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Abstract—An electromagnetic analysis of thin-disk semiconduc-
tor resonators with uniform and nonuniform gain regions is pre-
sented. A “cold-cavity-with-gain” Maxwellian formulation, includ-
ing accurate boundary and radiation conditions, is considered as an
eigenvalue problem, for the real-valued parameters of frequency
and threshold material gain. Although the well-known approxi-
mate effective-index method is used to reduce a three-dimensional
(3-D) field problem to a two-demensional (2-D) one, a rigorous
formulation of the latter is retained. A quasi-3-D feature is pro-
vided through full account of the multiple-wave nature and disper-
sion of the effective index. Results obtained quantify the ultralow
thresholds of the whispering-gallery modes and show the advan-
tage of a ring-shaped gain region.

Index Terms—Microdisk, threshold, whispering gallery modes.

I. INTRODUCTION AND MOTIVATION

M ICRODISK lasers were demonstrated in the 1990s as
extremely compact and ultralow-threshold sources of

light [1]–[3]. Lasing in 1–10-µm diameter GaAs disks contain-
ing quantum wells was achieved initially with a photopump
and then with the injection of current. Later, etched microdisk
lasers with quantum cascades [4], boxes [5], and dots [6] were
reported. It was realized at an early stage that the disk lasing
modes were the quasi-whispering-gallery (WG) ones whose op-
tical field traveled along the rim and experienced almost total
internal reflection. At first, the description of these modes was
done analytically using asymptotic techniques [1], [7]–[9]. Here,
the three-dimensional (3-D) problem for a finite-thickness disk
was approximately reduced to the two-dimensional (2-D) one,
i.e., to a circular resonator in the plane of the disk, with the aid
of the effective-index approach previously developed for dielec-
tric waveguides and vertical-cavity surface-emitting lasers (VC-
SELs) [10]. The assumption that the modal field vanished at the
disk rim (as for a classical WG mode) was found good enough
to explain the measured lasing frequencies. To estimate quality
factors (Q-factors), conformal mapping of the circle to the planar
geometry was used, with the subsequent consideration of tunnel-
ing via the Wentzel–Kramer–Brillouin (WKB) approximation.
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This approach demonstrated that the WG mode Q-factors ex-
ponentially depend on frequency. It should be noted, however,
that a simplified assumption about the exponential decay of the
optical field outside of the disk is incorrect. Mathematically, if
the frequency is real-valued, a time-harmonic electromagnetic
field obeys the radiation condition and therefore decays only
as O(R−1) in the 3-D case or as O(r−1/2) in the 2-D one,
where R = {r, ϕ, z}. If the frequency ω is complex-valued, as
in eigenfrequency problems (see Appendix II), then there is no
decay at all, as the modal field a priori diverges at infinity as
O(e|Imω |R/cR−1) or O(e|Imω |r/cr−1/2), where c is the velocity
of light.

The analytical approach of [7]–[9] is not applicable to a cavity
with a more complicated shape, or to nonuniform gain or 3-D
problems. Therefore, the finite-difference time-domain (FDTD)
numerical method was used in [11] for the full 3-D-disk prob-
lem and, in [12], for the 2-D models. Commercial FDTD codes
are more and more attractive today as flexible and ready-to-use
simulation tools. Note, however, that so far an FDTD study of
an open resonator entails severe difficulties in how to limit in-
finite host space and then mesh it properly [13]. Well-known
sources of errors entering FDTD solutions are the staircasing of
the curved material boundaries and the reflections from the vir-
tual boundary of the computational window [14]. Additionally,
FDTD is time and memory expensive even for simple geome-
tries. Therefore, a suggestion of [15], [16] to consider microdisk
lasing modes with an integral equation (IE) approach was a step
in the right direction. However, it was not realized there.

In the aforementioned papers, the problem studied was that
of calculating the natural modes of the passive open resonators.
Once the complex-valued natural frequencies were found, it was
stated that those with the largest Q-factors (i.e., the smallest val-
ues of Im ω) corresponded to the lasing modes. It is easy to
see that in this way the lasing phenomenon is not addressed
directly. A complex-frequency eigenvalue problem can charac-
terize only one of two basic features of lasing, namely, the dis-
crete frequency spectrum. Another one, i.e., the specific value of
threshold gain needed to force a mode to become lasing, is not
included in this formulation, although sometimes researchers
seek the value of the gain parameter, say γ, that brings the
function Im ω(γ) to zero. It is also worth mentioning that the
FDTD method is not applicable directly to eigenvalue problems;
instead, it implies placing a pulsed source inside a cavity, study-
ing the transient response, and eventually extracting the natural
frequencies and Q-factors from such a response.
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Fig. 1. 3-D geometry of a semiconductor circular disk microresonator and
relevant problems of reduced dimensionality.

Therefore, in [17] we proposed the Lasing Eigenvalue Prob-
lem (LEP), specifically tailored to extract not only frequencies
but also threshold gains from nontrivial solutions to the disk
natural-field problem. In the present paper, we extend this work
to accurately account for the effective-index dispersion and
study the effect of gain nonuniformity on the lasing thresholds.
Such a study is valuable for a better insight into the fundamental
optical wavelength-scale phenomena that occur in microcavity
lasers.

In Section II, we consider, both analytically and numerically,
a LEP for the 2-D model of microdisk laser with uniform gain.
Unlike previous works, we keep a rigorous 2-D formulation
and take into account, in comprehensive manner, the multivalue
character and the dispersion of the disk effective index.
Section III presents a comparison of our results with the experi-
mental data of [5]. In Section IV, we study spectra and thresholds
for disk lasers with nonuniform gain and show ways of control-
ling the threshold in such cavities. Conclusions are presented in
Section V. For convenience, Appendix I contains the essentials
of the effective-index approach used to reduce dimensionality of
the thin-disk problem. To help with general mathematical back-
ground, Appendix II reviews the basics of the eigenfrequency
problems for the complex-valued natural frequencies and gener-
alized natural modes of open resonators, and gives a comparison
with the more adequate “cold-cavity” LEP model of lasing.

II. MICRODISK LASER WITH UNIFORM GAIN

Fig. 1 shows the geometry of a microdisk cavity. Suppose
that disk of the thickness d and radius a is nonmagnetic and
isotropic, and has real-valued refractive index α; the host
medium is vacuum. The electromagnetic field is assumed to
have the time dependence e−iω t ; then free-space wavenumber
is k = ω/c = 2π/λ, where λ is wavelength.

Assume that we have already reduced the problem to the 2-D
model as discussed in Appendix I. Then we can treat either of
two polarization states separately, with the aid of one function U
(i.e., Ez or Hz component in the disk plane). The LEP statement
implies (see Appendix II) that U has to satisfy the 2-D Helmholtz
equation (A8) where, if r < a, the coefficient αeff is replaced
with the complex-valued parameter ν = αH,E

eff(q) − iγ; otherwise,
αeff = 1. Here, the effective index is associated with the qth
guided wave of a slab of the same thickness as the disk (1 <

αH,E
eff(q) < α) and satisfies (A11). In Section II, we assume that

γ > 0 is constant, i.e., the gain is uniform across the disk, while
two cases of nonuniform gain will be analyzed in Section IV. At

the disk rim, the transparency conditions (A12) hold, with βH =
ν−2 and βE = 1. The condition of the local energy finiteness is
given by (A13). Thanks to the real-valued k, U obeys the usual
2-D radiation condition (A15) and does not diverge at infinity.

Considering the LEP, we look for two real numbers, κ = ka
and γ. The first of them is the normalized lasing frequency,
while the second is the threshold material gain. Here, we stress
that the value of the lasing threshold γ extracted from the LEP
cannot be simply derived from the Q-factor (or decay rate, Im k)
for the eigenfrequency problem, because ν enters the LEP not
only as a product with k but also independently.

The circular symmetry leads to the separation of variables:

U(r, ϕ) = F (r)Φ(ϕ). (1)

Substituting this into (A8), we can see that

d2F

dr2
+

1
r

dF

dr

(
ν2r2 − m2

r

)
F = 0,

d2Φ
dϕ2

+ m2Φ = 0

(2)
where, thanks to the periodicity in ϕ,m = 0, 1, 2 . . .. Taking
into account (A13) and (A15), we conclude that

U(r, ϕ) =
{

AJm (κνr/a), r < a

BH
(1)
m (κr/a), r > a

} {
cos
sin

}
mϕ (3)

where Jm and H
(1)
m are the Bessel and Hankel functions, re-

spectively. Note that, mathematically, any lasing mode field is a
stationary (i.e., standing) wave; there are no separate clockwise
and counterclockwise propagating waves.

Thus, all modes in the circular cavity split into independent
families according to the azimuth index m, and those with m >
0 are twice degenerate. For each family, the conditions (A12)
generate a complex-valued characteristic equation:

Jm (κν)H ′(1)
m (κ) − βE,H νJ ′

m (κν)H(1)
m (κ) = 0 (4)

whose roots are eigenvalues. To number them, we introduce the
second index n, which will correspond to the number of the
field variations in the radial direction. Furthermore, we recall
that the effective-index method introduces a third index q (see
Appendix I), so that the roots are denoted as (κmnq , γmnq ),
where m, q ≥ 0, n ≥ 1. Note that reduction of (4) to the “no-
leakage” form (as in [1]–[9]), Jm (κν) = 0 or J ′

m (κν) = 0,
yields zero thresholds.

For accurate computation of the lasing spectra and thresh-
olds in realistic semiconductor microdisks, we applied a two-
parameter secant-type iterative method (see Fig. 2). To provide
a quasi-3-D feature to our analysis, we accurately accounted
for the dispersion of the effective index as one of the roots of
the corresponding dispersion (A11). The cylindrical functions
in (4) were calculated to machine precision with forward and
backward recursion [18].

As initial guess we took the following expressions:

κH,E
mn ≈ π

2α

(
m + 2n ∓ 1

2

)
(5)

and also

γH,E
mn ≈ π

2κH,E
mn

ln
(

α + 1
α − 1

)
, if κH,E

mn � m (6)
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Fig. 2. Adaptive computational algorithm.

or

γH,E
mn ≈ CH,E e−2m ln(2m/κH , E

m n ), if m/α � κH,E
mn � m

CE =
e

4κE
mnα

(
2m

eκE
mn

)3

CH =
ακH

mne

4
[
m + (κH

mn )2 + m2α2
]

(
2m

eκH
mn

)3

. (7)

Note that (7) quantifies exponentially small thresholds of the
WG modes. To derive these formulas from (4), we used the
asymptotic expressions for the cylindrical functions [18].

The lasing spectra and thresholds in a GaAs microdisk of the
thickness d = 0.1a, computed with account of the dispersion of
effective indices of two principal slab waves TE0 and TM0, are
presented in Figs. 3 and 4, respectively.

The plane (κ, γ) happens to be inhabited by the LEP eigenval-
ues in a nonuniform manner. One can clearly see the hyperbolas
γ ≈ const/κ given by (6) and “saturated” with modes of all the
mth families. These modes have very high thresholds, γ > 0.01.
Above that curve, there are no lasing modes. In contrast, in each
family with m > αeff , the modes which have κ < m but still
κ > m/αeff display drastically smaller values of γ. These values
are close to (7) and smaller for larger m, as predicted. Therefore,
below the hyperbola mentioned the eigenvalues form inclined
“layers,” with each “layer” corresponding to a certain radial in-
dex n. The effect of the index dispersion is seen in the varying
inclination of “layers” as compared to [17, Figs. 2 and 3].

Thus, the modes in a circular cavity do not automatically
show the “whispering” property, i.e., do not have γ ≈ e−constκ

as given by (7). This is true only for the modes (not necessar-
ily with n = 1) that experience quasi-total internal reflection
at the rim of the cavity [8], [9]. Still, the modes having single
variation in radius (n = 1) form the “aristocracy” of the WG
modes—they inhabit the lowest-threshold “layer.” A compar-

Fig. 3. Lasing spectra and threshold gains for the Hz -polarized modes of the
families (Hz )m n0 in a GaAs disk, α = 3.374 and d/α = 0.1.

Fig. 4. The same as in Fig. 3 for the modes of the families (Ez )m n0.

ison of Figs. 3 and 4 shows the effect of the smaller effec-
tive index, for the same disk and index q, of the Ez -polarized
modes than of the Hz -polarized ones. If, e.g., λ0 = 1.55 µm and
d = 200 nm, then αE

eff(0) = 1.31 and αH
eff(0) = 2.64. Therefore,

the Ez -modes have only a small chance for lasing unless κ is
large enough. Near-field portraits of some modes are given in
Figs. 5 and 6. They demonstrate a relative field confinement for
the WG modes and a relative leakage for the non-WG ones.

Similar data were computed for the other effective indices
with q > 0. They showed considerable blueshifts of the lasing
frequencies and higher thresholds due to the smaller effective
contrast (see Appendix I).

III. VERIFICATION OF THE THEORY

To estimate the validity of the new results obtained, we have
compared them with the experimentally measured lasing spectra
of a GaAs microdisk cavity with InAs quantum boxes that can
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Fig. 5. Near E-field portraits for the Ez -polarized lasing
modes of a GaAs microdisk, α = 3.374 and d/α = 0.1. (a)
(Ez )1,1,0, ka = 2.9, γ = 0.23, αeff = 1.01; (b) (Ez )5,1,0, ka = 6.65, γ =

0.17, αeff = 1.12; (c) (Ez )10,1,0, ka = 8.7, γ = 3.1 × 10−2, αeff = 1.46;
(d) (WGEz )15,1,0, ka = 10.03, γ = 1.33 × 10−4, αeff = 1.86.

Fig. 6. The same as in Fig. 5 for the Hz -polarized lasing modes.
(a) (Hz )1,1,0, ka = 2.5, γ = 0.29, αeff = 1.55; (b) (Hz )5,1,0, ka =

4.08, γ = 7.4 × 10−2, αeff = 1.98; (c) (WGHz )10,1,0, ka = 5.99, γ =

1.4 × 10−4, αeff = 2.36; (d) (WGHz )15,1,0, ka = 7.65, γ = 6.8 × 10−8,
αeff = 2.58.

be found in [5, Fig. 2]. The corresponding photoluminescence
curve is shown at the bottom of our Fig. 7, with the original
notations and mode indices from [5].

At the top of the figure we show the same strip, in frequency,
on the (κ, γ) plane, with the eigenvalues computed by our model
for several αE,H

eff(q)(κ). A comparison reveals that the WG modes
(Hz )23,1,0 to (Hz )26,1,0 were identified in [5] quite accurately.
However, other modes that go lasing in the experimental cav-
ity are identified here differently from [5]; namely, they are
the (Ez )22,1,0 to (Ez )25,1,0 ones from the second WG-mode
“layer.” Further, one can notice that experimental spikes are
grouped in pairs, which is explained by the removal of the dou-
ble degeneracy of the disk modes due to the surface roughness.
This supposition is supported by the photo of the microdisk
[5, Fig. 1] that shows roughness of some 20-nm scale and a
large nonsymmetric pedestal. Moreover, a closer inspection of
the experimental curve reveals small peaks (marked ×) at the
very onset of lasing. Our theory readily suggests that these
modes are the (Hz )20,2,0, (Hz )21,2,0, and (Ez )21,2,0 ones. All
the other modes were apparently below threshold with the pump
power used in the experiment. We stress that to obtain this
agreement we had to account for the dispersion of the effec-
tive indices involved. Note that the disk in [5] was rather thick,
with d/a = 0.17. Comparisons with the other published data
for the lasing frequencies of the thinner disks (not shown here)
demonstrated even better agreement with our simulations.

Fig. 7. Comparison of the results computed with the model of this paper
(upper part) and the lasing spectrum measured in [5] (lower insert). GaAs/InAs
microdisk parameters: α = 3.374, α = 1.5 µm, d = 0.25 µm.

IV. MICRODISK LASERS WITH NONUNIFORM GAIN

Injection lasers are frequently designed as stacked structures
where a microdisk cavity is sandwiched between the substrate
and metal contacts [11]. The density of injected carriers, and,
hence, the material gain, can then have greater values in the
center than at the rim. Furthermore, it is possible to design
lasers with patterned contacts to produce nonuniform gain in
order to tailor the lasing characteristics [19]. To simulate these
nonuniform gain features, we shall assume that the gain γ is
step-like, i.e., uniform inside a circle of radius b < a and zero
outside. On using an additional transparent boundary condition
at r = b, the “cold-cavity-with-gain” characteristic equation is
derived as (see (8) at the bottom of the page), where the new
parameter is δ = b/a. Fig. 8 illustrates the (Hz )mn0-type mode
spectra and thresholds for a circular-shaped active area having
a radius half that of the disk.

The comparison of this figure with the similar one for a
uniform-gain GaAs disk (Fig. 3) shows that the modes keep their
location in frequency. However, they have thresholds higher by

det




H
(1)
m (κ) −Jm (κα) −H

(1)
m (κα) 0

H
′(1)
m (κ) −βνJ ′

m (κα) −βνH
′(1)
m (κα) 0

0 Jm (καδ) H
(1)
m (καδ) −Jm (κνδ)

0 βνJ ′
m (καδ) βνH

′(1)
m (καδ) −J ′

m (κνδ)


 = 0. (8)
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Fig. 8. Lasing spectra and threshold gains for the Hz -polarized modes of the
families (Hz )m n0 in a GaAs disk with circular gain extending to the half of
disk radius., α = 3.374 and d/a = 0.1.

Fig. 9. Thresholds of the (Hz )m 1,0 modes in a GaAs disk with step-like gain
on the relative outer (solid curves) and inner (dashed curves) radius of the gain
area. α = 3.374 and d/a = 0.1.

9 to 5 orders of magnitude. To make this effect clearer, Fig. 9
presents the dependences of the thresholds on the relative radius
of gain area for the (Hz )m1,0 modes.

Alternative designs of microdisk laser, i.e., with a ring gain
along the rim, have been realized using an axicon-assisted hol-
low photopump beam [20] and a ring-shaped injection elec-
trode [21]. For this type of configuration, our analysis leads to
an equation like (8) where the values ν and α exchange places.
Subsequent computation of the thresholds shows that now they
are practically the same as for a disk with uniform gain, even
if the ring-gain width is a small fraction of the disk radius. The
larger the mode index m and the smaller the n, the narrower the
allowable width of the pumped area. This can be seen in Fig. 9,
where the plots of thresholds for the ring-gain disk are presented
versus the relative radius of the gain area.

V. CONCLUSION

We have demonstrated that the cold-cavity thresholds of semi-
conductor microcavity lasers can be efficiently studied with a
specialized eigenvalue problem, i.e., the LEP. Even the analysis
of an approximate, effective-index-based, quasi-3-D LEP for
a circular microdisk—if done accurately—brings valuable in-
formation. We have shown that in the plane (κ, γ) there are
domains free of lasing modes. We have also quantified the
most famous feature of microdisk lasers—the ultralow thresh-
olds of the WG modes. This includes direct characterization
of several effects: 1) disk modes display the WG character
only if the condition of almost total internal reflection is satis-
fied, κE,H

mnq < m < αE,H
eff(q)κ

E,H
mnq ; 2) (Hz )mn0 modes have lower

thresholds than their (Ez )mn0 counterparts, thanks to the prop-
erty that αH

eff(0) > αE
eff(0); and 3) in larger and thicker disks,

mode competition occurs, and the nearest higher order, in q,
modes (Hz )m1,1 have also to be considered.

The LEP is easily adaptable to microdisk laser configurations
with nonuniform gain areas. We have shown that placing the
active zone at the disk center, as typical for injection lasers, is
catastrophic for the ultralow thresholds. In contrast, if the gain
forms a ring along the disk edge, its width can be kept very small
without raising the threshold. This effect leads to reduction of
pump power—(see [20], [21]).

Our further goal is to study LEPs for more complicated shapes
of microcavities using a boundary IE method [22].

APPENDIX I

REDUCTION OF DIMENSIONALITY

A. 3-D Formulation

The full 3-D frequency eigenvalue problem implies that we
seek the natural frequencies k, which generate nontrivial fields
{E,H} solving, off the disk surface S, the set of homogeneous
Maxwell equations with a piecewise-constant refraction index
equal to α inside S and 1 outside:

curl E = ikZ0H, curl H = −ikα2Z−1
0 E (A1)

where Z0 = (µ0/ε0)1/2 is free-space impedance. Additionally,
transparent boundary conditions are satisfied on S

E−
tan = E+

tan, H−
tan = H+

tan (A2)

where the superscripts “±“ refer to the limiting values of the
functions from inside and outside the disk, respectively, and the
subscript tan is for the field components lying tangential to S.
Moreover, the electromagnetic energy must be locally integrable
to prevent source-like field singularities:

∫
V

[α2E2(R) + H2(R)] dR < ∞, V ⊂ (r, ϕ, z). (A3)

Further, we must also include a certain condition at infin-
ity (R → ∞). This plays a very important role and eventually
defines the localization of eigenvalues. For example, if one is in-
terested in the real-valued k, one can impose the Silver–Muller
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radiation condition [23]

lim
R→∞

{E(R) − Z0H(R) × R/R} = 0. (A4)

This is the electromagnetic vector analogue of the Sommerfeld
condition known in the theory of scalar waves governed by the
Helmholtz equation; it provides for the spherical-wave behavior
and, in addition, eliminates nontransverse field components at
infinity. One can equivalently write (A4) as a set of asymptotic
requests:

e−ikR{ER,HR} ∼ 0, Eϕ = Z0Hθ ∼ eikR

R
Φ1(ϕ, θ)

Eθ = −Z0Hϕ ∼ eikR

R
Φ2(ϕ, θ), R → ∞. (A5)

However, the Poynting theorem, applied to an eigenfunction
{E,H} and its complex conjugate, leads to the conclusion
that, independently of the geometry of the open resonator, real-
valued eigenfrequencies do not exist. Therefore, to comply with
the physical situation, it is necessary to admit complex values
of k. Here, (A5) is convenient as it holds for any complex k.

Then the same Poynting theorem leads to the conclusion
that the eigenvalues can be located only in the lower halfplane
of the k-plane; i.e., each of them has a negative imaginary part
for the selected time dependence (it would be positive if it were
eiωt). In this sense, they are generalized eigenvalues generating
generalized eigenfunctions {E,H}, whose components diverge
at infinity as O(e−ImkR/R).

B. Effective-Index Reduction to 2-D Problem

For a thin disk, reduction of dimensionality from 3-D to 2-D is
commonly based on the so-called effective-index model [1]–[9].
As we also use it here, we would like to present it from the
mathematical point of view. In its core, one finds assumption that
the field dependences on z and in-plane coordinates r = (r, ϕ)
are separable in the whole space, e.g.,

Ez (R) = VE (z)UE (r, ϕ), Hz (R) = VH (z)UH (r, ϕ).

(A6)

In fact, this is incorrect because neither the boundary conditions
on the whole disk surface S, nor the radiation condition at
R → ∞, is separable. However, such an assumption leads to
independent differential equations for the functions of z and r,
commonly written as[

d2/dz2 + k2α2 − k2
(
αE,H

eff

)2
]

VE,H (z) = 0 (A7)

where α turns 1 off the interval |z| < d/2 (see Fig. 1), and[
1
r

∂

∂r

(
r

∂

∂r

)
+

1
r2

∂2

∂ϕ2
+ k2α2

eff

]
UE,H (r, ϕ) = 0 (A8)

where the refractive index αeff = αH,E
eff is inside the cavity and

one is outside. The boundary conditions for these functions
depend on the polarization. For the functions of z, it is required

Fig. 10. Dispersion characteristics of the (Ez )q -waves of infinite dielectric
slab made of GaAs. α = 3.374.

that

VH,E (±d/2 ∓ 0) = VH,E (±d/2 ± 0)

dVH,E

dz

∣∣∣∣
z=±d/2∓0

= βH,E dVH,E

dz

∣∣∣∣
z=±d/2±0

(A9)

where βH = α−2 and βE = 1.
Unfortunately, there is no “continuous” way to derive a one-

dimensional (1-D) radiation condition at z → ±∞ from the
3-D condition (A5). Anyway, to reproduce the outgoing wave
propagation off the disk plane, one has to require that

VE,H (z) ∼ eik(1−α2
eff )

1/ 2|z |, z → ±∞. (A10)

Equations (A7), (A9), and (A10) form two familiar 1-D eigen-
value problems for the parameters αH

eff and αE
eff , which are iden-

tified as the normalized propagation constants of TE or TM
waves of the infinite dielectric slab of thickness d and index α
(Fig. 1). They are reduced to the transcendental equations for
the even and odd waves, respectively,

tan(pkd/2) = −βE,H gp−1, cot(pkd/2) = −βE,H gp−1

(A11)

where g2 = (αE,H
eff )2 − 1 and p2 = α2 − (αE,H

eff )2.
For each type, there is a finite number QH,E ≥ 1 of real-

valued roots αH,E
eff(q) : 1 < αH,E

eff(q) < α, corresponding to the

guided waves (q = 0, . . . , QH,E − 1). The largest of them
are of the TM0 and TE0 waves, respectively. The even (odd)
value of the wave index indicates the symmetry (antisymmetry)
of the wave field Ez or Hz with respect to the middle plane of
the slab. Plots in Figs. 10 and 11 demonstrate the dependences
of several effective indices on the frequency normalized by the
disk radius, i.e., on ka = kd(d/a)−1.

APPENDIX II
2-D EIGENVALUE PROBLEMS

A. Complex Frequency Eigenvalue Problem

On determining the set of effective indices αH,E
eff(q) from (A11),

one obtains independent 2-D problems for the in-plane fields
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Fig. 11. The same as in Fig. 10 for the (Hz )q -waves.

UH,E (r, ϕ). Each problem involves (A8) with a piecewise con-
stant refractive index and the 2-D conditions:

U−(r, ϕ)|L = U+(r, ϕ)|L
∂U−(r, ϕ)

∂r

∣∣∣∣
L

= βH,E ∂U+(r, ϕ)
∂r

∣∣∣∣
L

(A12)

where superscripts “±” indicate the limiting values from in-
side and outside of the cavity contour L, respectively, βH =
(αH

eff(q))
−2, and βE = 1. The field function must also satisfy

the condition of the local energy finiteness:∫
D

(|kU |2 + |grad U |2)rdrdϕ < ∞, D ⊂ (r, ϕ) (A13)

and a condition at infinity valid for all complex k. Here, one
meets the same problem as with function V (z). In 3-D, we
could simply take (A5) with complex-valued k thanks to the
fact that the fundamental solution to the 3-D Helmholtz equa-
tion eikR/R was analytic in k. In 2-D, the same role is played by
the outgoing Hankel function H

(1)
0 (kr), whose domain of ana-

lytic continuation is the Riemann surface of the function Lnk.
Therefore, analytic continuation of the Sommerfeld condition
to all complex k in 2-D has a more complicated form known as
the Reichardt condition [24, Appendix]

U(r, ϕ) ∼
∞∑

s=−∞
asH

(1)
s (kr)eisϕ , r → ∞. (A14)

Thus, (A8) and (A12)–(A14) form a frequency eigenvalue
problem in 2-D. Note, however, to arrive at it one has to make a
series of inconsistent assumptions: 1) when imposing (A9) one
neglects the finiteness of cavity radius; 2) when imposing (A12)
one neglects the finiteness of the cavity thickness; and 3) when
imposing (A10) and (A14) one admits completely different in-
plane and off-plane field behavior. Other important observations
are that: 4) effective index αE,H

eff(q) is a function of frequency;
and 5) it has a discrete set of values corresponding to different
slab waves.

Generally speaking, a 3-D problem is not equivalent mathe-
matically to the “sum” of 1-D and 2-D problems just because
there is no continuous transformation of 1-D or 2-D space
into the 3-D space. Nevertheless, it is well known that the re-
sults obtained with the effective-index method are often more
accurate than might be expected.

B. Lasing Eigenvalue Problem

Contrary to Appendix II-A, one may keep k real-valued and
consider the eigenvalue problem in a modified formulation [17].
Assuming that it has been reduced to the 2-D model as discussed
above, replace, in (A8), αeff with ν = αH,E

eff(q) − iγ, if r < a, and
1 otherwise, where the new real-valued parameter appears—
material gain, γ > 0. At the disk contour, impose the trans-
parency conditions (A12) with complex ν, so that βH

ef (q)f = ν−2

and βE
eff = 1, and keep the condition (A13). Note, however, that

thanks to the real-valued k, there is no need for condition (A14),
and impose the usual 2-D Sommerfeld radiation condition:

U(r, ϕ) ∼ (2/iπkr)1/2eikrΦ(ϕ) r → ∞. (A15)

We may now consider (A8), (A12), (A13), and (A15) mod-
ified in the above sense as a lasing eigenvalue problem (LEP).
This means that, instead of looking for the real and imaginary
parts of the modal wavenumber, as in the frequency eigenvalue
problem, we are going to look for two real numbers, k and γ.
The first of them is the lasing frequency while the second is the
threshold material gain. Note that the value of gain in inverse
centimeters can be found as γ0 = kγ.

Of course, a LEP can be formulated in 3-D as well, as a lasing
counterpart of (A1)–(A4), and account for the gain nonunifor-
mity in vertical direction.

Thanks to the well-developed theory of the operator-valued
functions, the basic properties of the lasing eigenvalues can be
established even before their computation. The proof is based on
the analytical regularization (see [25]), i.e., equivalent reduction
of the considered boundary-value problem to a set of the Fred-
holm second-kind boundary IEs of Muller’s type [22], and the
use of the operator extensions of the Fredholm theorems [26].
It is found that all γ > 0 and:

1) eigenvalues form a discrete set on the plane (k, γ);
2) each eigenvalue has finite multiplicity;
3) each eigenvalue depends on L, d, and α in piece-

continuous or piece-analytic manner, and this property
can be lost only if eigenvalues coalesce.

Note that one cannot simulate a spontaneous emission rate
enhancement by studying a dipole radiating from an open cav-
ity with gain. This is because if dipole frequency coincides with
a lasing frequency, the enhancement is unlimited. To overcome
this difficulty one has to introduce time dependence and satura-
tion, i.e., nonlinearity.
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