
52 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 12, NO. 1, JANUARY/FEBRUARY 2006

Q Factor and Emission Pattern Control of the WG
Modes in Notched Microdisk Resonators

Svetlana V. Boriskina, Member, IEEE, Trevor M. Benson, Senior Member, IEEE,
Phillip Sewell, Senior Member, IEEE, and Alexander I. Nosich, Fellow, IEEE

Abstract—Two-dimensional (2-D) boundary integral equation
analysis of a notched circular microdisk resonator is presented. Re-
sults obtained provide accurate description of optical modes, free
from the staircasing and discretization errors of other numerical
techniques. Splitting of the double degenerate whispering-gallery
(WG) modes and directional light output is demonstrated. The ef-
fect of the notch depth and width on the resonance wavelengths,
Q factors, and emission patterns is studied. Further improvement
of the directionality is demonstrated in an elliptical notched mi-
crodisk. Applications of the notched resonators to the design of
microdisk lasers, oscillators, and biosensors are discussed.

Index Terms—Integral equations, optical resonators, semicon-
ductor microdisk lasers, whispering-gallery (WG) modes.

I. INTRODUCTION

D IELECTRIC or semiconductor resonators shaped as cir-
cular cylinders and thin disks are, together with spherical

particles, among the structures able to support high- Q whisper-
ing gallery (WG) modes. Semiconductor microdisk lasers are
very attractive light sources offering small mode volumes and
ultralow threshold currents [1]. Perfectly circular microcavities
provide very high optical confinement, which results in record
Q factors of the WG modes [2], [3]; however, they have two
important drawbacks that limit their applications. These are,
first, nondirective emission patterns with many identical beams,
because a mode field in the disk plane depends on the azimuthal
angle ϕ as either cos mϕ or sin mϕ(m = 0, 1, 2, . . .). Second,
each mode with m > 0 is double degenerate that leads to the
appearance of closely located doublets in the spectra of realis-
tic resonators due to fabrication errors (sidewall roughness and
shape imperfections, etc.) [3]–[5].

To ensure a single-mode operation of the microdisk laser, it
is desirable to stabilize the lasing mode against fabrication im-
perfections [6] and either suppress all the parasitic modes (i.e.,
spoil their Q factors) or detune their resonant frequencies away
from that of the lasing mode [7]. For the lasing mode, we con-
sider a fundamental transverse electric (TE) first-radial-order
WG mode (one of the modes of a doublet) with the frequency at

Manuscript received January 11, 2005. This work was supported by the U.K.
Engineering and Physical Sciences Research Council (EPSRC) under Grant
GR/R90550/01 and Grant GR/S60693/01P and by the Royal Society under
Grant IJP-2004/R1-FS.

S. V. Boriskina, T. M. Benson, and P. Sewell are with the George Green
Institute for Electromagnetics Research, University of Nottingham, Nottingham
NG7 2RD, U.K. (e-mail: SBoriskina@gmail.com).

A. I. Nosich is with the George Green Institute for Electromagnetics Research,
University of Nottingham, Nottingham NG7 2RD, U.K., and also with the
Institute of Radio Physics and Electronics NASU, Kharkov 61085, Ukraine
(e-mail: alex@emt.kharkov.ua).

Digital Object Identifier 10.1109/JSTQE.2005.863002

or near the spontaneous emission peak of the cavity material [2].
Several types of parasitic modes can be supported in a microdisk
resonator, such as modes of the orthogonal transverse magnetic
(TM) polarization, higher radial-order WG modes, and the other
first-radial-order WG mode of a doublet.

TM-polarized emission is not usually observed in thin mi-
crodisks of several microns in diameter [3]. In high-index-
contrast microdisks, the first-radial-order WG-mode field is
concentrated inside the microdisk very close to its rim. All of
the higher-radial-order WG modes penetrate deeper inside the
cavity. They can be suppressed by either decreasing the cavity
radius and thus increasing their diffraction losses [8], or by re-
moving material from the interior of the disk, which disturbs
only the high-radial-order WG modes [7]. However, the former
approach leads to increasing the diffraction losses of the las-
ing mode as well, and neither of these approaches efficiently
suppresses or shifts in frequency the second nearly degenerate
first-radial-order WG mode of a doublet.

Recently, a suppression of such a parasitic mode using a cir-
cular microcavity with a rotationally periodic modification to
its rim—a microgear laser cavity—has been reported [9]. En-
hancement of the lasing WG-mode Q factor in such a cavity
enabled microgear lasers with low threshold currents to be fab-
ricated [10]. However, for the microlaser applications, another
important design parameter is the directionality of the light
output [11]. The emission from a thin circular microdisk oc-
curs mostly in the disk plane. Unfortunately, due to rotational
symmetry of the circular microdisk or microgear resonators,
lateral light directionality cannot be achieved. One of the ways
to extract the light from the resonant cavity is to use output
evanescent-field couplers of various geometries [12]. Alterna-
tively, microcavity shape deformations that destroy the rota-
tional symmetry can be introduced [13]–[16], which include
elongation, projections, notches, and openings.

In this paper, we perform, for the first time to our knowl-
edge, a detailed and accurate two-dimensional (2-D) numer-
ical study of the resonance and emission characteristics of a
notched microdisk structure. We demonstrate efficient splitting
and detuning of double-degenerate WG modes as well as in-
plane directional emission. As the microcavities of interest have
wavelength-scale dimensions and regions of high contour curva-
ture, conventional optical ray-tracing methods such as paraxial
approximation and billiard theory fail to provide reliable results.
Therefore, in this paper we analyze a microdisk resonator with
a narrow notch using a 2-D Muller boundary integral equation
(MBIE) formulation and the trigonometric Galerkin discretiza-
tion method [17]. Unlike the finite-difference time-domain
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Fig. 1. Schematic of a 2-D geometry of a circular microcavity with a notch.
The notch causes splitting of the double-degenerate WG modes.

(FDTD) techniques, which imply extraction of the resonance
frequencies from the transient field due to pulsed source excita-
tion [3], [9], this accurate, reliable, and versatile method enables
a direct a study of the resonance spectra, Q factors, and emission
patterns of arbitrarily shaped 2-D microcavities.

II. NOTCHED MICRODISK GEOMETRY

Fig. 1 presents the in-plane geometry of a semiconductor
microdisk with a narrow notch and the coordinate system used
in the analysis. We consider a 2-D model of the structure in
the xy plane, accounting for the microdisk thickness by using
the effective index method. Here, the effective refractive index
of the 2-D microcavity is taken as the normalized propagation
constant of the fundamental guided mode in an equivalent planar
waveguide at a wavelength corresponding to the spontaneous
emission peak of the cavity material at room temperature [17].

In the 2-D model, the microcavity can support the modes of
two polarizations: TE with the electric field vector parallel to the
xy plane and TM with the same vector perpendicular to the plane
of the microdisk. In a thin microdisk whose thickness is a small
fraction of the optical wavelength, quasi-TE-polarized modes
are dominant due to much larger effective index values [2].
Therefore, in our numerical analysis, we will consider only these
modes. We will also use the value of the effective refractive
index of a slightly lossy microcavity given by νeff = 2.63 +
i10−4. The real part of this value corresponds to the normalized
propagation constant of the fundamental mode in a 200-nm-
thick slab of GaInAsP (bulk refractive index 3.37) at 1.55 µm
[3], [10].

The contour of the microdisk cross section by the xy plane
is characterized by a smooth 2-D closed curve L, which can be
presented in the parametrical form as follows:

x = ar(s) cos s y = ar(s) sin s, 0 ≤ s ≤ 2π (1)

where

r(s) = 1 − δ/2·(cos(2τs) + 1),

π(1 − 1/2τ) < s < π(1 + 1/2τ)

r(s) = 1, 0 ≤ s ≤ π(1 − 1/2τ and

π(1 + 1/2τ) ≤ s ≤ 2π. (2)

Here, a is a microdisk radius, δ is a notch depth, θ = π/τ is
a notch angular width, and parameter s is the polar angle.

III. PROBLEM FORMULATION AND SOLUTION

In the 2-D formulation, the total field can be characterized by
a single scalar function, which represents either the Ez or Hz

component in the case of the TM or TE polarization, respec-
tively. This function satisfies the Helmholtz equation together
with continuity conditions on contour L, and can be reduced
to the following set of the second-kind boundary IEs with inte-
grable kernels [17], [18]:

U(�r) =
∫

L

[
U(�r′)

(
∂Gd

∂n′ − ∂G

∂n′

)

− V (�r′)
(

Gd − 1
α

G

)]
dl′ (3)

1 + α

2α
V (�r) =

∫
L

[
U(�r′)

(
∂2Gd

∂n∂n′ −
∂2G

∂n∂n′

)

− V (�r′)
(

∂Gd

∂n
− 1

α

∂G

∂n

)]
dl′. (4)

Here, the unknowns U and V are the limiting values of the
field function and its normal derivative, respectively, from in-
side of the contour L; ∂/∂n is the normal derivative; and �n and
�n′ are the inward normal unit vectors to L at the observation
and source points, respectively. The coefficient α is equal to ei-
ther 1 in the TM-polarization case or ν2

eff in the TE-polarization
case. Time dependence is adopted as exp(−iωt) and is omit-
ted throughout the paper. Functions G and Gd in the kernels of
IE (4) are given by

Gd(�r, �r′) =
i

4
H

(1)
0 (kνeff |�r − �r′|)

G(�r, �r′) =
i

4
H

(1)
0 (k|�r − �r′|). (5)

Applying the trigonometric Galerkin discretization method
together with extraction and analytical integration of the kernel
singularities (see [17] for details), the IEs (3), (4) are converted
into the following homogeneous matrix equation:

a11
m Um + a12

m Vm +
∑
(n)

(
UnA11

mn + VnA12
mn

)
= 0

a21
m Um + a22

m Vm +
∑
(n)

(
UnA21

mn + VnA22
mn

)
= 0 (6)

where

a11
m = νeffJd

m Hd ′

m − J ′
m Hm + 2/iπκ

a12
m = Jd

m Hd
m − Jm Hm /α

a21
m = J ′

m H ′
m − ν2

effJd ′

m Hd ′

m

a22
m = Jm H ′

m /α − νeffJd ′

m Hd
m + (1 + α)/iπκα. (7)

Here we denote that κ = ka, Jm = Jm (κ), Jd
m = Jm (κνeff),

Hm = H
(1)
m (κ), and Hd

m = H
(1)
m (κνeff) are the Bessel and

Hankel functions, respectively, and the prime represents the
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differentiation in argument. The matrix coefficients are double
Fourier-type integrals of regular functions evaluated numeri-
cally via the fast Fourier transform algorithm [17]

A11
mn = 2Lm−n/iπ

−
∫ 2π

0

∫ 2π

0

(
∂Gd

∂n′ − ∂G
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Lm =
1
2π

∫ 2π

0

((dx/ds)2 + (dy/ds)2)−1/2e−imsds (12)

and Gc and Gc
d are the values of the functions (5) on the circle

of radius a.
Finally, by introducing new unknowns z1

m = a11
m Um +

a12
m Vm , z2

m = a21
m Um + a22

m Vm , (6) can be reduced to the fol-
lowing final canonical form 2× 2 block-type infinite-matrix
equation of the Fredholm second kind:

[
z1

z2

]
+

[
M11 M12

M21 M22

]
·
[
z1

z2

]
= 0. (13)

The homogeneous matrix of (13) has nontrivial solutions only
at discrete complex values of the dimensionless frequency pa-
rameter κ, where the determinant of the matrix is zero. As we
assume the time dependence exp(−iωt), Imκ can have only
negative values. The search for the complex roots of the deter-
minant equation was performed by means of the Powell hybrid
method and yielded both the resonance wavelengths and the
quality factors of the microdisk modes:

λ = 2πa/Reκ Q = −Reκ/2Imκ. (14)

After a complex natural frequency is found, the near- and far-
field patterns of the corresponding mode can be calculated
within a multiplicative constant, through the corresponding so-
lution to (13).

IV. MODE SPLITTING IN THE NOTCHED MICRODISK

TE-polarized modes of ideal circular microdisk are usually
classified as Emnq modes, where the subscripts m,n, and q

Fig. 2. (a) Resonance wavelengths. (b) Q factors of the symmetrical (S-) and
asymmetrical (A-) WGE6,1 modes in a 1.8-µm-diameter notched microdisk
as a function of the notch depth.

correspond to the number of azimuthal, radial, and off-plane
variations of the mode field, respectively. A mode displays a
WG behavior due to nearly total internal reflection and Imκ ≈
−conste−Reκ only if k/νeff < m < κ (see [19], [20] for details).
Besides, we imply here that for all the modes supported by thin
microdisks q = 0 and thus omit this index. All the WGEmn

modes in circular microdisks with m > 0 are double degenerate
(with either cos(ms) or sin(ms) angular field dependence) due
to the microdisk rotational symmetry. We shall denote these two
orthogonal states of the same mode as S-mode and A-mode,
respectively, having either symmetrical or antisymmetrical field
patterns with respect to s = 0. Note that in the case of the
notch shape given by (2), the contour L has a line of symmetry
(the x-axis); therefore, it is convenient to count the angle s
from this line. When the contour is deformed from a circle,
the S-mode and the A-mode experience different shifts in their
complex natural frequencies, and the degeneracy is removed.
For clarity, we shall classify these two nondegenerate modes of
the perturbed structure with the same indices m and n as in the
unperturbed case.

In the vicinity of the spontaneous emission peak in a 1.8-
µm-diameter GaInAsP circular microdisk, we find a double-
degenerate WGE6,1 mode with λ = 1.547 µm and Q = 513.
In Fig. 2, we plot the mode wavelengths and Q factors as a
function of the notch depth. Fig. 2(a) demonstrates that making
a notch causes splitting of the double-degenerate WGE6,1 mode
into two modes of orthogonal symmetry.
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Fig. 3. Near-field portraits (12.5% contours) of (a) A-mode (λ = 1.531 µm)
and (b) S-mode (λ = 1.532 µm) of the notched microdisk with the same
parameters as in Fig. 2 and the normalized notch depth δ/a = 0.4.

In a previous publication [5], we showed that efficient manip-
ulation of the mode wavelength and Q factor could be achieved
if a contour deformation periodicity is matched to the modal
field pattern. Although the cavity shown in Fig. 1 has a local-
ized rather than periodical deformation, similar matching can
be foreseen. Therefore, the notch width was chosen as half of
the distance between a neighboring maximum and minimum in
the unperturbed WGE6,1-mode field pattern (τ = 12). Such a
localized contour deformation is expected to have a more sig-
nificant effect on the S-mode, which has a field maximum on
the x-axis, i.e., in the region of the notch, than on the A-mode,
which has a zero field at the same location. Indeed, it can be
seen in Fig. 2(b) that the Q factor of the S-mode is noticeably
decreased in the notched microdisk, while that of the A-mode
remains almost as high as in the ideal circular resonator.

The field portraits (equal value curves of |Hz (x, y)|) of the
A-mode and S-mode in the notched microdisk are presented in
Fig. 3. As expected, the A-mode near-field pattern is not visibly
affected by the notch, while the S-mode field pattern is clearly
distorted. Because of the much higher energy leakage at the
region of the notch, the S-mode Q factor is lower than that of
the A-mode.

Efficient separation of two resonant wavelengths in the
notched microdisk, together with the spoiling of the Q factor
of one mode of a doublet, is crucially important in many appli-
cations of resonators with WG modes. Due to fabrication im-
perfections, circular disk resonators’ spectra often display two
closely spaced resonances around each WM-mode wavelength.
This causes mode hopping and parasitic losses. A modified res-
onator design that avoids two equally coupled, closely located
WG modes may help achieve a quasi-single-mode operation of
microdisk lasers, optical waveguide filters [21], and oscillators
for satellite communications [22].

V. STABILITY OF THE HIGH-Q A-MODE

We shall now study how the variations in the notch width
and depth may affect the resonance wavelength and quality
factor of the high-Q antisymmetrical mode. Fig. 4 shows (a) the
A-mode wavelength detuning and (b) Q-factor change with an
increase of the notch depth for three values of the notch width.
As expected, the wider the notch, the more noticeably mode

Fig. 4. (a) Resonance wavelengths. (b) Quality factors of the antisymmetrical
WGE6,1 mode in the 1.8-µm-diameter notched microdisk as a function of the
notch depth for three different values of the notch width.

wavelength detuning and the Q-factor decrease. However, a
general behavior of the graphs in Fig. 4 is the same for all
values of the notch width, and even in the case of the widest
notch (τ = 10) the A-mode Q factor remains relatively high
(∼70% of that of the circular microdisk).

Naturally, to efficiently split higher-azimuthal-order WG
modes without spoiling the A-mode Q factor, narrower notches
will be required (the larger the azimuthal mode number, the nar-
rower the notch). It should be noted here that introducing notches
whose width is not matched to the WG-mode field patterns
(specifically, if the notch width is too wide) affects the modes
of both symmetries almost equally (similarly to periodic con-
tour corrugations or symmetrical shape deformations [4], [5]).
Namely, it may significantly blueshift both modes and spoil their
Q factors, instead of efficiently tuning their wavelengths away
from each other.

Another important design parameter that depends on the pre-
cision of a fabrication procedure is the notch depth. The vari-
ations in the notch depth can result in unpredictable detuning
of the wavelengths of both modes. However, it can be seen in
Fig. 4(a) that with the increase of the notch depth the values
of resonance wavelengths change more rapidly for shallow than
for deep notches. Moreover, after first decreasing significantly,
the values of Q factors slightly increase and then flatten with
further increase of the notch depth [Fig. 4(b)].

By looking at the WGE6,1-mode field portraits (Fig. 3), one
can notice that the mode field penetrates rather far toward the
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Fig. 5. Resonance wavelengths of the antisymmetrical WGE6,1, WGE8,1,
and WGE10,1 modes in notched microdisks with diameters of 1.8 µm,
2.2 µm, and 2.7 µm, respectively, as a function of the notch depth. The
wavelengths are normalized to the corresponding wavelengths of the cir-
cular microdisks: λc (WGE6,1) = 1.547 µm, λc (WGE8,1) = 1.521 µm,
λc (WGE10,1) = 1.569 µm.

Fig. 6. Near-field portraits (12.5% contours) of antisymmetrical. (a)
WGE10,1(λ = 1.555 µm). (b) WGE8,1(λ = 1.505 µm) modes in notched
microdisks with the same parameters as in Fig. 5, and the normalized notch
depths δ/a = 0.5 and δ/a = 0.6, respectively.

center of the microdisk. It is well known, however, that the
electromagnetic fields of WG modes with m � 1 are tighter
squeezed to the rim of the resonator. Therefore, one can ex-
pect similar graphs of their resonance wavelengths to flatten at
smaller values of the notch depth.

In Fig. 5, the resonance wavelength detuning with the in-
crease of the notch depth is plotted for three A-WG modes:
WGE6,1, WGE8,1, and WGE10,1. Though for all three modes
the wavelength values are first changing rapidly, they then begin
to stabilize at a certain level. Notice that this level is reached
faster for the modes with larger m. The near fields for the
A-WGE10,1(δ/a = 0.5) and A-WGE8,1(δ/a = 0.6) modes are
plotted in Fig. 6. The conclusion is that if the notch is deep
enough to pierce through the area of the WG-mode field con-
centration, slight variations in its depth do not cause noticeable
detuning of the A-mode.

VI. EMISSION DIRECTIONALITY

Having found the complex natural frequencies of (13) we can
compute the far-field emission patterns as well as the near-field
portraits. In the far zone of the microdisk (r → ∞), the field

Fig. 7. (a) Near-field portrait. (b) Far-field emission pattern of the antisymmet-
rical WGE6,1 mode (λ = 1.531µm) in the 1.8-µm-diameter notched microdisk
with the normalized notch depth δ/a = 0.4.

function can be presented in the following form [17]:

U(�r) = (1/kr)1/2exp(ikr)Φ(ϕ) (15)

where Φ(ϕ) is the far-field emission pattern and ϕ is the obser-
vation angle.

First, we calculate the near- and the far-field patterns of the
high-Q antisymmetrical WGE6,1 mode (Fig. 7). The A-mode
emission pattern is found to consist of twelve beams, simi-
larly to its counterpart for a perfectly circular cavity. How-
ever, the beams are no longer identical, i.e., emission into some
of the beams is more intense than into others. Still, it is clear that
the notched microdisk laser source operating on the A-mode will
not emit light unidirectionally—at least two equal main beams
are always present. Better control of the emission directionality
can be achieved with the S-mode, whose modal pattern is not
zero along the symmetry axis both in perfect and notched disks
[Fig. 3(b)].

The degree of collimation of the emitted light can be measured
in terms of directivity. This quantity is well known in antenna
theory and is defined as the ratio of the intensity of light radiated
in the main-beam direction ϕ0 to the intensity averaged over all
directions

D = 2π|Φ(ϕ0)|2 ·
(∫ 2π

0

|Φ(ϕ)|2dϕ

)−1

. (16)

The higher the value of directivity, the better the light is col-
limated into a single directional beam in the far zone of the
microdisk.

We expect to control the WG-mode emission pattern and en-
hance the directivity by tuning the notch geometry, with the aim
to design light sources with narrow directional emission pat-
terns. Fig. 8 shows how the value of directivity of the symmetri-
cal S-WGE6,1 mode varies with the increase of the notch depth.
The emission pattern has the main beam at ϕ = 0◦ [Fig. 9(b)]
and a number of sidelobes. (Note that the highest intensity in
the near-field distribution of the S-mode is observed at the re-
gion of the notch, i.e., at ϕ = 180◦). The directivity of emission
increases rapidly with increase of the notch depth, reaching a
maximum at δ/a = 0.14. The near-field portrait and far-field
emission pattern shown in Fig. 9 are calculated for the notch
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Fig. 8. Directivity of the symmetrical WGE6,1-mode emission in the 1.8-µm-
diameter notched microdisk as a function of the notch depth.

Fig. 9. (a) Near-field portrait. (b) Far-field emission pattern of the symmet-
rical WGE6,1 mode (λ = 1.539 µm) in the notched microdisk with the nor-
malized notch depth δ/a = 0.14, corresponding to the maximum of directivity
in Fig. 8.

depth corresponding to the maximum of directivity in Fig. 8.
Note, however, that the S-mode Q factor is five times lower
than the A-mode Q factor [see Fig. 2(b)], which normally leads
to a higher threshold of lasing [19], [20].

Though the S-mode emission is directional, it is desirable
to further reduce the sidelobe level. It has been observed the-
oretically and experimentally [4], [8], [13] that emission from
the elliptical microdisks supporting distorted WG modes is more
directional than from circular ones. In elliptical resonators, WG-
mode emission occurs at the points of the highest curvature of
the contour and collimates into a number of beams, with the
highest-intensity beams forming around the ellipse minor axis
(i.e., at ϕ = 0◦ and 180◦ for the ellipse elongated along the
y-axis). Such improvement of emission directionality with in-
crease of the ellipticity of the microdisk up to a certain critical
value has been demonstrated experimentally in [8].

With this in mind, we expect to further enhance the directivity
of the emission pattern by adjusting both the notch depth and
the ellipticity of the resonator. Simulation results obtained with
the same algorithm are presented in Fig. 10. By varying the
elongation parameter of the microdisk, µ (the ratio of the major
to the minor axis length), we observe a maximum of directivity
at µ = 1.05. The near- and far-field patterns plotted in Fig. 11
for such a cavity clearly show a highly directional emission with
weaker sidelobes.

Fig. 10. Directivity of the symmetrical WGE6,1-mode emission in an el-
liptical notched microdisk with the minor axis length of 0.9 µm, and the
normalized notch depth δ/a = 0.14 as a function of the ellipse elongation
parameter µ.

Fig. 11. (a) Near-field portrait. (b) Far-field emission pattern of the symmet-
rical WGE6,1 mode (λ = 1.578 µm) in the elliptical notched microdisk with
the normalized notch depth δ/a = 0.14 and the ellipse elongation parameter
µ = 1.05, corresponding to the maximum of directivity in Fig. 10.

VII. CONCLUSION

Results from the MBIE analysis of notched microcavities
have been presented that provide clear insight into their im-
proved optical performance over its smooth microdisk equiv-
alent. The proposed notched resonator design provides effi-
cient control of both frequency separation and Q factors of
two symmetrical types of originally double-degenerate WG
modes, as well as directional light output. The directivity
of emission can be further improved by distorting the mi-
crodisk shape from circular to elliptical, although in general
the demands of the high Q factor and high directivity are
contradictory. Applications of the notched disk resonators sup-
porting nondegenerate first-radial-order high-Q WG modes
are evident. They are expected to have higher stability to
fabrication imperfections and provide better characteristics of
semiconductor microdisk lasers and microwave and optical os-
cillators [6], [21], [22]. Besides, high near-field intensity in
the region of the notch can possibly be exploited to enhance
the sensitivity of photonic biosensors based on the WG-mode
resonators [23].
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K. Köhler, “Threshold reduction in pierced microdisk lasers,” Appl. Phys.
Lett., vol. 74, no. 2, pp. 176–178, Jan. 1999.

[8] S. A. Backes, A. P. Heberle, J. R. A. Cleaver, and K. Köhler, “Shape de-
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