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Abstract—We propose a new convenient for mathematical investigation formulation of the lasing
eigenvalue problem as a spectral problem for an operator-valued function, which involves boundary
integral operators. We prove that these integral operators are weakly singular and the operator of the
problem is Fredholm with index zero.
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1. INTRODUCTION

Various two-dimensional (2D) microcavity lasers have been investigated numerically with the aid
of a modified electromagnetic eigenvalue problem, specifically tailored to extract the threshold values
of gain in addition to the emission frequencies (see, for example, [15, 18, 19], and references therein).
Such a modified formulation called the Lasing Eigenvalue Problem (LEP) was first introduced in 2004
in [11] and since then has gained credit in the photonics community. The greatest progress may have
been achieved for two-dimensional microcavities with uniform gain in [13], where the original problem
was reduced equivalently to a nonlinear spectral problem for the system of Muller boundary integral
equations (BIEs), which was solved accurately by the Nystrom method. Derived first by Muller [10] this
system has become a reliable and efficient tool for analysis of the electromagnetic field in the presence
of a 2D homogeneous dielectric object with an arbitrary smooth boundary. Particularly, Muller BIEs
were used for computations of eigenmodes of fully active [13] and passive microcavities [2, 3]. The
original problem for microcavities with active regions have been also reduced recently to the system
of Muller BIEs [14]. Numerical and theoretical investigations of microcavities with active regions
are very important [12], but such studies have not been carried out in sufficient detail by rigorous
mathematical methods.

In this paper we propose a new formulation of LEP for microcavities with active regions as a nonlinear
spectral problem for a fredholm operator-valued function, which involves boundary integral operators. In
Section 2 we describe the nonlinear spectral problem for the system of Muller BIEs constructed in [14].
In Section 3 we prove that all the boundary integral operators are weakly singular or have smooth kernels
(Lemmas 1–4). It follows from these lemmas that the operator of the problem has the form I −B,
where the operator B is compact (Theorem 1, Section 4) and I is the identical operator in the space of
continuous functions. Obtained formulation is convenient for future study of the problem on the base
of fundamental results of the theory of operator-valued functions in a pair of Banach spaces (see, for
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Fig. 1. Geometry of a 2D dielectric resonator with active zones.

example, [7, 8]) and the theory of continuous dependence of eigenvalues of operator-valued functions
on real parameters developed in [16]. It also enables to apply the general results of the theory of
approximation in nonlinear eigenvalue problems [5, 6] to a numerical analysis of the proposed in [13]
and generalized in [14] computational algorithm. A similar approach was applied to spectral problems
of the theory of dielectric waveguides [4].

2. MULLER BOUNDARY INTEGRAL EQUATIONS

The original problem was reduced in [14] to the following nonlinear with respect to the parameters k
and γ eigenvalue problem for the system of Muller boundary integral equations:

u1(x)−
∫

Γ1

K
(1,3)
1 (k, γ;x, y)u1(y)dl(y)−

∫

Γ1

K
(1,4)
1 (k, γ;x, y) v1(y)dl(y)

−
∫

Γ2

K
(1,5)
1 (k, γ;x, y) u2(y)dl(y) −

∫

Γ2

K
(1,6)
1 (k, γ;x, y) v2(y)dl(y) = 0, x ∈ Γ1, (1)

um(x)−
∫

Γm−1

K(1,1)
m (k, γ;x, y)um−1(y)dl(y) −

∫

Γm−1

K(1,2)
m (k, γ;x, y) vm−1(y)dl(y)

−
∫

Γm

K(1,3)
m (k, γ;x, y)um(y)dl(y)−

∫

Γm

K(1,4)
m (k, γ;x, y) vm(y)dl(y)

−
∫

Γm+1

K(1,5)
m (k, γ;x, y) um+1(y)dl(y)−

∫

Γm+1

K(1,6)
m (k, γ;x, y) vm+1(y)dl(y) = 0, (2)

where x ∈ Γm, m = 2, 3, . . . ,M − 1,

uM (x)−
∫

ΓM−1

K
(1,1)
M (k, γ;x, y)uM−1(y)dl(y) −

∫

ΓM−1

K
(1,2)
M (k, γ;x, y) vM−1(y)dl(y)

−
∫

ΓM

K
(1,3)
M (k, γ;x, y) uM (y)dl(y)−

∫

ΓM

K
(1,4)
M (k, γ;x, y) vM (y)dl(y) = 0, x ∈ ΓM , (3)

v1(x)−
∫

Γ1

K
(2,3)
1 (k, γ;x, y)u1(y)dl(y)−

∫

Γ1

K
(2,4)
1 (k, γ;x, y) v1(y)dl(y)

−
∫

Γ2

K
(2,5)
1 (k, γ;x, y) u2(y)dl(y) −

∫

Γ2

K
(2,6)
1 (k, γ;x, y) v2(y)dl(y) = 0, x ∈ Γ1, (4)
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vm(x)−
∫

Γm−1

K(2,1)
m (k, γ;x, y)um−1(y)dl(y) −

∫

Γm−1

K(2,2)
m (k, γ;x, y) vm−1(y)dl(y)

−
∫

Γm

K(2,3)
m (k, γ;x, y)um(y)dl(y)−

∫

Γm

K(2,4)
m (k, γ;x, y) vm(y)dl(y)

−
∫

Γm+1

K(2,5)
m (k, γ;x, y) um+1(y)dl(y)−

∫

Γm+1

K(2,6)
m (k, γ;x, y) vm+1(y)dl(y) = 0, (5)

where x ∈ Γm, m = 2, 3, . . . ,M − 1,

vM (x)−
∫

ΓM−1

K
(2,1)
M (k, γ;x, y)uM−1(y)dl(y) −

∫

ΓM−1

K
(2,2)
M (k, γ;x, y) vM−1(y)dl(y)

−
∫

ΓM

K
(2,3)
M (k, γ;x, y) uM (y)dl(y)−

∫

ΓM

K
(2,4)
M (k, γ;x, y) vM (y)dl(y) = 0, x ∈ ΓM . (6)

Here,

K(1,1)
m (x, y) =

∂Gm(x, y)

∂n(y)
, K(1,2)

m (x, y) = −2ηm−1Gm(x, y)

ηm + ηm−1
, (7)

K(1,3)
m (x, y) =

∂ (Gm+1(x, y)−Gm(x, y))

∂n(y)
,

K(1,4)
m (x, y) =

2 (ηm+1Gm(x, y)− ηmGm+1(x, y))

ηm+1 + ηm
, (8)

K(1,5)
m (x, y) = −∂Gm+1(x, y)

∂n(y)
, K(1,6)

m (x, y) =
2ηm+2Gm+1(x, y)

ηm+2 + ηm+1
, (9)

K(2,1)
m (x, y) =

∂2Gm(x, y)

∂n(x)∂n(y)
, K(2,2)

m (x, y) = − 2ηm−1

ηm + ηm−1

∂Gm(x, y)

∂n(x)
, (10)

K(2,3)
m (x, y) =

∂2 (Gm+1(x, y) −Gm(x, y))

∂n(x)∂n(y)
,

K(2,4)
m (x, y) =

2ηm+1

ηm+1 + ηm

∂Gm(x, y)

∂n(x)
− 2ηm

ηm+1 + ηm

∂Gm+1(x, y)

∂n(x)
, (11)

K(2,5)
m (x, y) = −∂2Gm+1(x, y)

∂n(x)∂n(y)
, K(2,6)

m (x, y) =
2ηm+2

ηm+2 + ηm+1

∂Gm+1(x, y)

∂n(x)
, (12)

Gm (k, γ;x, y) =
i

4
H

(1)
0 (km |x− y|) , m ∈ M ∪ o, (13)

where M = {1, 2, . . . ,M}, o = M + 1, and H
(1)
0 is the Hankel function of the first kind and zero

index (see, e.g., [1], p. 360). We assume that each contour Γm is 2-times differentiable and closed,
and all these contours are disjoint (see Fig. 1). By n we denote the outer normal unit vector to the
boundary Γm.

The coefficients km are equal to kνm, where k ∈ L is the free-space wavenumber, ηm = ν−2
m for H-

polarized field and ηm = 1 for E-polarization. Here L is the Riemann surface of the function ln k.
We assume that E,A,P ⊆ M are sets of indexes such that E �= ∅, E ∩ A ∩ P = ∅, E ∪ A ∪ P = M. In

each active region Ωe, e ∈ E, the refractive index νe = αe − iγ is complex-valued with positive imaginary
part γ named the threshold gain. In each region with absorption Ωa, a ∈ A, we write νa = αa + iδa,
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where δa > 0 is the absorption index. In each passive region Ωp, p ∈ P, and the unbounded domain

Ωo = R
2 \

M⋃
m=1

Ωm the refractive index is equal to real numbers νp = αp and νo = αo, respectively. All

the coefficients αm are positive.
In LEP for microcavities with active regions [14] we look for k ∈ L and γ > 0 such that there

exist nontrivial solutions of system (1)–(6). All other parameters are given. If M = 1, then, using
equations (1)–(6), we obtain the system of BIEs for the problem for microcavities with uniform gain [13].
If M = 1 and γ = 0, then we get the system of BIEs for classic problem for passive microcavities (see,
for example, [2, 3]). Therefore, we investigate the problem and for γ = 0.

3. WEAK SINGULARITY OF THE KERNELS

Clearly, for i = 1, 2 the kernels K
(i,1)
m (x, y) and K

(i,2)
m (x, y), where m = 2, 3, . . . ,M , and the ker-

nels K
(i,5)
m (x, y) and K

(i,6)
m (x, y), where m = 1, 2, . . . ,M − 1, are continuous in x ∈ Γl and y ∈ Γp,

since l �= p. In this section we prove that the kernels K
(1,3)
m (x, y) and K

(2,4)
m (x, y), m ∈ M, where

x, y ∈ Γm, are also continuous. In addition, if ηm = ηo, then the kernels K(1,4)
m , m ∈ M, are continuous,

else K
(1,4)
m have logarithmic singularities. The kernels K

(2,3)
m , m ∈ M, always have logarithmic

singularities.
Below we prove the corresponding assertions, but previously we present the following well known

statement (see, e.g., [17], p. 384). If a curve Γm has a continuous curvature, then

lim
|x−y|→0

((x− y) · n(x))
|x− y|2 =

ξ(x)

2
, x, y ∈ Γm, (14)

where ξ is the curvature of the curve Γm. Here by “·” we denote the standard inner product on R
2.

Lemma 1. For each k ∈ L and γ ∈ R+ = {γ ≥ 0} we have

lim
|x−y|→0

K(1,3)
m (k, γ;x, y) = 0, x, y ∈ Γm, m ∈ M.

Proof. Let us recall (see, e.g., [1], p. 360) that

H(1)
ν (z) = Jν(z) + iNν(z), (H

(1)
0 (z))

′
z = −H

(1)
1 (z), (15)

Jν(z) =
(z
2

)ν
∞∑
k=0

(−z2/4)
k

k!Γ(ν + k + 1)
, Nν(z) = −(z/2)−ν

π

ν−1∑
k=0

(ν − k − 1)!

k!

(
z2

4

)k

+
2

π
ln

z

2
Jν(z)

− (z/2)ν

π

∞∑
k=0

(ψ(k + 1) + ψ(ν + k + 1)) (−z2/4)
k

k!(ν + k)!
, (16)

where ν is a positive integer. Here Γ(ν) is the gamma function, Γ(ν + 1) = ν!, and ψ(ν) is the digamma

function, ψ(ν) = ψ(1) +
ν∑

k=0

k−1, ν ≥ 2. Using (16), we get

lim
z→0

zJ1(z) = lim
z→0

z2

2

∞∑
k=0

(−z2/4)
k

k!(k + 1)!
= 0,

lim
z→0

zN1(z) = lim
z→0

z

(
−(z/2)−1

π
+

2

π
ln

z

2
J1(z)−

z/2

π

∞∑
k=0

(ψ(k + 1) + ψ(k + 2)) (−z2/4)
k

k!(k + 1)!

)
= − 2

π
.

It follows from the two previous equalities and (15) that

lim
z→0

zH
(1)
1 (z) = lim

z→0
zJ1(z) + i lim

z→0
zN1(z) = −2i

π
. (17)
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By definition,

∂u(x)

∂n(x)
= (gradxu · n(x)) , ∂|x− y|

∂n(y)
=

(
grady|x− y| · n(y)

)
= −((x− y) · n(y))

|x− y| , (18)

where x, y ∈ Γm, m ∈ M. Combining (13), (15), and (18), we see that

∂Gp(x, y)

∂n(y)
=

i

4
kpH

(1)
1 (kp|x− y|)((x− y) · n(y))

|x− y| =
i

4
kp|x− y|H(1)

1 (kp|x− y|)((x− y) · n(y))
|x− y|2 , (19)

where x, y ∈ Γm, m ∈ M. Here and below p = m, m+ 1, and if m = M , then m+ 1 = o. Therefore,
using (19), (14), and (17), we obtain

lim
|x−y|→0

∂Gp(x, y)

∂n(y)
=

i

4

(
−2i

π

)(
−ξ(y)

2

)
= −ξ(y)

4π
, (20)

where x, y ∈ Γm, m ∈ M. Thus, combining (8) and (20), for each k ∈ L and γ ∈ R+, we finally get

lim
|x−y|→0

K(1,3)
m (k, γ;x, y) = lim

|x−y|→0

(
∂Gm+1(k;x, y)

∂n(y)
− ∂Gm(k, γ;x, y)

∂n(y)

)
= −ξ(y)

4π
+

ξ(y)

4π
= 0,

where x, y ∈ Γm, m ∈ M. �

Lemma 2. For each k ∈ L and γ ∈ R+ we have

lim
|x−y|→0

K(2,4)
m (k, γ;x, y) =

ξ(x)

2π

(
ηm − ηm+1

ηm+1 + ηm

)
, x, y ∈ Γm, m ∈ M.

Proof. The proof is analogous to the proof of Lemma 1. Indeed, arguing as in (18), we have

∂|x− y|
∂n(x)

= (gradx|x− y| · n(x)) = ((x− y) · n(x))
|x− y| , (21)

where x, y ∈ Γm, m ∈ M. Combining (13), (18), (21), and (15), we see that

∂Gp(x, y)

∂n(x)
= − i

4
kpH

(1)
1 (kp|x− y|)((x− y) · n(x))

|x− y| = − i

4
kp|x− y|H(1)

1 (kp|x− y|)((x− y) · n(x))
|x− y|2 ,

where x, y ∈ Γm, m ∈ M. Here and below p = m, m+ 1, and if m = M , then m+ 1 = o. Therefore,
using the last equality, (14), and (17), we obtain

lim
|x−y|→0

∂Gp(x, y)

∂n(x)
= − i

4

(
−2i

π

)
ξ(x)

2
= −ξ(x)

4π
, (22)

where x, y ∈ Γm, m ∈ M. Thus, combining (11) and (22), for each k ∈ L and γ ∈ R+ we finally get

lim
|x−y|→0

K(2,4)
m (k, γ;x, y) = lim

|x−y|→0

(
2ηm+1

ηm+1 + ηm

∂Gm(k, γ;x, y)

∂n(x)
− 2ηm

ηm+1 + ηm

∂Gm+1(k;x, y)

∂n(x)

)

= − 2ηm+1

ηm+1 + ηm

ξ(x)

4π
+

2ηm
ηm+1 + ηm

ξ(x)

4π
=

ξ(x)

2π

(
ηm − ηm+1

ηm+1 + ηm

)
, x, y ∈ Γm, m ∈ M,

as desired. �

Lemma 3. For each k ∈ L and γ ∈ R+ we have

lim
|x−y|→0

K
(1,4)
m (k, γ;x, y)

ln |x− y| =
(ηm − ηm+1)

π(ηm+1 + ηm)
,

where x, y ∈ Γm, m ∈ M (if m = M , then m+ 1 = o).

Proof. It is well known that (see, e.g., [1], p. 360)

lim
z→0

J0(z) = 1. (23)
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It follows from (16) that

N0(z) =
2

π
J0(z) ln(z/2) −

2

π

∞∑
k=0

(−1)k(z/2)2kψ(k + 1)

(k!)2
.

Therefore,

lim
z→0

N0(z)

ln z
=

2

π
. (24)

Combining now (15), (23) and (24), we see that

lim
z→0

H
(1)
0 (z)

ln z
=

2i

π
. (25)

Using (8) and (13), we obtain

K
(1,4)
m (k, γ;x, y)

ln |x− y| =
2ηm+1

ηm+1 + ηm

Gm(x, y)

ln |x− y| −
2ηm

ηm+1 + ηm

Gm+1(x, y)

ln |x− y|

=
i

4

2ηm+1

ηm+1 + ηm

H
(1)
0 (km|x− y|)
ln |x− y| − i

4

2ηm
ηm+1 + ηm

H
(1)
0 (km+1|x− y|)

ln |x− y|

=
i

2

ηm+1

ηm+1 + ηm

H
(1)
0 (km|x− y|)
ln (km|x− y|)

ln |x− y|+ ln km
ln |x− y|

− i

2

ηm
ηm+1 + ηm

H
(1)
0 (km+1|x− y|)
ln (km+1|x− y|)

ln |x− y|+ ln km+1

ln |x− y| , (26)

where x, y ∈ Γm, m ∈ M. Thus, using (25) and (26), for each k ∈ L and γ ∈ R+ we obtain

lim
|x−y|→0

K
(1,4)
m (k, γ;x, y)

ln |x− y| =
i

2

ηm+1

ηm+1 + ηm

2i

π
− i

2

ηm
ηm+1 + ηm

2i

π
=

ηm − ηm+1

π(ηm+1 + ηm)
,

where x, y ∈ Γm, m ∈ M (if m = M , then m+ 1 = o). �

Lemma 4. For each k ∈ L and γ ∈ R+ we have

lim
|x−y|→0

K
(2,3)
m (k, γ;x, y)

ln |x− y| =
k2m − k2m+1

4π
,

where x, y ∈ Γm, m ∈ M (if m = M , then m+ 1 = o).
Proof. Clearly,

∂ ((x− y) · n(y))
∂n(x)

=

(
∂(x− y)

∂n(x)
· n(y)

)
= (n(x) · n(y)), (27)

where x, y ∈ Γm, m ∈ M. Let us recall (see, e.g., [1], p. 361) that

(H
(1)
1 (z))

′
z = −H

(1)
2 (z) +

1

z
H

(1)
1 (z). (28)

Combining (27) and (21), we get

∂

∂n(x)

(
((x− y) · n(y))

|x− y|

)
=

(
∂ ((x− y) · n(y))

∂n(x)
|x− y| − ((x− y) · n(y)) ∂|x− y|

∂n(x)

)
|x− y|−2

=
(n(x) · n(y))

|x− y| − ((x− y) · n(x)) ((x− y) · n(y))
|x− y|3 , x, y ∈ Γm. (29)

Combining now (19), (28), and (29), we obtain

∂2Gp(x, y)

∂n(x)∂n(y)
=

∂

∂n(x)

(
∂Gp(x, y)

∂n(y)

)
=

∂

∂n(x)

(
i

4
kpH

(1)
1 (kp|x− y|)((x− y) · n(y))

|x− y|

)
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= −
ik2p
4

H
(1)
2 (kp|x− y|)((x− y) · n(y))((x− y) · n(x))

|x− y|2 +
ikp
4

H
(1)
1 (kp|x− y|)(n(x) · n(y))|x− y| , (30)

where x, y ∈ Γm, m ∈ M. Here and below p = m, m+ 1, and if m = M , then m+ 1 = o. We denote

Cp(x, y) = k2pH
(1)
2 (kp|x− y|)((x− y) · n(y))((x− y) · n(x))

|x− y|2 , x, y ∈ Γm, m ∈ M, (31)

Dp(x, y) = kpH
(1)
1 (kp|x− y|)(n(x) · n(y))|x− y| , x, y ∈ Γm, m ∈ M. (32)

Then we can rewrite (30) in the form

∂2Gp(x, y)

∂n(x)∂n(y)
= − i

4
(Cp(x, y)−Dp(x, y)) , x, y ∈ Γm, m ∈ M. (33)

Using (16), we see that

lim
z→0

z2J2(z) = lim
z→0

(
z4

4

∞∑
k=0

(−z2/4)
k

k!(k + 2)!

)
= 0. (34)

Now using (16) and (34), we get

lim
z→0

z2N2(z)

ln z
= lim

z→0

z2

ln z

(
(−1)

(z/2)−2

π

(
1 +

z2

4

)
+

2

π
ln

z

2
J2(z)

− (z/2)2

π

∞∑
k=0

(ψ(k + 1) + ψ(k + 3)) (−z2/4)
k

k!(k + 2)!

)
= 0. (35)

It follows from (34), (35), and (15) that

lim
z→0

z2H
(1)
2 (z)

ln z
= lim

z→0

z2J2(z)

ln z
+ i lim

z→0

z2N2(z)

ln z
= 0. (36)

It follows from (31) that

Cp(x, y)

ln |x− y| =
k2pH

(1)
2 (kp|x− y|)
ln |x− y|

((x− y) · n(y))((x− y) · n(x))
|x− y|2 =

((x− y) · n(x))
|x− y|2

× ((x− y) · n(y))
|x− y|2

k2p|x− y|2H(1)
2 (kp|x− y|)

ln(kp|x− y|)
ln |x− y|+ ln kp

ln |x− y| , x, y ∈ Γm, m ∈ M. (37)

Now using (37), (36), and (14), we obtain

lim
|x−y|→0

(
Cm+1(x, y)− Cm(x, y)

ln |x− y|

)
= 0, (38)

where x, y ∈ Γm, m ∈ M (if m = M , then m+ 1 = o). Using (16), we get

1

z
N1(z) =

1

z

(
−(z/2)−1

π
+

2

π
ln

z

2
J1(z)−

(z/2)

π

∞∑
k=0

(ψ(k + 1) + ψ(k + 2)) (−z2/4)
k

k!(k + 1)!

)

=

(
− 2

πz2
+

2

πz
J1(z) ln

z

2
− f(z)

)
, (39)

where

f(z) =
1

2π

∞∑
k=0

(ψ(k + 1) + ψ(k + 2)) (−z2/4)
k

k!(k + 1)!
. (40)
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Let us recall (see, e.g., [1], p. 258) that ψ(z +1) = ψ(z) + 1/z. Therefore, taking the limit in (40), we get

lim
z→0

f(z) =
1

2π
(ψ(1) + ψ(2)) =

1

2π
(2ψ(1) + 1) =

1

π

(
ψ(1) +

1

2

)
. (41)

It follows from (15) and (39) that

1

z
H

(1)
1 (z) =

1

z
J1(z) + i

1

z
N2(z) =

1

z
J1(z) + i

(
− 2

πz2
+

2

πz
J1(z) ln

z

2
− f(z)

)
. (42)

Using (32) and (42), we obtain

Dp(x, y) = kpH
(1)
1 (kp|x− y|)(n(x) · n(y))|x− y| = k2p(n(x) · n(y))

J1(kp|x− y|)
kp|x− y| − 2i(n(x) · n(y))

π|x− y|2

+
2k2pi(n(x) · n(y))

π

J1(kp|x− y|)
kp|x− y| ln

kp|x− y|
2

− ik2p(n(x) · n(y))f(kp|x− y|),

x, y ∈ Γm, m ∈ M.

Therefore,

Dm+1(x, y)−Dm(x, y)

ln |x− y| =
k2m+1(n(x) · n(y))

ln |x− y|
J1(km+1|x− y|)
km+1|x− y| − k2m(n(x) · n(y))

ln |x− y|
J1(km|x− y|)
km|x− y|

+
2k2m+1i(n(x) · n(y)) (ln |x− y|+ ln km+1 − ln 2)

π ln |x− y|
J1(km+1|x− y|)
km+1|x− y|

− 2k2mi(n(x) · n(y)) (ln |x− y|+ ln km − ln 2)

π ln |x− y|
J1(km|x− y|)
km|x− y|

−
ik2m+1(n(x) · n(y))f(km+1|x− y|) + ik2m(n(x) · n(y))f(km|x− y|)

ln |x− y| , (43)

where x, y ∈ Γm, m ∈ M (if m = M , then m+ 1 = o). Using (16), we get

lim
z→0

1

z
J1(z) = lim

z→0

1

z

z

2

∞∑
k=0

(−z2/4)
k

k!(k + 1)!
= lim

z→0

(
1

2
+

∞∑
k=1

(−z2/4)
k

k!(k + 1)!

)
=

1

2
. (44)

It follows from (33) and (43) that

K
(2,3)
m (k, γ;x, y)

ln |x− y| = − i

4

(
Cm+1(x, y)− Cm(x, y)

ln |x− y|

)
+

i

4

(
Dm+1(x, y)−Dm(x, y)

ln |x− y|

)
, (45)

where x, y ∈ Γm, m ∈ M (if m = M , then m+ 1 = o). Thus, combining now (45), (38), (44), and (41),
we obtain the desired assertion. �

4. SPECTRAL PROBLEM FOR THE FREDHOLM OPERATOR FUNCTION
By C(Γm) we denote the Banach space of continuous on Γm, m ∈ M, functions with the usual

maximum norm (see, e.g., [9], p. 3)

||u||m,∞ = max
x∈Γm

|u(x)|, m ∈ M.

We introduce the following integral operators with the kernels defined in (7)–(12):(
B(i,j)

m (k, γ)w(j)
s

)
(x) =

∫

Γs

K(i,j)
m (k, γ;x, y)w(j)

s (y)dl(y), x ∈ Γm,

where k ∈ L and γ ∈ R+, i = 1, 2,

s =

⎧⎪⎨
⎪⎩
m− 1, for j = 1, 2, m = 2, 3, . . . ,M,

m, for j = 3, 4, m = 1, 2, . . . ,M,

m+ 1, for j = 5, 6, m = 1, 2, . . . ,M − 1,

w(j)
s =

{
us, for j = 1, 3, 5,

vs, for j = 2, 4, 6.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 39 No. 8 2018



1156 SPIRIDONOV et al.

As we have seen in the previous section, for i = 1, 2 the kernels K
(i,1)
m , K(i,2)

m , where m = 2, 3, . . . ,M ,

K
(i,5)
m , K(i,6)

m , where m = 1, 2, . . . ,M − 1, and K
(1,3)
m (x, y), K(2,4)

m (x, y), where m ∈ M, are continuous.

If ηm = ηo, then the kernels K
(1,4)
m , m ∈ M, are continuous, else K

(1,4)
m are weakly singular. The

kernels K
(2,3)
m , m ∈ M, are weakly singular. Therefore (see, e.g., Theorem 2.8, p. 17, and Problem 2.3,

p. 27, [9]) for each k ∈ L and γ ∈ R+ the operators B
(i,j)
m : C(Γs) → C(Γm), where j = 1, 2, i = 3, 4,

are bounded with

||B(i,j)
m (k, γ)||∞ = max

x∈Γm

∫

Γs

|K(i,j)
m (k, γ;x, y)|dl(y) < ∞. (46)

Moreover, these integral operators are compact (see, e.g., Theorem 2.23, p. 26, [9]). We can prove
analogously that for s = m− 1, j = 1, 2 and s = m+ 1, j = 5, 6, these operators are bounded (the upper
bound of form (46) holds true) and compact.

For each k ∈ L and γ ∈ R+ we introduce the operator B : W → W , W = W1 ×W2 × . . .×WM ,
Wm = C(Γm)×C(Γm), m ∈ M,

B(k, γ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1(k, γ) 0 0 . . . 0

B2(k, γ) 0 0
. . .

...

0 B3(k, γ) 0
. . .

...
...

. . . . . . 0

0 . . . 0 BM−2(k, γ) 0

0 . . . 0 0 BM−1(k, γ)

0 . . . 0 0 BM (k, γ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here,

B1 =

⎛
⎝B

(1,3)
1 B

(1,4)
1 B

(1,5)
1 B

(1,6)
1

B
(2,3)
1 B

(2,4)
1 B

(2,5)
1 B

(2,6)
1

⎞
⎠ , BM =

⎛
⎝B

(1,1)
M B

(1,2)
M B

(1,3)
M B

(1,4)
M

B
(2,1)
M B

(2,2)
M B

(2,3)
M B

(2,4)
M

⎞
⎠ ,

Bm =

⎛
⎝B

(1,1)
m B

(1,2)
m B

(1,3)
m B

(1,4)
m B

(1,5)
m B

(1,6)
m

B
(2,1)
m B

(2,2)
m B

(2,3)
m B

(2,4)
m B

(2,5)
m B

(2,6)
m

⎞
⎠ , m = 2, 3, . . . ,M − 1.

All the introduced operators are compact. Thus, the following theorem is true.

Theorem 1. For each k ∈ L and γ ∈ R+ the integral operator B : W → W is compact.

Now we can rewrite system (1)–(6) in the form

w = B(k, γ)w (47)

and look for k ∈ L and γ ∈ R+ such that there exist nontrivial solutions w ∈ W of operator
equation (47). We finally note that the operator I −B is Fredholm with index zero. Here I is
the identical operator in the space W .
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