analysis of a spheri-
cal-disk antenna conformally printed on a dielectric-cö ered metallic
sphere is presented. The antenna is fed by a radial coaxial probe
simulated by an electric dipole. The solution consists of reducing the
boundary-̈ alue problem to the dual-series equations, and further to a
regularized infinite-matrix equation. This procedure is based on the
analytical in¨ersion of the static part of the problem of a disk in free
space, and results in a stable and fast algorithm with a guaranteed
con¨ergence. Numerical data on the basic antenna characteristics are
presented. Q 2000 John Wiley & Sons, Inc. Microwave Opt Technol
Lett 26: 176]182, 2000.

Key words: spherical disk; conformal antenna; dual-series equations;
analytical regularization; directï ity

1. INTRODUCTION

Metallic circular disks printed on dielectric substrates are
used frequently in patch antenna technology. Conformal
printed antennas are necessary in automotive and airborne
communications and radar due to their low profile and light
weight. In this paper, the problem of modeling of a
spherical-disk conformal printed antenna is considered as-
suming an excitation by a coaxial probe. The probe is mod-

Ž .eled by a radial electric dipole RED located at the surface
of the metal sphere covered with dielectric. From a theoreti-
cal point of view, such a geometry is a canonical one for a
wide class of conformal patch antennas. Previously, similar
problems have been analyzed by direct applications of the

w xmethod of moments 1, 2 . However, convergence of these
numerical approximations is not uniformly guaranteed, espe-

w xcially if narrow resonances are present 3 . Patch antennas
are essentially resonant devices; hence, this must be kept in
mind when developing an accurate simulation software. We
propose an exact mathematical method based on the analyti-
cal inversion of the free-space static problem for a spherical

w xdisk 4, 5 that has been used previously in the analysis of
w xcavity-backed apertures and reflector antennas 6]8 . This

method belongs to the broad family of techniques collectively
w xcalled the method of analytical regularization 9 that are

remarkable for stable and fast numerical solutions.

2. PROBLEM FORMULATION

Ž .Consider a zero-thickness perfectly electric conducting PEC
spherical disk of curvature radius c and angular width 2u ,0
located on a dielectric substrate of thickness h and dielectric

Ž .constant e see Fig. 1 . The substrate has a spherical-layer
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Figure 1 Geometry of the problem

shape, and is backed by a PEC sphere of radius a. The disk is
symmetrically excited by a RED located in the substrate at
the surface of the metal sphere. The problem is considered in

Ž .the spherical coordinate system r, u , f having its origin in
the center of the sphere. The time dependence is assumed to
be eyiv t.

In the uniform space filled with a dielectric of permittivity
e , the field of a RED shifted by a distance a from the origin
along the polar axis is known to be

2 2 Ž Ž0. .  rU
Ž0. 2 Ž0. Ž0.Ž .E s q k rU , E s ,r e u2ž / ru r r

ik U Ž0.
eŽ0. Ž .H s 1f Z u0

1r2' Ž .where k s k e , and Z s m re is the free-spacee 0 0 0
impedance. The so-called electric Debye potential U Ž0. is
f-independent, and is given by

p eike <ryra <

Ž0. Ž . Ž . Ž .U r , u s , r s r , u , 0 , r s a, 0, 0a< <4p a r y ra

Ž .2

where p s Il is the dipole’s moment. All of the other field
Ž .components are zero. Function 2 is connected to the Hertz

electric vector potential as PŽ0. s U Ž0.z .e 0
ŽDue to the rotational symmetry of the scatterer a disk on

.top of a layered sphere and the axial location of RED, the
total electromagnetic field vectors E and H will have only the

Ž .same nonzero components as 1 : E , E , H . Denote ther u f

Ž . Ž .substrate as region ‘‘ 1 ,’’ and the outer space as region ‘‘ 2 .’’
To comply with the solution uniqueness, the total field com-
ponents must satisfy the following requirements:

1. time-harmonic Maxwell’s equations with the wavenum-
ber k or k off the conductors and media boundarye

2. the set of the boundary and continuity conditions on
the complete spherical surfaces:

Ž1. Ž . Ž .E a, u s 0, 0 - u F p 3u

Ž1. Ž . Ž2. Ž . Ž .E c, u s E c, u 4u u

3. the set of dual conditions on the complementary seg-
ments of the spherical surface r s c:

Ž1, 2. Ž . Ž .E c, u s 0, 0 F u - u 5u 0

Ž1. Ž . Ž2. Ž . Ž .H c, u s H c, u , u - u F p 6f f 0

4. the Silber]Muller radiation condition at r ª ` that
can be written as an asymptotic request to the field to
behave as an outgoing electromagnetic spherical wave:

Z p eikr 10Ž2. Ž2. Ž .E s Z H s f u q O ,u 0 f 2ž /4p a r r

1
Ž2. Ž .E s O 7r 2ž /r

Ž .where f u is the far-field radiation pattern
5. the power boundedness condition in any bounded space

domain V including the one enclosing the disk rim:

w < < 2 < < 2 x Ž .e E q H dV - `. 8H
V

The last condition determines the edge behavior of the
Ž wŽ .y1r2 x wŽfield components: E , E s O u y u , H s u yr u 0 f

.1r2 xu , and hence the functional class of the solution sought.0

3. DERIVATION OF THE DUAL-SERIES EQUATIONS

Ž . Ž .The total field in the problem 3 ] 8 is naturally decomposed
as follows:

EŽ0. , HŽ0. q EŽ1. , HŽ1. , a - r - c Ž .E, H s 9Ž2. Ž2.½ E , H , r ) c.

To obtain the unknown fields EŽ1, 2., HŽ1, 2., an electric-field
Ž .integral equation EFIE can be deduced from the boundary

Ž . w x Ž .condition 5 }see 1, 2 . The other conditions, namely 4
Ž . Ž .and 6 , and the radiation condition 7 can be satisfied due to

a proper choice of the kernel functions based on the Green’s
functions of the layered spherical medium. Due to the singu-
larities in the Green’s functions, EFIE is always a hypersingu-
lar integral equation. For a numerical solution, EFIE is
commonly discretized by using the local-domain or entire-do-
main expansion functions, the latter frequently taken as

w xso-called cavity-mode functions 2, 11 . However, any of these
discretizations fails to guarantee the convergence, in the
sense of opportunity to minimize the computational error.
This is because conventional moment-method approxima-
tions end up with first-kind infinite-matrix equations. In con-
trast to this, we will work on obtaining a Fredholm second-
kind infinite-matrix equation that implies analytical inversion
of the singular part of the EFIE. In so doing, one can avoid
the EFIE altogether, discretizing the original boundary-value
problem from the beginning and working with the series
instead of integral equations.

Ž .Indeed, the dipole field Debye potential 2 can be ex-
panded, in the substrate, as

`ip
Ž0. Ž . Ž . Ž . Ž . Ž .U r , u s 2n q 1 z k r c k a P cos uÝ n e n e n4p k are ns0

Ž .10
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where c and z are the spherical Bessel and first-kindn n
Hankel functions, respectively, in Debye’s notation, and Pn
are the Legendre polynomials.

Ž .Hence, we will use the latter as the set of entire 0, p -do-
main expansion functions, and seek the secondary field De-
bye potential in the following form:

`ip
Ž1. Ž . Ž . w Ž .U r , u s 2n q 1 c k r xÝ n e n4p k are ns0

Ž . x Ž . Ž .qz k r y P cos u 11n e n n

`ip
Ž2. Ž . Ž . Ž . Ž . Ž .U r , u s 2n q 1 z kr z P cos u 12Ý n n n4p kar ns0

where x , y , and z are the unknown expansion coefficientsn n n
to be determined. Electromagnetic field components are then

Ž .found similarly to 1 .
Ž . Ž .By using conditions 3 and 4 , we obtain the relationships

between the expansion coefficients of U Ž1. and U Ž2.:

Ž . X Ž . X Ž . X Ž . Ž .z k a c k a q c k a x q z k a y s 0 13n e n e n e n n e n

Ž . X Ž . X Ž . X Ž .c k a z k c q c k c x q z k c yn e n e n e n n e n

y1r2 X Ž . Ž .s e z kc z . 14n n

These equations enable us to exclude the sets x and yn n
from further consideration, so that only z remain. Then

Ž . Ž .dual-boundary conditions 5 and 6 then result in the dual-
Ž .series equations DSEs :

`
X 1Ž . Ž . Ž . Ž .2n q 1 z z kc P cos u s 0, 0 F u - u 15Ý n n n 0

ns1

`
Xy1Ž . � Ž . Ž .2n q 1 z z kc q W z kcÝ n n n n

ns1

w Ž . X Ž . Ž . X Ž .x4 1Ž .? c k c z k a y z k c c k a P cos un e n e n e n e n

`
1r2 1Ž . Ž . Ž .s e 2n q 1 F kc, arc, e P cos u ,Ý n n

ns1

Ž .u - u F p 160

1Ž .where P cos u are the Legendre functions:n

Ž . X Ž . Ž . X Ž .c k c z k a y z k c c k an e n e n e n eXŽ . Ž .W s z kc q z kc X X X Xn n n Ž . Ž . Ž . Ž .c k a z k c y c k c z k an e n e n e n e

Ž .17

Ž . Ž .F s c k a z k cn n e n e

X Ž . Ž . Ž . Ž . w Ž . X Ž . Ž . X Ž .xiz k c c k c y z k c c 9n k a c k a z k c y z k a c k cn e n e n e e n e n e n e n e Ž .q . 18X X X XŽ . Ž . Ž . Ž .c k a z k c y c k c z k an e n e n e n e

On introducing new unknowns x ,˜n

Ž . Ž . Ž .x s z n n q 1 V kc, cra, e 19˜n n n

Ž .V s z kcn n

y1 X Ž . w Ž . X Ž . Ž . X Ž .xq W z kc c k c z k a y z k c c k a ,n n n e n e n e n e

Ž .20

we can write DSEs in the following form, convenient for
further derivations:

` X Ž .2n q 1 z kcn 1 Ž . Ž .x P cos u s 0, 0 F u - u 21˜Ý n n 0Ž .n n q 1 Vnns1

` `2n q 1
1 1r2 1Ž . Ž . Ž .x P cos u s e 2n q 1 F P cos u ,˜Ý Ýn n n nŽ .n n q 1ns1 ns1

Ž .u - u F p . 220

It can be verified that x are the expansion coefficients of˜n
the surface current on the spherical disk.

4. ANALYTICAL REGULARIZATION

Ž . Ž .DSEs 21 and 22 can be written compactly in operator
notation as Lx s F. The concept of the method of analytical˜
regularization is based on the inversion of the singular part

w xL , so that the rest operator L y L is a smooth one 9 .0 0
Hence, its product with a bounded inverse to L is a compact0
operator, which can be approximated by a discrete one with
desired accuracy. In the microstrip antenna analysis, we will
do this by inverting the static part of a limit form of the DSEs

corresponding to a spherical disk in free space. For this
X y1 'Ž . Ž Ž Ž ...purpose, we verify that z kc V ª y 2nr kc 1 q e asn n

n ª `, and introduce the coefficients

X' Ž .1 q e 2n q 1 z kcn Ž .g s 1 q kc . 23n Ž .2 n n q 1 Vn

On so doing, we arrive at DSEs as

` `
1 1Ž . Ž . Ž .x P cos u s g x P cos u , 0 F u - u 24˜ ˜Ý Ýn n n n n 0

ns1 ns1

` 2n q 1
1Ž .x P cos u˜Ý n nŽ .n n q 1ns1

`
1r2 1Ž . Ž . Ž .s e 2n q 1 F P cos u , u - u F p . 25Ý n n 0

ns1

Ž 2 2 y2 . Ž n n.Here, note that g s O k c n q O a rc as n ª `.n
This proves that the operator defined by the left-hand parts

Ž . Ž .of 24 and 25 corresponds to the free-space spherical disk
Ž .in the static field. Further, we first integrate 24 once, and

then use the Mehler]Dirichlet integral representations for
the Legendre functions. On changing the orders of summa-
tion and integration, we reduce each equation of the DSEs to

Žan Abel integral equation that has a known solution for
w x.details, see 4]8 . This technique exploits the edge behavior

of the field function, and brings us to an equivalent series
equation in trigonometric functions instead of the Legendre
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ones:

`

Ž .x cos n q 1r2 u˜Ý n
ns1

`¡ Ž . Ž .A cos ur2 q g x cos n q 1r2 u ,˜Ý n n
ns1

0 F u - u0~ Ž .s 26`
1r2 Ž . Ž .e n n q 1 F cos n q 1r2 u ,Ý n

ns1¢ u - u F p .0

The orthogonality and completeness of cosine functions in
Ž .the interval 0, p enable one to invert the left-hand part of

Ž .26 . On performing certain algebra in order to exclude the
auxiliary constant A, we arrive at the final infinite-matrix
equation as follows:

` `
1r2 Ž . Ž .x y x g S s e n n q 1 F d y S ,˜ ˜Ý Ým n n mn n mn mn

ns1 ns1

Ž .m s 1, 2, . . . 27

where d is Kronecker’s delta, andmn

Ž . Ž .sin n y m u sin n q m q 1 u0 0Ž .S u s qmn 0 Ž . Ž .p n y m p n q m q 1

Ž .1 sin mu sin m q 1 u0 0y qž /Ž .p u q sin u m m q 10 0

Ž .sin nu sin n q 1 u0 0 Ž .= q . 28ž /n n q 1

` < < 2It can be verified that Ý g S - `. Hence, the ma-m, ns1 n m n
Ž .trix equation 27 is of the Fredholm second kind in the space

of the square-summable number sequences l . Therefore, its2
w xexact solution exists in this space 12 , and can be approxi-

mated as accurately as desired by solving progressively larger
Ž .truncated counterparts of 27 . It also can be verified that the

field components built after x display the needed edge˜n
Ž w x. Ž .behavior see 4]6 . Note that filling the matrix in 27 does

w xnot require any numerical integrations, unlike in 1, 2 . Very
efficient and accurate recurrence codes for computing the
Bessel and Hankel functions are readily available, so the
entire algorithm happens to be very fast and inexpensive in
terms of computer resources. In principle, the accuracy of

Ž .solving 27 is limited only by the digital precision of the
computer.

5. RADIATION CHARACTERISTICS

Ž . Ž .After determining the coefficients z from 27 and 19 , onen
easily can find the surface currents, field components, and
overall characteristics of the antenna. First of all, the f-inde-

w Ž .xpendent far-field radiation pattern see 7 is found as

`
n 1Ž . Ž . Ž . Ž . Ž .f u s yi 2n q 1 z P cos u . 29Ý n n

ns1

Based on this series representation, the total power radi-
ated by the antenna is obtained by integrating the total-field

Poynting vector flux in the far zone:

2 `Z p0 2Ž .Ž . < < Ž .P s n n q 1 2n q 1 z . 30Ýrad n28p a ns1

This power should be compared with the power radiated
w xby a dipole in free space 11 :

Z p2k2
0 Ž .P s . 310 12p

Note that the quantity P rP gives the value of therad 0
Ž .normalized input resistance radiation resistance of the mi-

crostrip antenna.
It is interesting to calculate the directivity of the antenna

as a function of the polar angle u :

22 `Z p n0 1Ž . Ž . Ž . Ž . Ž .D u s yi 2n q 1 z P cos u . 32Ý n n24p a Prad ns1

To obtain the value of the maximum directivity, one
should first determine the angle u of the main lobe of themax

Ž .radiation pattern, and then calculate D s D u .max max

6. NUMERICAL RESULTS

Here, we present sample plots characterizing the far-zone
radiation of the analyzed antenna. To verify our algorithm,
first we have computed the dependence of the computational
error, in the ‘‘maximum norm’’ sense:

Ž . < Nq1 N < < N < Ž .e N s max x y x rmax x 33˜ ˜ ˜nF N n n nF N n

Ž .as a function of the matrix 27 truncation number N. It is
presented in Figure 2 for three values of the normalized
frequency. One can see clearly that a rapid decrement of the
error starts near the value of N approximately corresponding
to the effective electrical circumference of the substrate k c.e

Ž .The Fredholm nature of the matrix guarantees that e N ª 0
if N ª `. For practical three-digit accuracy in computing the
coefficients x , the number of equations is to be taken as˜n
N G k c q crh q 10. What is important in our analysis of ae

microstrip antenna is the fact that this accuracy is kept
uniform, even in the sharp resonances.

In order to find the resonant frequencies of the antenna,
we computed the normalized radiated power as a function of

Ž .the normalized frequency Fig. 3 . The higher the frequency,
the lower the amplitudes and Q-factors of the resonances.
The latter correspond, in the order of frequency increment,
to TM , TM , TM , etc. modes of the ‘‘cavity’’ formed by01 02 03
the patch and the metal sphere. This is confirmed by the

Žfar-field radiation patterns computed in the resonances Fig.
.4 that display the appearance of a new sidelobe in the

forward half-space for each consecutive resonance. At the
same time, it is visible that, if the frequency is high enough,
the radiation pattern may have the most intensive beam in
the backward half-space, formed by the spherical substrate
itself. This is confirmed by a comparative computation of the
direction of the main-beam radiation, and the directivities in
the main-beam direction, for a dipole-fed microstrip antenna
and for a dipole in the spherical substrate covering a PEC

Ž .sphere without the disk . These plots are presented in Fig-
ures 5 and 6, respectively. Figure 5, in particular, demon-
strates the above-mentioned ‘‘keel over’’ of the main-beam

MICROWAVE AND OPTICAL TECHNOLOGY LETTERS / Vol. 26, No. 3, August 5 2000 179



Figure 2 Relative computational error as a function of the matrix truncation number

Ž .Figure 3 Normalized radiation resistance normalized radiated power as a function of the normalized frequency. Antenna
parameters are: u s 188, e s 1.3, arc s 0.97. Figure marks correspond to the patterns in Figure 40

radiation direction, both for a conformal microstrip antenna
and for a dipole, if the frequency becomes higher. The
presence of the patch, however, shifts the ‘‘keel-over’’ fre-
quency to a much greater value. The appearance of strong
radiation in the backward sector can be attributed to the
interference of the creeping waves circumnavigating around
the spherical substrate.

7. CONCLUSIONS

We have presented an accurate modeling method and numer-
ical results related to a spherical]circular microstrip antenna,
under an axially symmetric excitation by an electric dipole.
Due to analytical inversion of the singular part of the prob-

lem, the resulting algorithm is very efficient. Accuracy is
controllable and uniform, even in the resonances. Numerical
study hence delivers reliable information on the antenna
performance. Such a study confirms intuitive considerations
that a patch plays the role of a resonant amplifier of the
radiation resistance of the dipole that is otherwise under-
standably small. We have found that, as the frequency of
operation increases, the patch fails to provide a favorable
radiation pattern, and the latter is formed mainly by the
spherical substrate. Thus, generally speaking, the radiation of
this conformal antenna is principally different from the same
on an infinite flat-layered substrate, although in the frontal
sector, the two can be close to each other.
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Figure 4 Normalized far-field patterns at the frequencies marked in Figure 3
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Figure 5 Directivity in the main-beam direction as a function of the normalized frequency. The antenna parameters are the same as
in Figure 3

Figure 6 Main-beam radiation angle as a function of the normalized frequency. The antenna parameters are the same as in Figures 3
and 5
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