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Abstract—The lasing characteristics of a photonic molecule in
the form of two optically coupled semiconductor microdisks are
investigated. Electromagnetic analysis of the lasing spectra and
linear thresholds of the coupled whispering-gallery (WG) modes
of four different symmetry classes is presented. Here, Maxwell’s
equations and accurate boundary and radiation conditions are con-
sidered as a specific “cold-cavity-with-gain” eigenvalue problem.
Each eigenvalue is a pair of real-valued parameters -frequency and
threshold material gain. In the two-dimensional (2-D) approxima-
tion, based on the introduction of an effective refractive index, this
problem is reduced to a determinant equation with favorable fea-
tures. A secant-type method is further used to calculate thresholds
and lasing frequencies numerically. Results obtained show that
optical coupling may lead to a further reduction of the ultralow
thresholds of the WG modes, although the opposite, i.e., threshold
spoiling, is more common.

Index Terms—Laser, microdisk, photonic molecule, whispering-
gallery (WG) modes .

I. INTRODUCTION

LASING is a complicated phenomenon involving the joint
action of several physical mechanisms, the most important

of which are carrier transport, stimulated emission of photons,
heating, and optical (i.e., electromagnetic) field confinement.
To respond to the challenge of the comprehensive modeling
of a semiconductor laser, one needs to take full account of all
these effects. However, the complexity of the analysis can be
reduced in a well-known manner, by solving the so-called “cold-
cavity” problem where optical modes are viewed as solutions
to electromagnetic theory equations with appropriate boundary
conditions.

Microdisk lasers were first demonstrated in the 1990s as ex-
tremely compact sources of light [1]–[11]. Lasing in disks of
1–10 µm diameter and 100–200 nm thickness, containing layers
of quantum wells, boxes, and dots, was achieved both with a pho-
topump and the injection of current. Disk materials used were,
e.g., GaAs/InGaAsP (emission wavelength around 1550 nm),
ZnSe/CdS (510 nm), ZnO/SiO2 (390 nm), and InGaN/GaN
(370 nm). The main features of such lasers are 1) several peri-
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odically spaced lasing frequencies, 2) ultralow thresholds, and
3) predominantly in-plane light emission. The disk modes were
identified as quasi-whispering-gallery (WG) modes confined at
the rim due to almost total internal reflection. Note that the
three-dimensional (3-D) problem for a thinner-than-wavelength
disk can be approximately reduced to the two-dimensional
(2-D) problem in the disk plane, with the effective-index ap-
proach [12]. The WG modes in the isolated disk have been
described using many techniques, ranging from a WKB an-
alytical study to finite-difference time-domain (FDTD)-based
numerical approximations [7]–[11].

Previously, cold-cavity modeling of microlasers was done
by calculating the natural modes of the passive open dielec-
tric resonators. (The FDTD approach to this needs a remark.
The FDTD-based numerical codes that are popular today are
not able to solve the eigenvalue problem in a direct manner.
They need a pulsed source placed inside a cavity, so that
evaluation of the natural frequencies and Q-factors is done
via studying the transient response.) Here, one is interested
in the complex-valued natural frequencies ω, and the modes
with the largest Q-factors (i.e., the smallest values of Imω)
are associated with lasing. To explain the measured lasing
frequencies, one may assume, for example, that the modal
electric field vanishes at the disk rim. Rough estimation of
Q-factors, on the other hand, needs a much finer technique, tak-
ing into account, for example, tunneling considerations. How-
ever, it is easy to see that in this way, the lasing phenomenon
is not addressed directly—the specific value of threshold gain
needed to force a mode to become lasing is not included in the
formulation. At the same time, it is known that each eigenfre-
quency is a function of the gain parameter, say γ. Hence, one can
look for a specific value of γ that brings the function Imω(γ) to
zero and consider this as the threshold of lasing (because then the
radiation losses are balanced exactly with macroscopic gain).

Therefore, in [13], we proposed the lasing eigenvalue prob-
lem (LEP) specifically tailored to extract not only frequencies,
but also threshold gains from the field equations. Refining this
analysis, in [14] we accurately accounted for the thin-disk effec-
tive index dispersion and demonstrated a good agreement with
published experimental data. We have also studied the effect of
the gain nonuniformity (e.g., due to the ring electrodes [15]) on
the thresholds of the WG modes in a single microdisk.

At the present time, much experimental attention is been
paid to the manufacture and study of microcavity laser ar-
rays [16]. The reason for this is a hope to achieve efficient
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Fig. 1. 3-D geometry of two optically coupled circular disk semiconductor
microresonators forming a photonic molecule.

power combining, and an overall improvement of emission per-
formance for high-density photonic integrated circuits. Accurate
theoretical analysis of lasing in optically coupled microcavities
seems to be absent, although a study of coupled WG modes was
attempted in [17] with the FDTD method (see1). On the other
hand, recent experiments with “photonic molecules” formed
by two microresonators showed the splitting of the modes into
symmetry classes that may have quite different lasing proper-
ties [18], [19].

The goal of the present paper is accurate study of the LEP for
a pair of optically coupled identical circular microresonators
supporting WG modes. In Section II, we formulate the LEP
for the 2-D model of a two-disk laser with uniform gain. In
Section III, we consider four independent classes of modes in
terms of the two-fold symmetry of such a structure. In Sec-
tion IV, we study spectra and thresholds for the two-disk laser
with uniform gain, and show that thresholds can be lowered rela-
tively to the single-disk ones. Corresponding near fields and far-
field emission patterns are discussed in Section V. Conclusions
are presented in Section VI. In the Appendix, the formulation
of the eigenfrequency problem for the complex-valued natural
frequencies and generalized natural modes of an open resonator
is summarized for comparison with the LEP as a more adequate
model of the lasing phenomenon.

II. 2-D LASING PROBLEM FOR TWO MICRODISKS

Fig. 1 shows two identical microdisk cavities located in the
same plane in free space. Suppose that each disk has thickness
d, radius a, and real-valued refractive index α. The separation
between the disks is denoted as d. The time dependence e−iω t

is implied, and the free-space wavenumber is k = ω/c = 2π/λ,
where λ is wavelength.

Assume that we have already reduced the problem to the
2-D model by using the effective-index model [14]. Then we
can consider two identical circular resonators with effective
refractive index αeff and air gap w—see Fig. 2.

Here, we can treat two polarization states separately, with
the aid of one function U , which is either the Ez or the Hz

field component. The LEP statement implies (see [14], [15])
that U must satisfy the 2-D Helmholtz (A1) where, if r < a,
the coefficient αeff is replaced with the complex-valued pa-
rameter ν = αH,E

eff (q) − iγ; otherwise αeff = 1. Here, the ef-
fective index is associated with the qth guided wave of a
slab of the same thickness as the disk (1 < αH,E

eff(q) < α) [15].
In this paper, we shall assume that the material gain γ > 0

Fig. 2. 2-D geometry of two optically coupled circular resonators.

Fig. 3. Four classes of field symmetry. (a) x-even/y-even (EE). (b) x-odd/y-even
(OE). (c) x-even/y-odd (EO). (d) x-odd/y-odd (OO).

is constant, i.e., uniform across the disks. At the disk rims,
L : (ρ1,2 = α)U(ρ2 = a), and the transparency conditions (A2)
hold, with βH = ν−2 and βE = 1. The condition of the local
finiteness of energy is given by (A3). Thanks to the real-valued
k, U obeys the usual 2-D radiation condition (A4) and does not
diverge at infinity.

Considering the LEP, we look for two real numbers, κ = ka
and γ. The first is the normalized lasing frequency, and the sec-
ond is the linear threshold material gain. Obviously, the lasing
threshold γ, extracted from the LEP, cannot be simply derived
from the Imk for the eigenfrequency problem (see Appendix),
because ν enters the LEP not only as a product with k, but also
independently.

The basic properties of the lasing eigenvalues can be estab-
lished, even before the computations, for an arbitrary-shaped
open resonator. The proof is based on the analytical regular-
ization; i.e., the equivalent reduction of the boundary-value
problem to a set of Fredholm second-kind integral or matrix
equations [20], and the use of the operator extensions of the
Fredholm theorems [21]. It is found that:

1) all γ > 0, so that thresholdless lasing is not possible;
2) eigenvalues form a discrete set on the plane (k, γ);
3) each eigenvalue has finite multiplicity;
4) no finite accumulation points of eigenvalues exist;
5) each eigenvalue (i.e., each lasing frequency and each

threshold) is a piece-continuous function of resonator
shape L, separation w, and refractive index α, and this
property can be lost only if eigenvalues coalesce;

6) moving on the (k, γ) plane, eigenvalues can disappear
only at infinity.
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III. FOUR CLASSES OF SYMMETRY

The geometry in Fig. 2 has twofold symmetry. Therefore, it is
clear from general considerations that all possible field functions
split into four different independent classes of symmetry with
respect to the x and y-axes.

We introduce three polar coordinate systems: two local sys-
tems associated with each resonator, (ρ1,2, ϕ1,2, and a global
system, (ρ, ϕ)- see Fig. 2. Taking into account conditions (A1)
and (A3), we expand the field function inside each cavity as

U1,2(ρ, ϕ) =
∞∑

p=(0)1

A1,2
p Jp(kνρ1,2)Sp(ϕ1,2), ρ1,2 < a (1)

where Jm is the Bessel function, and Sp(ϕi) = cos pϕ for the
x-even modes and sin pφ, for the x-odd modes (i = 1, 2).

In the free space, the field function is a superposition of
expansions generated by both resonators and satisfying (A4)

U(ρ, ϕ) =
∞∑

p=0(1)

B1
p H(1)

p (kρ1)Sp(ϕ1)

+
∞∑

p=0(1)

B2
p H(1)

p (kρ2)Sp(ϕ2) (2)

where H
(1)
p is the Hankel function of first kind.

In order to satisfy the requirements of symmetry or anti-
symmetry with respect to the j-axis, we impose the following
conditions, respectively:

U(x, 0) = 0 ∂U(x, y)/∂y|y=0 = 0. (3)

The use of addition theorems for cylindrical functions enables
us to transform the series into the polar coordinate system asso-
ciated with each cavity. Then, substitution of (2) into (A2) and
(3) and introduction of xm = A1

m Jm (κ) leads to the following
four matrix equations:

x-even/y-even (EE) and x-even/y-odd (EO) mode classes

xm ±
∞∑

p=0

µpxpKmp(κ, γ)
[
H

(1)
m+p(κl) + (−1)pH

(1)
m−p(κl)

]
= 0

(4)

x-odd/y-even (OE) and x-odd/y-odd (OO) mode classes

xm ±
∞∑

p=1

xpKmp(κ, γ)
[
H

(1)
m+p(κl) − (−1)pH

(1)
m−p(kl)

]
= 0

(5)
where

µ0 = 1/2, µp>0 = 1

Kmp(κ, γ) = Jm (κ)Vp(κ, γ)[Fp(κ, γ)Jp(κ)]−1

Fm (κ, γ) = Jm (κν)H
′(1)
m (κ) − νβE ,H J ′

m (κν)H(1)
m (κ)

Vm (κ, γ) = Jm (κν)J ′
m (κ) − νβE ,H J ′

m (κν)Jm (κ) (6)

l = 2 + w/a is the normalized distance between the centers of
the resonators, and the prime denotes differentiation with respect
to the argument.

In operator notation, (4) and (5) can be written as

[I + Gi,j (κ, γ)]X = 0 (7)

Fig. 4. Error in computation of the EE class versus the matrix truncation
number for two values of the separation parameter.

where X = {xp}∞p=0(1), I = {δmp}∞m,p=0(1) is identity opera-

tor, and Gi,j = {Gmp
i,j}∞m,p=0(1), i, j = E(even), O(odd) are

compact operators if Fp(κ, γ)Jp(κ) �= 0, p = 0, 1, . . .. There-
fore, the equations obtained are the Fredholm second kind
equations, and their eigenvalues possess the properties listed
in Section II. Moreover, as, in fact,

∑∞
m,n=0(1) |Gi,j

mn | < ∞, the
search for the LEP eigenvalues is reduced to finding zeros of
the determinants of truncated (4) and (5)

Det[I + Gi,j (κ, γ)] = 0 (8)

and convergence to the exact eigenvalues of infinite matrices is
guaranteed if the truncation number is increased.

We computed lasing spectra and linear thresholds for cou-
pled semiconductor microdisks with a two-parameter secant-
type iterative method [13]. As, in reality, the photolumines-
cence spectrum has a width of 100 nm or less [1–6, 16–18],
it is justifiable to take αeff = const when computing a specific
optical mode. If, for example, λ0 = 1.55 µm and d = 100 nm,
then αeff(0)H = 2.63. In the same disk, alternatively polarized
modes have much smaller effective indices, like αE

eff(0) = 1.31,
and can be neglected in view of their very high thresholds [13],
[14]. The cylindrical functions in (6) can be calculated to ma-
chine precision. As an initial guess, we took the values for κ
and γ in a single resonator; i.e., the roots of Fm (κ, γ) = 0.

In Fig. 4, we present the dependences of computational er-
ror in determining the eigenvalues (κ, γ)10,1 on the size of the
matrix GEE. They demonstrate that to achieve a practical ac-
curacy of 4–5 digits, one needs a few more equations than the
normalized optical size of the resonator given by kaαaeff .

IV. EFFECT OF COUPLING ON SPECTRA AND THRESHOLDS

It is worth remembering that all the lasing modes of an
isolated circular cavity split, thanks to the rotational symmetry,
into independent families according to the azimuth index m
and those with m > 0 are twice degenerate [13]. For each
family, transparency conditions (A2) generate the characteristic
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equation Fm (κ, γ) = 0, whose roots (shown in Fig. 3) are
the LEP eigenvalues. To number them, a second index n is
needed—it corresponds to the number of field variations along
the radius. Furthermore, we recall that the effective-index
method introduces a third index, q (see [14]), so that, in
principle, the roots should be denoted as (κmnq , γmnq , where
m, q ≥ 0, n ≥ 1. In our numerical study, we shall assume that
αeff is associated with the principal (even) slab wave, and omit
the corresponding index, q = 0.

The lasing spectra and thresholds of a GaAs microdisk of
thickness d = 0.1a, computed with account of the dispersion
of effective indices of two principal slab waves, TE0 and TM0,
were presented in [14]. They show that the plane (κ, γ) is inhab-
ited by the LEP eigenvalues in a nonuniform manner. One can
clearly distinguish between the non-WG modes, which have
very high thresholds γ > 0.01 and γ ≈ const/κ, and the true
WG modes. The latter have m/αeff < κ < m and display drasti-
cally smaller thresholds, γ ≈ const e−κ . These eigenvalues form
inclined “layers” on the plane (κ, γ), and the lowest (in terms
of γ), layer corresponds to the radial index n = 1.

In Figs. 5 and 6, we present the dependences of lasing
frequencies and thresholds on the normalized separation
parameter w/a for the WG modes of the families (Hz )5,1

and (Hz )10,1 of all four symmetry classes. They show, firstly,
that if the separation gets smaller, then the WG modes obtain
frequency shifts—two of the four are redshifted by almost
identical amounts, and two others are blueshifted. Secondly, if
the separation becomes smaller than a certain critical value, then
the thresholds of all four modes get considerably higher than
for the isolated disk. However, if the separation is comparable
to λ, it is possible to achieve a threshold that is somewhat lower
than the limit one for w → ∞.

V. NEAR FIELDS AND EMISSION PATTERNS

In Fig. 7, we present the near fields of the photonic-molecule
WG modes of the Hz -type belonging to the quartet of (Hz )5,1

modes. They show that the near-fields of the EE and OE mode
classes experience a greater degree of perturbation, up to the
merging together of the adjacent field spots of separate res-
onators, than the modes of the other two symmetry classes,
EO and OO, whose fields are odd with respect to the y-axis.
Note that geometrical optics fails to quantify the coupled mode
fields, and FDTD-based analysis (see [18]) generates only tran-
sient excitation fields that are quite far from steady-state ones.

Far-field emission patterns (see (A4)) are given by

Φ(ϕ) =
∞∑

p=0

µp(−i)p
(
B1

p ± (−1)pB2
p

)

×(e−iτ ± (−1)peiτ )Sp(ϕ) (9)

where τ = (κl/2) cos ϕ, and the coefficients are expressed as

B1
p = −πκxpVp(κ, ν)[2iJp(κ)Fp(κ)]−1,

B2
p = ±(−1)pB1

p . (10)

Here, the sign “+” corresponds to the modes of the EE and OO
symmetry classes, and the sign “−” corresponds to the modes
of the EO and OE classes.

Fig. 5. Normalized lasing frequencies for the modes of the families (a)
(Hz )5,1 and (b) (Hz )10,1, in two coupled GaAs disk resonators, λ =
1.55, α = 3.374, and d/a = 0.1.

To quantify the directionality of light emission, it is conve-
nient to use the value of directivity borrowed from the theory of
antennas

D =
2π

P
|Φ(ϕmax)|2, P =

∫ 2π

0

|Φ(ϕ)|2 dϕ (11)

where ϕmax is the angle of a main beam radiation and P is,
within a constant, the total power radiated by a lasing mode.

In Fig. 8, the plots of the directivity and the main beam
orientation angle in the first quadrant are given versus the sepa-
ration parameter w/a, for the coupled (Hz )5,1 modes of all four
symmetry classes. Note that omnidirectional emission results in
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Fig. 6. Threshold gains of the modes of families (a) (Hz )5,1 and (b) (Hz )10,1,
in two coupled GaAs disk resonators, λ = 1.55 nm, α = 3.374, and d/a = 0.1.
The straight line is the threshold of the corresponding mode in single microdisk.

D = 1, and that all modes of a single circular resonator (with
Φ(ϕ) = cos mϕ or sinmϕ) have D = 2. Thus, the coupling of
the lasing cavities enables enhancement of directionality. The
main beam orientation angle reveals jumps at certain values of
separation. This is because all beams vary both in orientation
and in strength, so that different beams play the role of the
“main” beam at different separations.

The inserts show the normalized emission patterns of the four
WG modes of two resonators with separations corresponding to
the maximum directivities (marked with arrows). They show
that, normally, there are four identical main beams of emission
(due to the two-fold symmetry); however, sometimes they merge

Fig. 7. Near-field portraits of four (Hz )5,1 modes, αeff = 2.63, w/a =

0.05. (a) x-even/y-even, ka = 3.15, γ = 1.58 ∗ 10−2. (b) x-even/y-odd, ka =
3.22, γ = 1.3 ∗ l0−2. (c) x-odd/y-even, ka = 3.15, γ = 2.29 ∗ l0−2. (d) x-
odd/y-odd, ka = 3.22, γ = 7.03 ∗ 10−3.

into two beams along one of the symmetry axes. At the “jump
points” in the main-beam angle dependences, the number of
equally strong beams is, correspondingly, eight or four. Note that
the OO modes of the “twice-odd” symmetry cannot have less
than four main beams, and thus they display generally smaller
values of directivity.
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Fig. 8. Dependences of the emission directivity (solid lines) and main-beam radiation angle (dashed lines) on the normalized distance between two resonators,
for the (Hz )5,1 modes. αeff = 2.63. Mode classes (a) EE, (b) EO, (c) OE, (d) OO. Far-field patterns are shown for the maximum directivities.

VI. CONCLUSION

We have demonstrated that the “cold-cavity” linear thresholds
of two identical, proximity-coupled, semiconductor microdisk
lasers forming a photonic molecule can be lowered with respect
to the corresponding mode thresholds of a photonic atom; i.e.,
a single disk. This is found from a specialized eigenvalue prob-
lem; i.e., the LEP. However, such a reduction of threshold is
relatively small and needs precise tuning of the separation be-
tween resonators. Furthermore, instead of two degenerate WG
modes of each azimuth-index family in a single circular res-
onator, the modes of two coupled resonators fall into one of
four classes forming the quartets, each mode of the quartet hav-
ing different symmetry properties across the x and the y-axes.
The threshold reduction mentioned may, in principle, take place
for the modes of any class of symmetry. However, multimode
lasing within a mode quartet may occur if the gain exceeds the
level of several thresholds. Bringing the resonators closer to
each other than some critical distance boosts the thresholds of
modes of all four classes.

The electromagnetic fields of the coupled WG modes of a
photonic molecule display more complicated portraits than for

a single resonator, and cannot be explained with simple ray-
tracing considerations. In the far-field zone, coupled modes have
more directive emission patterns than single-cavity modes, and
may display two or four identical dominant beams due to the
two-fold symmetry of the structure studied.

The LEP is easily adaptable to study arrays of microdisks
with nonuniform gain; e.g., if ring electrodes are used for current
injection. More complicated cavity shapes can be analyzed by
using the boundary IE method described in [22].

APPENDIX

COMPLEX-FREQUENCY EIGENVALUE PROBLEM

The 2-D boundary-value problem for the in-plane modal field
U(r, ϕ) involves the Helmholtz equation

[
1
r

∂

∂r

(
r

∂

∂r

)
+

1
r2

∂2

∂ϕ2
+ k2α2

eff

]
U(r, ϕ) = 0 (A1)

where the refractive index is αeff = αH,E
eff inside the cavity

and 1 outside, and transparency conditions on the contour
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L are

U−(r, ϕ)|L = U+(r, ϕ)|L ,

∂U−(r, ϕ)
∂r

∣∣∣∣
L

= βH,E ∂U+(r, ϕ)
∂r

∣∣∣∣
L

(A2)

where the superscripts “±” indicate the limiting values from
inside and outside of L, respectively, βH = (αH

eff(q))
−2, and

βE = 1. The field function must also satisfy the condition of
the local energy finiteness∫

D

(|kU |2 + |gradU |2)rdrdϕ < ∞, D ⊂ (r, ϕ) (A3)

and a condition at infinity. If k were real-valued, one could
impose the Sommerfeld radiation condition [22]

U(r, ϕ) ∼ (2/iπkr)1/2eikrΦ(ϕ), r → ∞ (A4)

However, Poynting’s theorem, applied to an eigenfunction
U(r, ϕ) leads to the conclusion that, independently of the ge-
ometry of the open resonator, real-valued eigenwave-numbers
do not exist. To comply with the physical situation, it is neces-
sary to admit complex values of k. In 2-D, the Green’s function
of (A1) is the outgoing Hankel function H1

0 (kr), whose domain
of analytic continuation is the Riemann surface of the function
Lnk. Therefore, analytic continuation of the 2-D Sommerfeld
condition to all complex k has the form known as the Reichardt
condition (see in [23], Appendix)

U(rϕ) ∼
∞∑

s=−∞
asH

(1)
s (kr)eisϕ , r → ∞ (A5)

Thus, (A1)–(A3) and (A5) form a most general frequency
eigenvalue problem in 2-D. Then, the same Poynting theo-
rem leads to the conclusion that on the 0-th sheet of Lnk, the
eigenwavenumbers can only be located in the lower halfplane.
Hence, each of them has a negative imaginary part for the se-
lected time dependence (it would be positive if it were eiωt). In
this sense they are generalized eigenvalues with corresponding
generalized eigenfunctions U(r, ϕ) that diverge at infinity as
O(e|Imk |r r−1/2).

Note that one cannot simulate a spontaneous emission rate
enhancement by studying a dipole radiating from an open cav-
ity with gain. This is because if the dipole frequency coincides
with a lasing frequency, the enhancement is unlimited. To over-
come this difficulty, one has to introduce time dependence and
saturation; i.e., nonlinearity.
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