
IET Microwaves, Antennas & Propagation
Research Article
Nystrom method for the Muller boundary
integral equations on a dielectric body of
revolution: axially symmetric problem
IET Microw. Antennas Propag., 2015,
1186 & The Institution of Engi
ISSN 1751-8725
Received on 20th December 2014
Revised on 25th February 2015
Accepted on 27th February 2015
doi: 10.1049/iet-map.2014.0859
www.ietdl.org
Vitaliy S. Bulygin1 ✉, Yuriy V. Gandel2, Ana Vukovic3, Trevor M. Benson3, Phillip Sewell3,

Alexander I. Nosich1

1Laboratory of Micro and Nano Optics, Institute of Radio-Physics and Electronics NASU, Kharkiv 61085, Ukraine
2Department of Mathematical Physics and Computational Mathematics, Kharkiv National University, Kharkov 61077, Ukraine
3George Green Institute for Electromagnetics Research, The University of Nottingham, Nottingham NG7 2RD, UK

✉ E-mail: vitaliy_bulygin@yahoo.com

Abstract: The authors consider the electromagnetic field in the presence of a dielectric body of revolution (BOR) in the
axially symmetric case. The associated Muller boundary integral equation (IE) is reduced to a set of two IEs, further
discretised using the Nystrom method. They derive a determinantal equation for the search of natural modes and
present a new approach for the calculation of its roots. Results obtained are compared with known data for a dielectric
sphere and a BOR generated by a super-ellipse as an approximation of a finite circular cylinder. The resonant
frequencies and the Q-factors of the natural modes of a dielectric spheroid are studied.
1 Introduction

Dielectric resonators (DRs) are important elements of microwave
and millimetre-wave integrated circuits used as filters, solid-state
oscillator stabilisation cavities and antennas [1–7]. DRs are usually
attractive because of their small size, mechanical simplicity and
very small conduction losses. They can have relatively large or
very narrow bandwidths, depending on the DR shape and working
mode type. The knowledge of the resonance characteristics of
isolated dielectric bodies is also of great interest for the optimal
design of moderate-size dielectric lens antennas [8, 9].

The electromagnetic simulation of the natural modes of a DR,
especially finding their Q-factors, requires high accuracy. For
example, suppose that we are able to estimate complex modal
frequency with a relative accuracy of 1%. If the imaginary part of
the frequency, fIm, is 100 times smaller than real part, fRe, then the
relative error of the fIm can be larger than 100%. This leads to
incorrect calculation of Q-factors and modal field patterns. Today,
complicated-shape DRs cannot be investigated accurately and
quickly enough using the existing numerical simulation tools.
Therefore several studies that considered DRs with a variety of
shapes appeared – see [10–15].

An important sub-set of the great variety of DR shapes is body of
revolution (BOR) configurations, such as the finite circular cylinder
or sphere. The scattering of waves by a dielectric BOR was studied in
[11–13] using a boundary integral equation (IE) method. The authors
approximated the rotation contour C by a sequence of linear
segments and used piece-wise constant or linear approximations to
the Fourier components of electric and magnetic currents.

The alternative to widely used low-order projection methods is the
recently developed locally corrected Nystrom method (LCNM). This
method has been already used to solve boundary IEs in
two-dimensional (2D) and 3D acoustic and electromagnetic
scattering [16, 17]. The ‘local corrections’ mean that the length of
the subinterval L containing a singular point is split into two parts.
The first part, of length Δ, contains the kernel singular point, and
the integral along this part is calculated using an adaptive
quadrature or the Duffy transform. The other part has length L−Δ
and the integral along this part can be handled with a standard
quadrature. For better accuracy, the first part (i.e. Δ) has to be
chosen as small as possible. However, if Δ is too small then the
quadrature for the second part gives a poor approximation because
of the large value of the integrand derivative near the singularity.
Thus, the LCNM needs a search for the optimal value of the
parameter Δ; this complicates the algorithm.

In this paper, we build a numerical solution of the Muller IE [18–
20] for a BOR-DR in the axially symmetric case, using the
entire-domain Nystrom method (NM) [20–24]. The central idea of
the NM is the use of interpolation-type quadrature formulas to
approximate the integrals. We interpolate the rotation contour and
the unknown function with polynomials of degree n and take
account of the IE kernels’ singular nature. A similar approach to the
scattering associated with the Helmholtz equation was demonstrated
in the recently published paper [25]. In contrast to conventional
MoM, with segmentation of the contour and low-order local basis
functions [10–15], our discretisation order is equal to n, which, to
provide several-digit accuracy should be only slightly larger than
the electrical size of the body. Thus, the NM is an economic
mesh-less method that does not require numerical integrations. In
the case of a smooth rotation contour, the NM gives extremely
rapid convergence that enables high accuracy to be reached within
reasonable computation time [22–24]. This is required in eigenvalue
problems where one looks for the complex roots of the matrix
determinant after the IE discretisation. For example, determinant
calculation using the Gauss method requires O(n3), and therefore if
we decrease discretisation order by a factor of 3 we decrease the
calculation time by a factor of 27. In addition, the properties of our
discretisation matrix allow us obtaining a solution with high
accuracy (up to 10−7); this is required in the analysis of high-Q
whispering-gallery-like modes of dielectric open resonators [26] and
sufficient for all results presented in the present paper.

The remainder of this paper is as follows. The boundary IEs for
the axially symmetric excitation of a dielectric BOR are derived in
Section 2. In Section 3, we discretise the obtained IEs using the
NM. Section 4 is devoted to the determinant calculation. The
results of the numerical experiments are presented in Section 5
and summarised in Section 6. The time dependence is selected as
exp(−iωt) and omitted.
2 Integral equation

The total field (Em, Hm) inside and outside of a dielectric BOR is
represented as a sum of the incident and scattered fields, that is,
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Fig. 1 Dielectric BOR and associated notations
(Em, Hm) = (Einc
m , H inc

m )+ (Es
m, H

s
m), where the region number is

denoted by the subscript m = 1, 2 (Fig. 1).
Magnetic and electric currents, jm =E × n, je = n ×H, satisfy the

Muller IE (two coupled vector IEs) [17, 18] (see (1))

where (∇, f ) divergence of f, G1,2 = exp(ik1,2R)/(4π·R) are the 3D
scalar Green’s functions, n is the outer unit normal vector to the
surface S, k1,2 are the wavenumbers inside and outside S,
respectively.

Note that the Muller IE is a Fredholm second-kind equation with
square-integrable kernels [18]. Choose cylindrical coordinates ρ, j, z
and assume that the surface S is created by the rotation of contour C
around the z-axis. Introduce also the curvilinear orthogonal
coordinates q, t and j in terms of which S has the parameterisation

S: q = q0, t [ [−1, 1], w [ [0, 2p] (2)

linked to the conventional cylindrical coordinates as

r = r(q, t), z = z(q, t) (3)

Here, the Lame coefficients of the coordinates q, t and j are

lq =
��������������
(r′q)

2 + (z′q)
2

√
, lt =

��������������
(r′t)

2 + (z′t)
2

√
, lf = r (4)

where prime means derivative with respect to subscript, and the unit
vectors of curvilinear coordinates are

q = (x · r′q cos w+ y · r′q sin w+ z · z′q)/lq (5)

t = (x · r′t cos w+ y · r′t sin w+ z · z′t)/lt (6)

w = −x sin w+ y cos w (7)

Note that q is the outer unit normal vector to the surface S(q = n) and
t, j are tangential vectors to the same surface.

Furthermore, we will omit the function arguments for
presentational clarity. In the case of the function argument being
an integration variable, we will put sub-index ‘0’, for example, ρ
−jm
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(q0, t) = ρ0. Introduce the vector operators as

Aj = i

4

∫ ∫
S
∇ · ∇, G2 − G1

( ) · j( )
dS (8)

Bj = i

4

∫ ∫
S

k22G2 − k21G1

( ) · j dS (9)

C(n)j = ∇×
∫ ∫

S
n2G2 − n1G1

( ) · j( )
dS, n = 1, m (10)

f E1 P0

( ) = 12E
inc
2 P0

( )+ 11 · Einc
1 P0

( )
(11)

f Hm P0

( ) = m2 ·H inc
2 P0

( )+ m1 ·H inc
1 P0

( )
(12)

Using notations (8)–(12) and taking into account (5)–(7), rewrite the
Muller IE (1) in the following form

t, − f Hm + Ajm + Bjm − C(m)je
( )

= −jew
m2 + m1

2
,

w, − f E1 + Aje + Bje + C(1)jm
( ) = −jmt

12 + 11
2

(13)

t, − f E1 + Aje + Bje + C(1)jm
( ) = jmw

12 + 11
2

,

w, − f Hm + Ajm + Bjm − C(m)je
( )

= jet
m2 + m1

2

(14)

where (·,·) means scalar product.
Now, consider the axially symmetric case where ∂/∂j = 0

jt,w(t, w) = j6,w(t) (15)

(t, Aj) = − i

4

1

lt

∫1
−1

r0
∂2

∂t∂t
S(2)0 − S(1)0

( )
jt dt (16)

(w, Aj) = 0 (17)

(t, Bj) = i

4lt

∫1
−1

r0 r′tr
′
0t k22S

(2)
1 − k21S

(1)
1

( ){

+ z′tz
′
0t k22S

(2)
0 − k21S

(1)
0

( )[ ]}
jt dt

(18)

(w, Bj) = i

4

∫1
−1

r0l0t k22S
(2)
1 − k21S

(1)
1

[ ]
jw dt (19)

(t, C(n)j) =
∫1
−1

r0ht
1

lq

∂

∂q
+ r′q

lw

( )
n2S

(2)
1 − n1S

(1)
1

[ ]
jw dt (20)

(w, C(n)j) = −
∫1
−1

r0l0t
l0q

∂

∂q0
+ r′0q

l0w

( )
n2S

(2)
1 − n1S

(1)
1

[ ]
jt dt (21)

where n = ε, μ and the modal Green’s function that is the Mth
component of the azimuthal Fourier series for the scalar Green
function exp(−ikR)/R, is defined as [22, 23]

S(m)M = 1

4p

∫2p
0

exp (−ikmL)

L
cos (Mc) dc (22)
S
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where m = 1, 2 and L = [ρ2+ρ0
2−2ρρ0 cos c+(z−z0)2]1/2. Note that we

need only scalar Green function with index M = 0, 1.
From (16) to (21) we can see that, in the axially symmetric case,

(13) and (14) are independent IE sets with pairs of unknown

functions, jew, j
m
t

( )
for (13) and jmw , j

e
t

( )
for (14).

To simplify the notation we denote the integrand kernel of (j, Ωj),
where j = t or j, andΩ = A, B, C(ε), C(μ) asΩj. For example, in this
notation

t, Aje
( ) = ∫1

−1
At(t, t)j

e
t(t) dt,

At(t, t) = − i

4

1

lt
r0

∂2

∂t∂t
S(2)0 − S(1)0

[ ]

Using asymptotic expressions of the first- and the second-kind
elliptic integrals [27, 28], one can establish that

S(1, 2)M =
t�t

− 1

2pr
ln |t− t| + O(1) (23)

∂
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4pr

r′2 + z′2
( )
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The parts O(1) in (23)–(25) belong to the space C1,α[−1, 1] for 0 < α
< 1. The space Cp, α[a, b] consists of the functions whose pth
derivatives satisfy the Hölder condition with coefficient α on [a, b].

Therefore all singularities in the IEs (13) and (14) are indeed
integrable as expected for the Fredholm second-kind IEs. Using
(23)–(25) we can separate logarithmic singularities explicitly; this
is beneficial for correct use of interpolation-type quadratures in the
discrete model of Muller IE. In the axially symmetric case the IE
set (14) reduces to
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Ktt(t, t) = At(t, t)+ Bt(t, t)− ctt(t) ln |t− t| (31)

Ktw(t, t) = C1
t (t, t)− ctw(t) ln |t− t| (32)

Kwt(t, t) = −Cm
w (t, t)− cwt(t) ln |t− t| (33)

Kww(t, t) = Aw(t, t)+ Bw(t, t)− cww(t) ln |t− t| (34)

To obtain the equivalent of (13) in the axially symmetric case, one
IE
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has to exchange, in (26)–(34), εi with μi and E0
i with H0

i (i = 1, 2),
then in the first equation of (13) replace jmw with −jew and jet with
jmt , and similarly in the second equation of (13) replace jmw with jew
and jet with −jmt . Note that the kernels Kjζ(t, t), where j = t, j, ζ
= t, j belong to the space Cp, α[−1, 1] for any 0 < α < 1, where p
= min{1, s}, and s is the smoothness order of the rotation contour.
3 Discretisation of IEs

Before discretising the IEs derived, we note that there are no contour
or field singularities at the poles of S. Therefore we can approximate
the unknown components of electric and magnetic currents with the
interpolation polynomials and use the following quadrature formulas
[27, 28]

∫1
−1

un−1(t) dt =
∑n−1

p=0

An
pun−1(xp) (35)

∫1
−1

un−1(t) ln |t− t| dt =
∑n−1

p=0

un−1 xp

( )
Lp(t) (36)

Lp(t) = An
p

1

2
ln 1− t2
( )+ Q1(t)

{

+
∑n−1

m=1

Pm xp

( )
Qm+1(t)− Qm−1(t)
[ ]} (37)

where An
p = 2(1− x2p)

−1P′
n(xp)

−2, un−1(t) is a polynomial of degree n
−1, Pm(x) is the Legendre polynomial of the degree m, xp is the pth
root of the Legendre polynomial of the degree n and Qm(t) is the
Legendre function of the first kind.

Using (35)–(37), we obtain a discrete counterpart of IE (26), that
is, a matrix equation in the form

Ay = b (38)

where

A = Ctt Ctw

Cwt Cww

( )
(39)

C1t
mp = ctt xm

( )
Lp xm
( )+ An

pKtt xm, xp

( )
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Ctw
mp = dmp + ctw t( )Lp xm

( )+ An
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( )
(41)

Cwt
mp = −dmp + An

pKwt xm, xp
( )

(42)

Cww
mp = cww xm

( )
Lp xm
( )+ An

pKww xm, xp

( )
(43)

b = bt bw
( )T

, y = yt yw
( )T

(44)

btm = t, f Hm

( )
xm
( )

(45)

bwm = w, f Hm

( )
xm
( )

(46)

and m, p = 0, 1, …, n−1.
The solutions are polynomials je(n−1)

t (t) and jm(n−1)
w (t):

je(n−1)
t xm

( ) = ytm and jm(n−1)
w xm

( ) = ywm.
Convergence rate of the presented numerical scheme depends on

the smoothness of the kernels Kjζ(t, t), j = t, j and ζ = t, j. Assume
that Kjζ(t, t)∈Cp, α[−1, 1] and functions jet(t), j

m
w (t) are the exact
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solutions of the IE (26). Then

je(n−1)
n (t)− jen(t)

∥∥ ∥∥
2,

c

np+a
, n = t, w

where ||.||2 is the L2[−1, 1] norm. This means that if the rotation
contour smoothness order is not smaller than 1, then in our case
the rate of convergence is c/n2−0, where ‘2−0’ means a number
arbitrarily close to but smaller than the number ‘2’.
Fig. 3 Relative error of the determinant approximation (49) on a
logarithmic scale for Re(ka)∈ (0.65, 1.3), Im(ka)∈ (0, 0.04), a is the
sphere radius, interpolation degree m = 40, TM case of a dielectric sphere
with ε= 38 and discretisation order n = 16
4 Determinant root approximation

Accurate calculation of the complex roots of determinantal equations
has high numerical complexity because the imaginary part of
practically useful roots is much smaller than the real part. Note
that the determinant is holomorphic as a function of the
wavenumber. From well-known theorems of complex analysis, it
follows that if two holomorphic functions are equal on any finite
real-valued interval, then they are the same. One can also prove
that if two holomorphic functions are close to each other on some
real-valued interval (a, b), then they are close for all z:{Re z∈(a,
b), |Im z| < δ}. Denote the determinant of the matrix A in discrete
counterpart (38) for complex wavenumber z as Det(z). For δ = (b
−a)/5, we approximate Det(z) by the interpolation polynomial of
degree m−1 as follows

Det(z) ≃ Detm−1(z) = DetRem−1(z)+ i · DetImm−1(z) (47)

and approximate real and imaginary parts of the determinant with
interpolation polynomials at the Chebyshev points

DetRe, Imm−1 (x) ≃
∑m−1

j=0

f Re, Imj lm−1, j[y(x)] (48)

where

lm−1, j(x) =
Tm(t)

T ′
m(t

n
j )(t − tnj )

(49)

is the fundamental interpolation polynomial of degree m−1,
f Re, Imj = {Re, Im}Det t tnj

( )[ ]
, t(t) = (a/2)(1−t)+(b/2)(1+t), y(x) =

(2x−a−b)/(b−a) and nominator of (49) is Chebyshev polynomial
of the first kind. Approximation (48) has exponential convergence
on (a, b).

The method presented above gives remarkable advantage in
the determinant root investigation, because the calculation of
Detm−1(z) becomes extremely fast. For example, the choice of m = 40
gives us sufficient determinant approximation to obtain four
complex frequencies of a dielectric sphere of ε = 38 as shown in
Fig. 2. This is supported by Fig. 3, where we show the relative
difference between the exact values of determinant and those
Fig. 2 Relief of 1/Det(z) for Re(ka)∈ (0.65, 1.3), Im(ka)∈ (0, 0.04) in the
TM case of a dielectric sphere with ε= 38, discretisation order n = 16
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obtained from (47), on the complex plane of ka, k being the
wavenumber of the host medium.
5 Numerical experiments

5.1 Validation: dielectric sphere

The equations for the complex frequencies of the (transverse electric)
TEvpr and (transverse magnetic) TMvpr modes of a dielectric sphere
are [29, 30]

TM:
Jv−1/2(m · x)
Jv+1/2(m · x) = m

H (2)
v−1/2(x)

H (2)
v+1/2(x)

− v
m2 − 1

m
(50)

TE:
Jv−1/2(m · x)
Jv+1/2(m · x) =

1

m

H (2)
v−1/2(x)

H (2)
v+1/2(x)

(51)

where the indices v, p and r denote the number of the field variations
in the elevation-angle, azimuthal and radial directions, respectively
[3, 31], the sphere refractive index is m = ��

1
√

, ε is the relative
permittivity, x = ka and a is the sphere radius.

In Table 1, we compare the complex wavenumbers of four lowest
axially symmetric modes found from (50) and (51) with the same
values found using the NM of the order n = 256. They show five
coinciding digits.

In Fig. 4, we show the relative errors in ka as a function of
discretisation order n, introduced as (k−kn)/k = c/nα, where k and
kn are the exact and the approximate values, respectively. Then
χ = log[(k−kn)/k)] = log c−α log n and χ is a linear function of log n.
Therefore α is the tangent of the angle between χ log n and the
abscissa. Using the data from Fig. 4, we can conclude that the rate
of convergence in the case of dielectric sphere can be
approximated as c/n3.
5.2 Validation: finite circular dielectric cylinder

As our method requires a smooth contour of the BOR cross-section,
we approximate the contour of a finite circular cylinder (or pillbox)
Table 1 Normalised wavenumbers of the lowest axially symmetric
modes of a dielectric sphere with ε = 38

Exact values of ka ka values for n = 256

TE101 0.4988640135 + 0.0053824112i 0.4988643588 + 0.0053826785i
TE201 0.7217032171 + 0.0006767775i 0.7217039554 + 0.0006768466i
TM101 0.7039442495 + 0.0081520954i 0.7039446891 + 0.0081518508i
TM201 0.9205428124 + 0.0004519837i 0.9205436438 + 0.0004520077i
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Fig. 4 Relative errors in the complex wavenumbers of the natural modes as a function of log n, for n = 8, 16, 32, 64, 128, 256

a Imaginary part of TM_201, TM_101 and real part of TM_101, TE_101
b Imaginary part of TE_201, TE_101 and real part of TM_201, TE_201
with a half of super-ellipse (Fig. 5)

r(t) = a · r(t) · sin t, z(t) = b · r(t) · cos t (52)
r(t) = cos2N (t)+ sin2N (t)
[ ]−1/2N

(53)

In [5], the approximate expressions for the real parts of the
wavenumbers and the Q-factors of the TM01δ and TE01δ modes of
a pillbox DR have been presented. Here, the index v = 0 means the
absence of field variation in azimuth, and the index p = 1 denotes
single variation along the radius. The last index δ indicates
symbolically that the height h of the pillbox is smaller than lg/2,
where lg is the wavelength of the TM01 or TE01 dielectric
waveguide mode [3, 31].

The authors used the IE method described in [11, 12] to calculate
complex modal wavenumbers for different ratios a/h (h = 2b), and
Fig. 5 BOR contour represented using a half of super-ellipse

IE
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further derived the curve-fit equations as

(ka)TE = 2.920415 · 1−0.465421

× [0.690841+ 0.319075(a/h)− 0.035494(a/h)2]
(54)

QTE = 0.012356 · 11.207086

× 5.2696(a/h)+ 106.18807(a/h)0.624875e−1.027195(a/h)[ ]
(55)

(ka)TE = 2.932566 · 1−0.467715

{1− [0.075− 0.05(a/h)]× (1/28)(1− 10)}

× 1.047542+ 0.377422(a/h)+ 0.07112(a/h)2
{ } (56)

QTE = 0.008721 · 10.888413e0.0397475·1
{1− [0.3− 0.2(a/h)](1/28) · (38− 1)}

9.498196(a/h)+ 2058.33(a/h)4.322261e−3.50099(a/h)[ ] (57)

In Figs. 6 and 7, we present a comparison between the data
calculated from (55) to (57) and those obtained by our method, for
the TM01δ and TE01δ modes of a pillbox DR with ε = 38.

They demonstrate remarkably good agreement that may serve as a
validation of the NM algorithm proposed in this paper. Still as our
method possesses a guaranteed convergence, and that of [11, 12]
does not, the agreement, in fact, validates the results of [11, 12].
Fig. 6 Dielectric pillbox mode Q-factors as a function of a/h using the
method of [5] and our method
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Fig. 8 Equal volume spheroids with different values of ratio c

Fig. 9 Function of the spheroid deformation parameter c for the TM101 and TE101 modes, ε= 38

a Q-factors
b Resonant frequencies

Fig. 7 Real part of a dielectric pillbox mode wavenumber as a function of a/
h using the method of [5] and our method

Fig. 10 Same as in Fig. 9 however for the TM201 and TE201 modes
5.3 Optimisation of a dielectric spheroid

In the theory of microwave DRs, an interesting question arises: Can
one prolate or oblate a dielectric sphere so that the mode of the
dielectric spheroid obtained would have a larger Q-factor than for a
dielectric sphere of the same volume? To answer the question we
have to calculate Q-factors of spheroids with different ratios c = h/w,
where h and w are the spheroid height and diameter (Fig. 8).

Assume that the centre of the spheroid considered is at the origin.
Then its contour has the following parameterisation

r(t) = c−1/3 · sin t, z(t) = c2/3 · cos t (58)

To find the complex modal wavenumbers for slightly prolate or oblate
spheroids, we search for the minima of the determinant (49) for a sphere
(c = 1) as initial data. Then we change the ratio c, take the modal
IET Microw. Antennas Propag., 2015, Vol. 9, Iss. 11, pp. 1186–1192
& The Institution of Engineering and Technology 2015
wavenumber at the previous step as new initial data and continue
iterations to convergence. The results are shown in Figs. 9 and 10.

As one can see from Fig. 9a if the DR volume is fixed, then for the
TE101 mode the sphere gives the largest Q-factor. However, for the
TM101 mode the oblate spheroid with parameter c = 0.5 gives a
Q-factor that is more than two times larger than that of the sphere.

From Fig. 9b, we can also conclude that for both the TE101 and
TM101 modes, the real part of the modal wavenumber is, in
general, close to its value for a dielectric sphere. A larger
deviation from that value is observed for the TM101 mode only
when c gets smaller than 0.3; this is accompanied by a sharp
decline in the mode Q-factor.

For the TM201 mode, Fig. 10 shows us that a spheroid with c = 0.8
has 6% higher Q-factor than the sphere. From our numerical
experiments, it turns out that for higher-order axially symmetric
modes the sphere has the largest Q-factor. Thus, the answer to the
1191



question formulated above is positive but only for a few lowest
axially symmetric TM modes of the spheroid.
6 Conclusions

We have presented a Nystrom-type numerical algorithm for the
analysis of the wave-scattering and eigenvalue problems associated
with dielectric BOR objects, in the axially symmetric case. The
numerical results related to the natural modes whose fields have no
variations along the azimuth have been demonstrated. They have
enabled us to validate the method and the developed algorithm.
Using this computational instrument, we have performed
elementary optimisation of the shape of an arbitrary lossless
dielectric spheroid DR aimed at the maximisation of the Q-factors
of the four lowest axially symmetric modes. Here, the Q-factor of
the TM101 mode can be made twice larger if the spheroid is
oblate, with the height-to-width ratio being 0.5, whereas all other
modes show the largest Q-factors if the DR is just a sphere.
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