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1. Imperfect boundary conditions
As known (see [1�6]), if the thickness of imperfect scat-
terer is small compared to the free-space wavelength, the
wave scattering problem can be simplified to exclude the
internal field from consideration. This is done by assum-
ing the scatterer thickness to be zero but at the same time
introducing specific boundary conditions modified with re-
spect to the perfectly electric conducting (PEC) boundary
conditions. In these conditions, certain effective parameters
appear, accumulating the values of the thickness and ma-
terial constants of the scatterer. These parameters couple
together the limit values of the tangential field components
~E�

T and ~H�

T on the two sides of the scatterer, namely, their
jumps and their mean values. In all, there are three different
conditions of this type [4]:
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2) material, or magneto-dielectric:
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The first condition appears in the case of a thinner-than-
-skindepth metal scatterer of finite conductivity; the sec-
ond one is derived for a thin magneto-dielectric scatterer
(material), and the third one for a PEC scatterer covered
with a thin material layer. Thin scatterers are commonly
called screens and can be flat or curved. Of the three men-
tioned types of screens, the first two (resistive and material)
are partially transparent while the third one (impedance) is
non-transparent. Note that conditions (5) and (6) are of the
most general form, and the first two ones can be viewed as
particular cases of that form.
So, any mentioned type of thin scatterers can be simulated
by using at most three effective parameters. There exists an
ambiguous terminology about these parameters. We shall
use the one proposed in [4] and call them resistivities: elec-
tric R, magnetic S, and so-called cross-resistivity W. For
example, in the case of a thinner-than-skindepth metal sheet
and a thin low-contrast dielectric sheet having normalized
material parameters εr and µr , respectively [2, 4, 5]:

Rm = (Z0bσ)�1; Rd = i[k0b(εr �1)]�1 (7)

while S= i∞ and W = 0. Here b is the thickness, σ is
the conductivity, Z0 is the free-space impedance, k0 is
the free-space wavenumber, and it is assumed that µr = 1,
jεr �1j � 1 and k0b� 1. In the case of a thin single-layer
high-contrast material sheet, it can be shown (see [1, 3, 4])
that

R= Z2S=
i
2

Zcot

�
1
2

ε1=2
r µ1=2

r k0b

�
; W = 0; (8)

where Z= (µr=εr)
1=2, and it is assumed that jεr µr j� 1 and

k0b� 1. Note that for a multi-layer sandwich-like material
sheet, W 6= 0 [4].
It is interesting to recall that the conditions (1), (2) and
(3), (4) were at first proposed empirically. They had been
in extensive use for quite a long time (e.g., see [7�10])
before being fully grounded in [2] and [3], respectively.
Mathematically rigorous derivation of the expressions (7)
and (8) for the resistivities was also done in [2, 3] and
confirmed more relaxed derivations of [1, 4�6].
For the sake of completeness, it should be mentioned that
material screens have been also simulated by introduc-
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ing the so-called “higher-order” imperfect boundary con-
ditions [5]. The latter involve not only the limit values
of tangential fields but also their normal derivatives. For
example, condition (4) is modified to take the following
“first-order” form (see [11]):
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T + ~H�

T ] =�
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~n�
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∂
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�
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T �~E�

T ] : (9)

In this paper, we shall base our considerations on the
“zeroth-order” boundary conditions (1)� (6) although one
can extend MAR to the conditions of [11]. Note that con-
ditions of the order higher than 1 are ambiguous from
the viewpoint of the solution uniqueness [12]. Further,
although conditions (1)� (6) are derived for infinite thin
sheets, we shall apply them to the limited screens like strips
and disks, which have sharp edges. We shall not discuss
here the validity of the modified conditions near the edges,
and only remark that, according to [2], this is less am-
bigous than using together the PEC conditions and the zero
thickness of a screen with edges. Instead, we shall imply
that each time some appropriate edge condition is included
in the problem formulation, that guarantees the solution
uniqueness.
Impenetrable thin imperfect screen is a special case when
three resistivities are not independent. As shown in [4],
they should satisfy the relationship

4(RS+W2) = 1: (10)

Therefore, in this case one of three resistivities can be elim-
inated, and the pair of conditions (5) and (6) can be equiv-
alently formulated in terms of two other effective parame-
ters: surface impedances Z+ and Z�, i.e., as the two-side
Leontovich boundary conditions [4�6]:

~E�

T �Z0Z�~n� ~H�

T = 0: (11)

Equations (11) are equivalent to (5) and (6) provided that

R=
Z+Z�

Z++Z�
; S=

1
Z++Z�

; W=
1
2

Z+�Z�

Z++Z�
; Z++Z� 6=0:

(12)

For example, a thin PEC screen coated with different layers
of magneto-dielectrics of parameters b�, ε�r and µ�

r , has
the values of the surface impedances given by [4�6]

Z� =�iZ tan[(ε�r µ�

r )1=2k0b�]: (13)

It is important to note that if any material parameter of an
imperfect screen is not real but complex-valued, then the
resistivities obtain non-zero real parts, which are responsi-
ble for the dissipation losses. Therefore, by modifying the
boundary conditions, one can study not only the wave scat-
tering but also the wave absorption. Besides, if any of the
quantities εr , µr or h varies along the screen surface, then
the resistivities R;S;W are the functions of coordinates.

2. About the method of analytical
regularization

Hence, there arises a challenge to extend or modify the
previously existed analytical and numerical solutions of the
PEC-screen wave scattering problems to the three men-
tioned types of imperfect thin screens. In computational
electromagnetics, one of the most powerful and efficient ap-
proaches is based on the integral equations (IE) – see [13].
Here, the method of analytical regularization, i.e., a semi-
inversion of the full-wave singular IE [14], is the one
that guarantees numerical convergence. General scheme
of MAR works as follows. Commonly, the boundary PEC
conditions generate a singular IE of the first kind: ĜX= F .
Split the operator Ĝ into two parts, Ĝ1 and Ĝ2. Provided
that the former has a known inverse Ĝ�1

1 , the original equa-
tion can be converted to the second-kind one: X+ ÂX= B,
where Â= Ĝ�1

1 Ĝ2 and B= Ĝ�1
1 F . However, this scheme is

mathematically justified only if the operator Â is compact,
i.e., its norm jjÂjj < ∞ in the functional space L2. This
implies inherently that the inverted operator Ĝ1 must be
a singular one while Ĝ2 is regular. It is possible to point
out several different ways of extracting out an invertible
singular part of original equation. It corresponds to either
canonical-shape or to the high-frequency or to the static
part of the full-wave IE operator [14]. Once this has been
done, it is guaranteed, thanks to the Fredholm theorems,
that the usual discretization schemes converge to the exact
solution in the point-wise sense. Here, the convergence is
understood as a possibility to minimize the computation
error to machine precision by solving progressively larger
matrices.
The variety of problems solved by MAR with the static
part inversion covers a wide class of PEC zero-thickness
screens [14]. Among them there are single strips and
strip gratings, strip irises in a waveguide, periodic circular
waveguides, open circular cylindrical screens and collec-
tions of them, longitudinally slitted infinite cone, circular
disk, spherical cap, finite circular hollow pipe, etc. Any
of the listed problems is reduced first to a single singular
IE or a coupled pair of IEs of the first kind. A limit form
of IE, corresponding to the static problem, can be inverted
analytically based on the theory of the Cauchy integrals.
Application of this result to the full-wave IE leads to an IE
of the Fredholm 2nd kind with a smooth kernel. Hence, the
existence of the unique solution is guaranteed. Numerical
solution is then easy to obtain by using any reasonable dis-
cretization scheme, and the validity of the matrix truncation
is justified.
Discretization and partial inversion can be joined together
in a single procedure, if one uses the set of orthogonal
eigenfunctions of the static part of the full-wave operator as
a projection basis in a Galerkin scheme [14]. As the accu-
racy of computations is improved by increasing the number
of equations and is limited only by the digital precision of
computer used, MAR may be called a “numerically exact”
approach. The number of equations needed for a practi-
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cal accuracy of 3–4 digits is normally slightly greater than
electrical size of a PEC scatterer. As we shall see, in the 2D
case of the H-polarization, these solutions can be directly
extended to resistive scatterers as well, because non-zero R
does not change the static limit of IE. In the E-polarization
case, the situation is different. Here, non-zero R changes
the static behavior of the scatterer. However, in the E-case,
second-kind IE obtained from the imperfect boundary con-
dition is already a Fredholm one, whose operator vanishes
in the static limit. For the axisymmetric 3D screens, the
same is valid with respect to IEs for two potential func-
tions, which are frequently taken as Eφ and Hφ . In each
case, the obtained second-kind equations correspond to the
static-part inversion. It is also necessary to note that if
there exists a one-to-one mapping X =CZ, Z=C�1X, then
one can build a MAR analysis on the discretization of the
equivalent operator equation Z+(C�1AC)Z=C�1B, which
is also a Fredholm second-kind one. For example, opera-
tors C and C�1 can be direct and inverse integral Fourier
transforms (in the single strip scattering) or discrete Fourier
transforms (in the strip grating scattering) or integral Han-
kel transforms (in the disk scattering).

3. Resistive strip scattering

Consider an example in 2D: the scattering of a given time-
harmonic (� e�iωt) electromagnetic field by a resistive
strip [9, 15, 16], whose contour of cross-section is an open
curve M in the plane (x;y). Here, two alternative polariza-
tion cases can be treated separately. Generally, the scattered
field has to satisfy the Helmholtz equation off M, boundary
conditions on M, edge condition near the sharp edges of
the screen, and the radiation condition at infinity. In the
case of the H-polarization, the role of potential function is
played by the magnetic-field component parallel to the strip
generatrix, H = Hz. Then, the boundary conditions (1), (2)
take the form as

1
2

�
∂H+

∂n
+

∂H�

∂n

�
+ ik0Z0R(H+�H�) = 0; (14)

∂H+=∂n�∂H�=∂n= 0: (15)

After decomposing the total field into the sum of the inci-
dent Hin and scattered one Hsc and presenting the latter in
the form of a double-layer potential, one obtains a hyper-
singular integral equation of the second kind:

ik0RX(~r)+
∂
∂n

Z

M

X(~r 0)
∂

∂n0
G0(~r ;

~r 0)d~r 0 =�
∂Hin(~r)

∂n
;

(16)

where G0 = i=4H(1)
0

(kj~r�~r 0j) is the 2D free-space Green’s

function (H(1)
0

stands for the Hankel function), and
X = H+�H� is the unknown surface-current density.

Note that in Eq. (14) and hence in IE (16), the term con-
taining the product k0R is a simple perturbation to the PEC
boundary condition and the IE, respectively. That is why
analytical regularization of IE (16) can be done in the same
way as for a PEC screen, and a smooth passing to the limits
k0! 0 and R! 0 is possible at every step of this proce-
dure. The inversion of the static part of IE (16) is based on
the diagonalization of the integral operator with a hyper-
type singularity. This is due to the existence of a set of
orthogonal eigenfunctions of the IE static limit: for exam-
ple, if M is a straight interval, i.e., if the strip is flat, they
are the weighted Chebyshev polynomials. Further details of
this analysis can be found in [15, 16], for a circularly curved
resistive strip and for a flat resistive strip, respectively.
In the alternative case of the E-polarization, the role of
potential function is played by the electric-field component
parallel to the strip generatrix, E = Ez. Then the resistive
boundary conditions (1), (2) take the form as

1
2

�
∂E+

∂n
�

∂E�

∂n

�
+

ik0

Z0R
(E++E�) = 0; (17)

E+�E� = 0: (18)

These conditions, together with the single-layer representa-
tion of the scattered field Esc, lead us to the following IE
of the second kind:

Y(~r)+
ik0

R

Z

M

Y(~r 0)G0(~r;
~r 0)d~r 0 =�

ik0

R
Ein(~r); (19)

where Y = ∂E+=∂n� ∂E�=∂n is the unknown surface-
current density.
Integral equation (19) has a logarithmic-singular kernel G0.
Such a singularity is integrable, hence this IE is of the
Fredholm second-kind provided that R 6= 0. That is why it
can be discretized by using any usual discretization scheme
with local or global-basis expansion functions. One can
see that the norm of this IE operator is finite for any R 6= 0
and proportional to k0. Therefore, it may be stated that
IE (19) is based on the analytical inversion of the static limit
of the full-wave scattering problem. However, unlike in the
H-case, the limit forms of (17), (19) for k0! 0 and R! 0
are essentially different. For any R 6= 0 the static limit
of (17) is not the PEC condition; besides, the static limit
of the solution to IE (19) is identical zero. Still besides,
one can see that if R is purely imaginary or purely real, the
ratio ik�1

0 R plays the role of a Lavrentyev or a Bakushinsky
regularization parameter, respectively [17, 18].
In the case of a circularly curved open resistive strip of
radius a (Fig. 1), IEs (16) and (19) can be transformed
with discrete Fourier transform, and further static-part in-
version can be done in the transform domain [15]. The
radar cross-sections of such a strip illuminated by a plane
wave are presented in Figs. 2 and 3. In the flat-strip case,
IEs can be transformed into the integral Fourier transform
domain. Static part inversion can be done in the latter
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Fig. 1. Scattering geometry of the cross-section of a circularly
curved resistive strip.

Fig. 2. Lossy resistive strip characteristics in the E-polarization:
(a) normalized backward (radar) scattering cross-sections, and
(b) absorption cross-sections as functions of the normalized fre-
quency k0a. φ0= 170o, θ = 90o.

domain as well, (see [16]), with the Bessel functions (trans-
formed Chebyshev polynomials) as a basis. The algorithms
based on the space-domain and transform-domain MAR are
equally high-efficient. A final remark can be done about
the extension of MAR solution to a strip with the resis-
tivity varying along the contour M. In this case, R in
IEs (16) and (19) must be viewed as a function of ~r . This
circumstance does not change the basic properties of IEs,
and hence the same MAR schemes work out, although the

Fig. 3. Lossy resistive strip characteristics in the H-polarization:
(a) normalized backward (radar) scattering cross-sections, and
(b) absorption cross-sections as functions of the normalized fre-
quency k0a. φ0 = 170o, θ = 90o.

rate of convergence gets worse. Based on such a modified
algorithm, a cylindrical reflector antenna with a variable-
resistivity edge loading was analyzed in [19].

4. Material and impedance
strip scattering

In the homogeneous material-strip scattering, we start from
the boundary conditions (3), (4). Together with the repre-
sentation of the scattered field as a sum of a single- and
a double-layer potentials, they yield now not one but two
second-kind decoupled IEs. Each of the latter can be fur-
ther treated in the same way as it was done previously for
a resistive strip scattering with a H-wave and an E-wave
incident, respectively. Paper [20] dealt with solving these
equations after converting them to the integral Fourier-
transform domain. In the E-polarization case, material thin-
strip boundary conditions lead us to a similar pair of the
second-kind decoupled IEs, with the parameters R and S
interchanged. Hence, in the material-strip scattering, a dif-
ference in the electromagnetic behavior between the E-wave
and H-wave cases vanishes. Note that, to build the scattered
field, the contributions from the solutions of the both IEs
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must be taken into account. In the scattering by a multilayer
material strip or an impedance strip, the boundary condi-
tions (5), (6) or, equivalently, Eqs. (11) should be used.
They bring us to the pair of coupled IEs of the second
kind, where cross-resistivity W plays the role of the cou-
pling parameter. If the surface impedances are the same:
Z+ = Z�, then R= 1

2Z+, S= (2Z+)�1, W = 0, and hence
the IEs again decouple. Special case of Z+ =�Z� can be
considered as well [4].

5. Imperfect strip grating scattering

In the case of the scattering of plane waves by a flat grat-
ing made of identic periodically spaced resistive, material
or impedance strips of period l (Fig. 4), the same MAR
approach as for a single strip can be used. This is due
to the fact that in the kernels of corresponding IEs, the
quasi-periodic free-space Green’s function, Gp, takes the
place of G0. As Gp = G0+P, where P is a regular func-
tion at ~r ! ~r 0, the singularities are kept the same, and
hence a similar static-part inversion results in the regu-
larized infinite-matrix equations. A grating of flat resistive

Fig. 4. Scattering geometry of the cross-section of a flat resis-
tive-strip or dielectric-strip grating.

Fig. 5. Transmitted, reflected and absorbed power fractions for
the scattering by a resistive-strip grating as functions of the nor-
malized frequency l=λ (k0 = 2π=λ ). β = 30Æ, d=l = 0:5, R= 1.

Fig. 6. Power fractions for the scattering by a resistive-strip grat-
ing as functions of the normalized resistivity. β = 30Æ, l=λ = 0:5,
d=l = 0:5.

Fig. 7. Transmitted, reflected and absorbed power fractions for
the H-wave scattering by a dielectric-strip grating as functions
of the normalized frequency for β = 90Æ, d=l = 0:5, b=l = 0:01,
εr = 10+ i, µr = 1. Two models are compared: 1 – high-contrast,
i.e. R and S based on Eq. (8), and 2 – low-contrast, i.e. R based
on Eq. (7) and S= i∞.

strips has been considered in [10, 21�24]. Note that in the
H-wave case, the results published in [21] were erroneous
as the matrix elements did not decrease with greater in-
dices. This is because no regularization of a hyper-singular
IE was performed. The latter was developed in [22, 23],
where it was noted that the same mistake was character-
istic for the other papers considering the scattering of H-
waves by a resistive strip grating. In the E-wave case, the
results published in [10, 21] are correct and agree with
the data of [22� 24] where different discretizations were
used. In Figs. 5 and 6, the power fractions (normalized
powers of transmission, reflection and absorption) in the
plane wave scattering by a resistive strip grating are pre-
sented [22]. In Figs. 7 and 8, the same is presented for the
scattering by a thin-strip dielectric grating, which was also
considered in [22]. Note that the latter results were con-
fronted with the exact solution of the Fredholm second-kind
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Fig. 8. Transmitted, reflected and absorbed power fractions for
the E-wave scattering by a dielectric-strip grating as functions
of the normalized frequency for β = 90Æ, d=l = 0:5, b=l = 0:01,
εr = 10+ i, µr = 1. Two models are compared: 1 – high-contrast,
i.e. R and S based on Eq. (8), and 2 – low-contrast, i.e. R based
on Eq. (7) and S= i∞.

“domain” IE for a finite-thickness dielectric strip grating.
Comparison showed a very good agreement for the strip
thickness being 1/10 of the period. The scattering by an
impedance strip grating has not been analyzed with MAR
so far.

6. Imperfect disk scattering

Consider a curved rotationally symmetric disk supporting
resistive boundary conditions (1), (2). Here, two simplest
diffraction problems arise: excitation of the disk by ei-
ther a coaxial vertical electric dipole (CVED) or a mag-
netic one (CVMD). Figure 9 demonstrates an example of
such a scattering geometry associated with a flat disk of
radius a placed on top of a dielectric substrate. The field
in such a geometry is φ -independent and can be expressed
via a single potential function: Hφ or Eφ , respectively [25].
In the case of electric (or magnetic) dipole, we arrive at the
singular IE of the second kind similar to IE (16) (or (19)),

Fig. 9. Scattering geometry of the cross-section of a circular
disk on a grounded dielectric substrate.

with the φ -independent scalar 3D Green’s function K0 tak-
ing place of G0:

K0(~r;~r
0) = r 0

2πZ

0

eik0ρ

ρ
cosψdψ ; (20)

where

ψ = φ�φ 0; ρ = [r2+ r 02+2rr 0 cosψ +(z�z0)2]1=2:
(21)

The domain of integration in IE correspondingly changes
to an open curve in the halfplane (r � 0;z). Note that the
function K0 has the same logarithmic singularity as G0, if
~r =(r;z)!~r 0 [25, p. 67]. In the CVED-case, regularization
is needed to reduce the problem of the disk scattering to
the infinite-matrix equation of the Fredholm second-kind.
This is done by applying a Galerkin scheme with the spe-
cial Jacobi polynomials, which form the set of orthogonal
eigenfunctions of IE static limit. In the CVMD-case, the
basic IE is immediately of the Fredholm second kind pro-
vided that R 6= 0, and may be discretized via any reasonable
projection scheme. In Figs. 10 to 12, the frequency scans
of the power fractions related to the CVED-excited resistive
flat-disk antenna on top of a grounded dielectric substrate
are presented [26]. All the power values are normalized to

Fig. 10. Normalized radiated power as a function of the normal-
ized frequency a=λ , for a VED-excited resistive circular-disk on
a substrate. εs= 1:07, h=a= 0:5, and R as indicated.

Fig. 11. Normalized surface-wave power as a function of the
normalized frequency a=λ , for a VED-excited resistive circular-
disk on a substrate. εs= 1:07, h=a= 0:5, and R as indicated.
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Fig. 12. Normalized absorbed power as a function of the nor-
malized frequency a=λ , for a VED-excited resistive circular-disk
on a substrate. εs= 1:07, h=a= 0:5, and R as indicated.

Fig. 13. Radiation efficiency of a VED-excited resistive disk
antenna as a function of the normalized frequency.

the power radiated by a VED on a PEC plane. Figure 13
demonstrates the variation of the radiation efficiency in the
same frequency band.
In the case of a thin flat material disk of high dielectric and
magnetic constants, the boundary conditions (3) and (4)
yield a set of two IEs, for the either type of coaxial exci-
tation. Each of them is analogous to one of the resistive-
disk IEs, therefore regularization and discretization is done
as above. In [27], these IEs have been transformed to the

Fig. 14. Radiation efficiency of a thin-dielectric disk antenna as
a function of the normalized frequency. εs= 1:07, h=a= 0:05,
b=a= 0:01, µr = 1, and εr as indicated.

Hankel-transform domain and converted to the dual integral
equations for the surface-current transforms. Expansion
functions are then transformed to the special-type Bessel
functions depending on the type of IE. Numerical solution
is very efficient and enables one to minimize the error to
machine precision. Figure 14 shows the radiation efficiency
of a dielectric disk antenna on a grounded dielectric sub-
strate, fed by a CVED, as a function of the normalized
frequency a=λ .

7. Conclusions

It is possible to modify the MAR solutions, previously
developed in the PEC-screen scattering, to the imperfect
thin screens: resistive, material, and impedance ones. This
opens a way for a numerically exact analysis of not only
the scattering but also the absorption of waves by the pene-
trable and impenetrable screens. We presented the illustra-
tions related to the cases of curved strip, flat strip grating,
and flat disk on a substrate. Some other results of analysis
can be found in [15, 19, 22, 26, 27].
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