
20 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 47, NO. 1, JANUARY 2011

Optical Theorem Helps Understand Thresholds of
Lasing in Microcavities with Active Regions

Elena I. Smotrova, Member, IEEE, Volodymyr O. Byelobrov, Student Member, IEEE,
Trevor M. Benson, Senior Member, IEEE, Jiří Čtyroký, Senior Member, IEEE,
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Abstract— Within the framework of the recently proposed
approach to view the lasing in open microcavities as a linear
eigenproblem for the Maxwell equations with exact boundary
and radiation conditions, we study the correspondence between
the modal thresholds and field overlap coefficients. Macroscopic
gain is introduced into the cavity material within the active region
via the “active” imaginary part of the refractive index. Each
eigenvalue is constituted of two positive numbers, namely, the
lasing wavenumber and the threshold value of material gain.
This approach yields clear insight into the lasing thresholds of
individual modes. The Optical Theorem, if applied to the lasing-
mode field, puts the familiar “gain = loss” condition on firm
footing. It rigorously quantifies the role of the spatial overlap
of the mode E-field with the active region, whose shape and
location are efficient tools of the threshold manipulation. Here,
the effective mode volume in open resonator is introduced from
first principles. Examples are given for the 1-D cavities equipped
with active layers and distributed Bragg reflectors and 2-D
cavities with active disks and annular Bragg reflectors.

Index Terms— Eigenvalue problem, lasing threshold, microcav-
ity laser, optical theorem, overlap coefficient.
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I. INTRODUCTION

COMPREHENSIVE microlaser models try to account
for several physical mechanisms, most notable of them

being transport of carriers, heating, and optical confinement,
coupled together in a nonlinear manner [1]–[3]. Still, useful
information can be obtained if all non-electromagnetic effects
are neglected, and the optical modes are viewed as solutions
of the linear set of source-free Maxwell equations.

Until recently, linear modeling of microdisk and other
microcavity lasers has implied exclusively the calculation of
the natural modes of the “cold” or, equivalently, passive open
dielectric resonators. Mathematically, this means solving the
time-harmonic Maxwell eigenvalue problem for the complex-
valued natural frequencies ω or wavenumbers k = ω/c, where
c is the free-space light velocity. These eigenvalues form
a discrete set and hence can be numbered using, say, the
index s. Then the modes with the largest Q factors, i.e.,
Qs = Reks/2|Imks |, are associated with the lasing [4]. The
eigenfunctions corresponding to these eigenvalues are the
modal fields; they decay in time as e−|Imks |ct but grow in space
as e|Imks |R/R far from the cavity ( �R = {R, θ, ϕ}).

Analytical treatment of microcavity modes is possible only
in the canonical cases of plane-parallel [in (1-D)], concentric
circular [in (2-D)] and spherical [in (3-D)] geometries, where
the rigorous separation of variables leads to explicit charac-
teristic equations. Still, simple shapes are not always easy
for analysis; for instance, even a rough analytical estimation
of Q factor of a whispering gallery (WG) mode needs fine
techniques based on elaborate asymptotics of special functions
[5]. That is why, although formulas for mode frequencies in
2-D cavities with annular Bragg reflectors (ABRs) are found
in [6], [7], their Q factors are absent there. Computing the
complex eigenfrequencies from the associated determinantal
equations is also a painful task because of the mode couplings.
Therefore, some authors, like [8], try to avoid it by using the
“alternative” definition of Q factor as the ratio between the
stored and lost powers. We will discuss this relation later;
here, we only note that, if used alone, this expression does not
show that the eigenfrequencies are discrete and (erroneously)
suggests thinking that Q factor is a continuous function of
frequency. To avoid this pitfall, one should always use the
mathematical definition as given above.

Note that geometrical optics, in the form of the billiards
theory [9]–[11], has led to important discoveries like the
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“bow-tie” modes in stadium cavities, but fails to quantify the
modal Q factors. Adding the Snell law and Fresnel coefficients
has limited effect, as it is based on the assumption of a
locally flat boundary illuminated by a plane wave, and realistic
microcavities are far from this situation. Besides, billiards
theory fails to grasp the mode discreteness.

On the other hand, finite difference time domain (FDTD)
codes that are important today are not able to solve the
eigenvalue problems directly. Evaluation of the Q factors is
done via studying Fourier transform of a transient signal [12].
The result depends on the size and shape of computation
window and the choice of the source and observation points,
suffers from the staircasing of the cavity boundary, and needs
prohibitively large time intervals in the numerical Fourier
transform to visualize the peaks with Q > 105 [13]–[15].

Therefore, a powerful current trend (see [16]) is the use of
integral equation (IE) methods [17]–[21]. As a matter of fact,
the IE approach proves that viewing dielectric open resonators
as stable, unstable, or chaotic is pointless with full-wave
formalism; the chaos appears only in ray-like approximation.

In general, cold-cavity modeling has proved to be an
adequate way for predicting the frequency of lasing, which is
determined by the cavity shape, size, and material. Moreover,
tailoring the shape has become a widely recognized engineer-
ing tool for improving the emission directionality [11].

The lasing phenomenon, however, is not addressed directly
through the Q factor; neither the presence of the active region
nor the specific value of material gain that is needed to force
a mode to lase is included in the formulation. As a result, the
Q-factor theory is unable to explain why in a stadium-shape
cavity the lasing often occurs in the “bow-tie” modes, whose
Q factors are several orders lower than those of the WG-like
modes [22]. To answer this question, complicated nonlinear
descriptions of the lasing have been proposed [23], [24]. A
similar situation is the effect of the lower threshold photopump
power for the WG-mode microdisk laser with a hollow pump
beam [25]. The mentioned drawback is quite unfortunate, as
most of the microcavity lasers either use spatially nonuniform
pumping or contain active regions optically coupled with
passive elements such as distributed Bragg reflectors (DBRs).

The idea of introducing material gain to simulate the lasing
had been in the air since the invention of lasers. Physically
transparent “gain = loss” condition has become a ubiquitous
tool in semiclassical laser physics [1], [26], [27] based on
the ray-tracing (essentially 1-D) model of a laser cavity. To
determine the lasing frequency, another phenomenological
condition of the 2π-multiple increment of the phase of optical
ray making one roundtrip in such a cavity is also necessary.

On the other hand, in the 1970s there appeared a brief and
intensive discussion on the scattering by “negative-absorption”
particles [28], [29]. This research, however, was abandoned
after it was realized that, in the scattering problem, infi-
nitely large scattered fields could be obtained. Solving the
eigenfrequency problem in the presence of gain is free from
that defect. It was attempted in [30], and the conditions of
obtaining Imks = 0 were studied. A similar approach had
been used sometimes when studying vertical cavity surface-
emitting lasers (VCSELs) and other lasers [31]–[36]. More
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Fig. 1. Generic geometry of a microcavity with a partial active region.

recently, active ABR resonators were studied in 2-D [37] and
quasi-3-D manner [38], [39] using eigenvalue problems.

Unlike the latter publications and the earlier ones, [40]
presented a complete Maxwellian formulation of the lasing
eigenvalue problem (LEP) and systematically applied it to
the active circular cavity as a 2-D model of uniformly active
thin microdisk. Further studies of stand-alone and coupled
microlasers within this formulation can be found in [41]–[47].

In the remainder of this paper, Section II gives the problem
formulation and presents the Optical Theorem (OT). Gen-
eral properties of the fully and partially active cavities are
considered in Sections III and IV, respectively. Sections V
and VI, respectively, present illustrative numerical data for
the lasing modes in flat-layered (1-D) and circular-concentric
(2-D) cavities. Conclusions are summarized in Section VII.

II. OPTICAL THEOREM FOR LASERS

A. Basic Equations

Consider a generic 3-D laser geometry shown in Fig. 1.
Here Vd and Va are passive-dielectric and active-dielectric
regions with boundaries Sd and Sa , respectively, and Vmin is
the domain inside the so-called minimum sphere, i.e., a sphere
of the minimum radius Rmin containing both Vd and Va . Note
that it may or may not contain a free space part V f , and hence
the whole passive part of the open cavity is Vp = Vd +V f . The
importance of the minimum sphere is that, outside of it, the
field is a superposition of solely outgoing waves while inside
the field contains the ingoing waves as well: this is what is
necessary to build a resonance.

In LEP, we seek real-valued pairs of numbers (k, γ ), which
generate nonzero time-harmonic fields { �E, �H }e−iωt , by solv-
ing off, Sd and Sa , the set of Maxwell equations

curl �E = ik Z0 �H , curl �H = −ikν2 Z−1
0

�E (1)

where Z0 = (µ0/ε0)
1/2 is free-space impedance, k = ω/c,

the piecewise-constant refractive index ν equals 1 in V f and
out of Vmin, αd in Vd (Imαd ≥ 0), and αa − iγ (αa, γ > 0)
in Va , and all materials are assumed nonmagnetic. On Sd and
Sa , the continuity conditions are requested

�E−
tan = �E+

tan,
�H −

tan = �H +
tan (2)

where the superscripts “±” refer, respectively, to the limiting
values of the functions from inside and outside Sd or Sa , and
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Fig. 2. Quantum well buried in a passive slab cavity in free space.

the subscript “tan” is for the field components lying tangential
to them. Besides, the time-averaged electromagnetic energy
must be locally integrable to prevent source-like singularities∫

V ⊂R3

[
Z−1

0 Re
(
ν2

)
| �E|2 + Z0| �H |2

]
dv < ∞. (3)

Further, a condition at infinity, at R → ∞, must be added.
If the domains Vd and Va are finite and k is real-valued, this
is the Silver–Muller radiation condition [48]

lim
R→∞

{ �E( �R) − Z0 �H ( �R) × �R/R
}

= 0. (4)

This vector condition provides for the spherical-wave be-
havior at infinity and, in addition, eliminates non-transverse
field components. In 1-D and 2-D problems, it reduces to the
scalar Sommerfeld radiation condition. One can equivalently
write (4) as a set of asymptotic requests [48]

Eϕ = Z0 Hθ ∼ eik R

k R
	(1)(θ, ϕ), ER, HR ∼ 0

Eθ = −Z0 Hϕ ∼ eik R

k R
	(2)(θ, ϕ), R → ∞

(5)

where dimensionless angular-pattern functions 	(1,2)(θ, ϕ)
indirectly depend on k, γ , αd , αa , and Sd , Sa .

The fundamental properties of the lasing eigenvalues can
be established for an arbitrary open cavity with an active
region. This is based on the analytical regularization (see
[49]), i.e., equivalent reduction of the boundary-value problem
(1)–(4) to a set of the Fredholm second-kind boundary IEs of
Muller’s type [50], and the use of the operator extensions of
the Fredholm theorems [51]. It is found that the eigenvalues
form a discrete set on the plane (k, γ ), so that they can be
counted with the aid of some index, say s; each (ks, γs) has
finite multiplicity and depends on Sd , Sa and αd , αa in a piece-
continuous or piece-analytic manner, and this property can be
lost only if eigenvalues coalesce.

For the separable geometries, the same conclusions follow
simply from the theorems of complex calculus. Note also that
the gain per unit length, which is the traditional quantity in
the descriptions of the Fabry–Perot cavities, is g = kγ .

B. Optical Theorem for Passive and Active Cavities

A very instructive insight into the nature of lasing is
obtained from the OT applied to the LEP (1)–(4). As is known,
in the time-harmonic plane wave scattering, OT links the total

extinction cross section of a scatterer with the amplitude of the
forward-scattered field in the far zone. Mathematically, this is
the result of application of the vector Green’s formula to the
total field, which satisfies time-harmonic Maxwell equations,
and its complex conjugate [52, p. 98]. The most general form
of such expression is the Complex Poynting Theorem (CPT).
For the complex k, this is


 = − (1/2)

∫
V

( �j e∗ �E + �jm �H ∗)dv

+ (i/2)

∫
V

(
k∗ε∗Z−1

0 | �E|2 − kµZ0| �H |2
)

dv (6)

where


 = (1/2)

∮
S

�E × �H ∗ds (7)

is the total outward flux of the Poynting vector through the
arbitrary boundary S enclosing a volume V containing all
scatterers and sources, ε=ν2 and µ are the relative permittivity
and permeability, respectively, �j e and �jm are given electric
and magnetic currents, respectively (i.e., the sources), and the
asterisk means complex conjugation.

CPT (6) can be also applied to a natural mode number s
(in this case, �j e = �jm =0) in a passive open cavity (i.e., with
Va = 0), having complex eigenfrequency ks . On the extraction
of the real part, we retrieve the remarkable formula

−Reks

Imks
= Ws

Wabs(s) + Wrad(s)
(8)

Ws = (1/2)

∫
Vmin

(
Z−1

0 Reε| �Es |2 + Z0Reµ| �Hs|2
)

dv (9)

Wabs(s)=(1/2)

∫
Vmin

(
Z−1

0 Imε| �Es |2 + Z0Imµ| �Hs|2
)

dv

(10)
Wrad(s) = Re
s/Reks (11)

where Ws , Wabs(s), and Wrad(s) are the powers stored in,
absorbed in, and radiated from open cavity, and Re
s is the
full time-averaged flux of the mode Poynting vector out of the
minimum sphere. Either side of (8) is simply 2Qs and hence
can be considered as a rigorous definition of the Q factor.
It is therefore “rigidly” linked to the mode, i.e., may take
only discrete values. Note that a frequent misunderstanding
[26, p. 218] is that calculating the open-cavity Q factor via the
right-hand part (RHP) of (8) is impossible because of the field
divergence at R → ∞. This is so only if Ws is calculated as
the power contained in finite volume (e.g., in dielectric) while
the power flux Prad(s) is considered at R → ∞: then the
latter quantity indeed diverges because of Imks < 0. Rigorous
treatment of the Vmin replacement with the whole space in
(9) shows that then (8) turns into a trivial identity (both sides
are −Reks/Imks). Thus, for an open cavity the RHP of (8) is
indeed useless if one takes R → ∞, however by a different
reason. Now, turn to the LEP and apply (6) to the lasing mode
field { �Es, �Hs} taking into account that sources are absent,
Imks = 0, and Va �= 0. The result is the OT for lasers

W̃rad(s) + W̃abs(s) = W̃gain(s) (12)
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Fig. 3. (a) Normalized lasing frequencies, (b) thresholds, and (c) overlap coefficients of the modes n = 7 and 8 in the slab cavity with a centered QW vs.
the normalized relative width of the active region. αa = αp = 3.53. The frequencies are normalized by their limit values at wa = wc.

W̃gain(s) = Z−1
0 γsαa

∫
Va

∣∣∣ �Es

( �R, ks, γs

)∣∣∣2
dv (13)

W̃abs(s) = Z−1
0 Imαd Reαd

∫
Vd

∣∣∣ �Es

( �R, ks, γs

)∣∣∣2
dv (14)

where we use the symbol ∼ to emphasize that the correspond-
ing quantities are built on the LEP solutions and depend on γ .

Hence, for the sth mode having the wavenumber ks , the
power lost for radiation is balanced by the “negative absorp-
tion” (i.e., modal gain as the power generated in the active
region), provided that the material gain equals γs . So, this is
the “gain = loss” condition derived in a rigorous way.

However, besides of the real part, CPT expressed as (6) has
also the imaginary part which leads to

2Im
s = ks

∫
V

[
Z−1

0 Re
(
ν2

)
|Es |2 − Z0| �Hs|2

]
dv (15)

where the domain V is arbitrary. In the limit of S → ∞ as
a circle of large radius, the LHP of (15) is zero because, due
to (5)


 = 1

2Z0k2

2π∫

0

π∫

0

[∣∣∣	(1)
∣∣∣2 +

∣∣∣	(2)
∣∣∣2

]
cos θdθdϕ (16)

and the same is valid if V = Vmin because of the continuity
of 
. Therefore, we obtain∫

Vmin

[
Z−1

0 Re(ν2)| �Es |2 − Z0| �Hs|2
]

dv = 0 (17)

which means that the fractions of the power contained in
the electric and magnetic field of any mode inside the cavity
volume Vmin equal each other. The same is valid in the whole
space. Note that this property holds true for any mode in both
passive and active open cavities, on resonance.

III. UNIFORMLY ACTIVE CAVITIES

An open cavity can be uniformly active, i.e., Vmin = Va =
V , only if it is a slab, a circular cylinder, or a sphere. In this

case, (13) is proportional to the E-field power stored in the
cavity

W̃gain(s) = 2γsα

α2 − γ 2
s

W̃s (18)

W̃s = (1/2Z0)
(
α2 − γ 2

s

) ∫
V

∣∣∣ �Es

( �R, ks, γs

)∣∣∣2
dv. (19)

The latter quantity, if the E-field is normalized by its max-
imum value, is known as active-cavity effective mode volume.
The quantity ks W̃rad(s) or ks W̃gain(s) can be considered as the
active-cavity effective emission cross section, and, by analogy
to the conventional passive cavities, the active-cavity Q factor
can be defined as

Q̃s = W̃s/W̃rad(s). (20)

Then, the OT (12) takes the form

γs =
(
α2 − γ 2

s

) (
αQ̃s

)−1
(21)

where all quantities make sense only for a specific sth mode.

A. Slab Cavity

Consider a 1-D active slab in free space, infinite along the
x-axis and of width w along the y-axis (Fabry–Perot etalon). In
this case, there is no difference between the two polarizations,
so that, say, the Ez field component of a lasing mode is [45]

Ez = AU(y), U(y) =
{

S±(κνη), |η| < 1

S±(κν)eiκ(|η|−1), |η| > 1
(22)

where A is a constant, η = y/w, κ = kw, S+(.) = cos(.),
S−(.) = sin(.), and (κ, γ ) satisfy one of the two equations

e−iνκ = ±(ν − 1)/(ν + 1) (23)

with the upper (lower) sign for the symmetric (antisymmetric)
modes. Solutions to (23) are discrete values (κn, γn) with
n = 0, 2, . . . and n = 1, 3, . . . , respectively.

Then we find that the quantities entering (20) are

W̃n = A2w
(α2 − γ 2

n )

Z0κn

[
sinh(γnκn)

γn
− (−1)n sin(ακn)

α

]
(24)
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W̃rad(n) = A2w
2

Z0κn

∣∣∣νn S± (νnκn

2

)∣∣∣2
(25)

so that, after some algebra, the OT (21) takes the form

α sinh(γnκn) − (−1)nγn sin(ακn)

α2 + γ 2
n

= cosh(γnκn)

+ (−1)n cos(ακn).
(26)

Note that to make (24) the effective mode volume, the

normalization constant should be taken as

A ≡ An = max|y|<w

−1|Un(y)|, Un(y) = U(y, κn, γn). (27)

B. Circular Cavity

Consider a 2-D active cavity of radius a in free space. In this
case, the two polarization states are different. Respectively, the
Ez or Z0 Hz field component of a lasing mode can be denoted
as AU(�r) (see [40]), where
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Fig. 7. 2-D geometry of an active circular disk concentrically loaded with
a finite number of double passive rings forming ABR.

U(r, ϕ) =
{

Jm(κνρ), ρ < 1
Jm(κν)
Hm(κ) Hm(κρ), ρ > 1

}
cos mϕ. (28)

Here, A is an arbitrary constant, m = 0, 1, . . . , ρ = r/a,
κ = ka, ν = α − iγ , and Jm(.) and Hm(.) = H (1)

m (.) are the
Bessel and the first-kind Hankel functions, respectively. The
values κ and γ satisfy complex-valued characteristic equations
for the Ez /Hz polarised modes, derived as

Jm(κν)H ′
m(κ)−ν±1 J ′

m(κν)Hm(κ) = 0, m = 0, 1, ... . (29)

These roots can be numbered as (κmn, γmn) with n =1, 2, . . . .
Thus, the quantities in (20) are found to be

W̃mn = A2a2

(
α2 − γ 2

mn

)
2Z0α2γmnκmn

Im [νmn�m(νmnκmn)] (30)

W̃rad(m,n) = A2a2

Z0κ2
mn

∣∣∣∣ Jm(κmnνmn)

Hm(κmn)

∣∣∣∣
2

(31)

where

�m(x) = Jm−2(x)Jm−1(x∗) + Jm(x)Jm+1(x∗) (32)

and
A ≡ Am,n = max

r<a
−1

∣∣Um,n(r, ϕ)
∣∣ . (33)

Finally, the OT (21) reduces to

2α

∣∣∣∣ Jm(κmnνmn)

Hm(κmn)

∣∣∣∣
2

= πκmnIm [νmn�m (κmnνmn)] . (34)

As computations show, on finding the eigenpair (κs, γs)
from characteristic equations (23) or (29), i.e., on resonance,
identities (26) and (34) are satisfied with machine precision.

Effective mode volume plays very important role in the cav-
ity quantum electrodynamics (QED) [27]. However, in QED
this quantity appears from heuristic considerations. Besides,
one and the same definition is used for active and passive
cavities; the integration is usually taken only over Vd but some-
times is extended to a part of the space outside the dielectrics
and even outside of Vmin (as, for instance, in [26, p. 218] and
in [53]). In contrast, here we have introduced W̃s in a rigorous
and unambiguous way based only on mathematical manipula-
tions with Maxwell equations, i.e., from first principles.

IV. PARTIALLY ACTIVE CAVITIES AND

OVERLAP COEFFICIENTS

The laser configurations where the active region does not
coincide with the whole cavity (i.e., Vp �= 0 in Fig. 1) are
the most interesting, because they are intractable within the
passive-cavity analysis. Such a situation is met if one uses
a sharply focused pump beam in optically pumped laser.
Besides, combination of separated active and passive regions is
typical for the cavities with DBRs and for photonic-molecule
lasers using selective pumping. Moreover, this is common
for all injection lasers, which are known to be extremely
vulnerable to the placement of electrodes. This is because the
concentration of carriers is obviously greater in the immediate
vicinity of the electrode than far from it.

The OT for lasers sheds important light on the behavior of
modal thresholds in the cavities with partial active regions.
Indeed, for each sth mode one can introduce the quantity



26 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 47, NO. 1, JANUARY 2011

(a) 

0.1 2.1 4.1 6.1 8.1
4.06

4.07

4.08

4.09

4.10

4.11

4.12

d/a, relative distance between cavity and rings

1 ring
2 rings
3 rings

 k
a,

 n
or

m
al

iz
ed

 f
re

qu
en

cy
 o

f 
la

si
ng

(b) 

0.1 2.1 4.1 6.1 8.1

10−5

10−4

10−3

10−2

10−1

d/a, relative distance between cavity and rings

1 ring
2 rings
3 rings

γ
, t

hr
es

ho
ld

 g
ai

n

Fig. 8. (a) Normalized lasing frequencies and (b) thresholds of the (Hz)7,1,p,1 supermode in the disk loaded with passive ABR vs. the normalized air gap
between the disk and the first ring. wh/wl = 1, wh = 0.2a, αa = αh = 2.63, αl = 1.

�
(a)
s ≤ 1 as follows:

�(a)
s = W̃ (a)

s /W̃s

W̃ (a)
s (ks, γs) = (1/2Z0)

(
α2

a − γ 2
s

) ∫
Va

∣∣∣ �Es

( �R, ks, γs

)∣∣∣2
dv

W̃s(ks, γs) = (1/2Z0)

∫
Vmin

Re(ν2)
∣∣∣ �Es

( �R, ks, γs

)∣∣∣2
dv (35)

where ν = αd in Vd and 1 in V f , and Vmin = Va + Vd + V f .
From this definition, it is clear that �

(a)
s is the fraction of

E-field power contained in the active region. It is also the over-
lap coefficient between the active region and the modal E-field
(a.k.a. mode confinement factor [26], [27]). This is a strictly
discrete quantity having values linked to specific modes.

This enables us to rewrite the OT (12) in the following
manner

γs = αa

�
(a)
s (ks, γs)

1

Q̃s (ks, γs)
(36)

where now Q̃s = W̃s/[W̃rad(s)+W̃abs(s)]. Further investigation
of (36) assuming that the threshold is small, γs � 1, shows
that the first-order approximation to γs is obtained if one takes
the mode field components and the frequency as for a passive
cavity (γs = 0)

γs = αs

�
(a)
s (ks, 0)Qs

+ O(γ 2
s ). (37)

Equation (37) tells that, in order to achieve low threshold in
the active (pump on) cavity, it is not enough to have a high Q
factor of the same mode in the passive (pump off ) cavity. The
overlap of the mode E-field with the active region is equally
important and can dramatically spoil the result: this happens,
for instance, with the quasi-WG modes in a stadium-cavity
laser if the electrode is placed at its center [22], [23].

Note that in QED it is considered (for instance, see
[27 pp. 287, 291, 300]) that the smaller the effective mode vol-
ume, the lower the threshold of lasing. Our formulas (20) and
(36) convincingly show that from the viewpoint of Maxwell
equations this is not true. In fact, the role of the effective mode
volume is just the opposite, as W̃s enters the denominator of
the RHP of (36); however, this role is balanced by the mode
losses (including emission loss, W̃rad(s)) in the numerator, as
these two quantities “breath” together. The real figure of merit

of the mode in active cavity is its Q factor Q̃s , which can be
approximated by the passive-cavity counterpart Qs .

Similar to �
(a)
s , another quantity can be introduced to

characterize the overlap of the passive part of the cavity, within
the minimum sphere, with modal E-field

�
(p)
s = W̃ (p)

s /Ws , W̃ (p)
s = (1/2Z0)

∫
Vp

Re
(
α2

p

) ∣∣∣ �Es

∣∣∣2
dv

(38)
so that �

(a)
s + �

(p)
s = 1. Note that �

(p)
s may itself be a sum

of the partial coefficients and may contain a free-space term.

V. VCSEL-LIKE 1-D CONFIGURATIONS

In this section, we briefly consider the results of the LEP
study for the 1-D plane-layered media containing active layers.
In fact, this demonstrates that the whole semiclassical laser
physics is conveniently embedded into the LEP formalism.
This is because rays and waves are equivalent in the 1-D case.

A. QW Inside a Passive Fabry–Perot Etalon

Consider a passive dielectric slab (a.k.a. Fabry–Perot etalon,
Fig. 2) with refractive index α and thickness wc containing a
quantum well (QW) of the index ν= α−iγ and thickness wa .

The results computed for the modes n = 7, 8 in a resonator
with a centrally placed QW of varying width are presented
in Fig. 3. As expected from elementary considerations, if the
QW shrinks to zero, the mode frequencies remain stable while
the thresholds grow infinitely as γn = O(wc/wa). The active-
region overlap coefficients [Fig. 3(c)] display remarkable
agreement with inverse values of the relevant threshold curves.

Fig. 4 demonstrates, for the same modes, the effect of the
QW shift from the center of the slab cavity; the QW width is
1/10 of the whole cavity. One can see that both the threshold
and the overlap dependences display a series of periodically
spaced minima and maxima. The maxima of the overlap
coefficients correspond to the good matching of the QW with
the modal E-field antinodes; this leads to the threshold minima
as predicted by (36). Note that modes n = 1 and 2 have very
high values of threshold gain [45], which makes them both
impractical and more difficult for numerical analysis.
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Fig. 9. (a) Active-region, (b) passive-ring, and (c) free-space (airgap) overlap coefficients for the same disk-in-ABR geometry variation as in Fig. 8.

B. QW-Equipped Cavity Between Two DBRs

If a slab-like cavity with an embedded QW is sandwiched
between two DBRs opening into free space, then the thresholds
of those modes whose frequencies get into the stop-band of
DBRs obtain lower values [31]–[33]. This effect is in the core
of the VCSEL design.

The LEP characteristic equation is built using the transfer
matrix method (TMM) [31]–[33], [45] and conditions (2)–(4).

In Fig. 5 we present the dependences of the lasing fre-
quency, threshold, QW overlap coefficient, and active cavity
Q factor of the lasing mode n = 9 on the relative shift of
a narrow QW from the central position in a cavity placed
between two identical 20-pair DBRs. Note that, in such a
cavity, the threshold of lasing for the mode whose frequency
is in the DBR stopband is determined by the number of DBR
layer pairs [45].

Unlike a simple Fabry–Perot etalon, this configuration has
multiple passive “subcavities” optically coupled to the “main
cavity” with active region.

As a result, here the mode Q factor [see (36)] depends
on the QW shift in stronger manner than for a simple slab
cavity in free space. Therefore, the correlation between the
threshold and the QW overlap coefficient is less impressive
although the locations of minima and maxima again coincide.
Still, some threshold maxima are higher than the others, which
is explained by the effect of the E-field pulling into the DBR
layers [46], besides that of the QW mismatch with the modal
field inside the internal cavity.

VI. ACTIVE DISKS LOADED WITH PASSIVE RINGS

In this section, we consider the LEP solutions for several
2-D circular-concentric laser configurations.

A. Active Disk with a Passive Rim or Central Circle

As a simplest example, consider the modes in a thin disk
with a radially piecewise active region (αa = αd = α) (see
also [41]). In this geometry, modes with different azimuth
indices m satisfy independent characteristic equations, built
by using TMM [6]–[8] and conditions (2)–(4). In a uniformly
active disk, the WG modes correspond to the condition m/α<

kmna < m, and their thresholds behave asymptotically as
γmn = O(e−αkmn a) � 1 while kmna = O(m + n).

The plots in Fig. 6(a) and (b) demonstrate the dynamics
of the modal frequencies and thresholds for the WG modes
(Hz)7,n (n = 1, 2, 3) in a circular cavity with active region
being either a centered circle of varying radius b or a ring of
varying inner radius b. As visible, if b varies, the threshold
curves corresponding to the inner circular active region and
outer ring-like one cross each other (see also Fig. 9 of [41]).
What is remarkable is that, at the crossing points, each mode’s
threshold is exactly twice as in the uniformly active disk (by
0.3 in logarithmic scale). Keeping in mind that the contrast
between the active and passive parts of the considered cavity is
very small (it has the order of γ ), and the WG-mode frequency
and field pattern vary as O(γ ), we may conclude that (36) tells
that this effect can be explained by a drop in the modal gain
overlap factors to �

(a)
7,n = 1/2. The plots in Fig. 6(c) provide

evidence to this suggestion.
Moreover, if one pumps any isolated spot and leaves the

remaining ring-like domain passive, and vice versa, the anal-
ogous curves, for each mode, will also cross at the point
of twice higher threshold than for the uniformly active disk.
This is because in either case we split the cavity into two
parts, passive and active. This observation is a verification of
obtained numerical results and a proof of OTs practicality.

B. Active Disk Embedded into ABR

A more complicated laser configuration which can be ap-
proximately reduced to the 2-D formulation and involves only
concentric circular boundaries is depicted in Fig. 7. This is an
active disk at the center of M-pair ABR; such lasers have been
studied in the 2000s [6]–[8], [54]–[57]. Here, the underlining
idea is to use a relatively small active disk and still obtain
ultralow threshold of lasing due to the optical confinement
provided by ABR.

Usually in the experiments only the central disk is pumped,
i.e., is active, while the ABR area remains passive to avoid
multimode lasing [54]–[57]. Although this geometry is actu-
ally a rotationally symmetric 3-D one [57], [38], [39], still an
advanced 2-D analysis of ABR-loaded active circular cavity
using the LEP approach is interesting as a tool for optimization
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of the in-plane confinement in such lasers. Using TMM for
each value of the azimuth index m, we reduce the problem
to a set of independent determinantal equations (see [6], [7],
[46]), whose orders equal to the number of circular boundaries,
i.e., 2M + 1. The results of computations are demonstrated in
Figs. 8–11 for the supermode (Hz)7,1,p,q in active disks loaded
with 1, 2, and 3 passive rings.

In Figs. 8 and 9, the lasing frequencies and thresholds,
and overlap coefficients, respectively, are shown for varying
separation between the active disk and the first ring d/a, fixed
duty cycle δ = wh/wl , and ring thickness, wh .

Note that in this configuration multiple concentric partial
domains are present. As a result, it is not enough to use
one radial index to characterize a mode; in fact, 2M + 1
radial indices are needed to show the number of additional
field variations in the air gaps and rings. If the gap and
ring widths are identical, we may use three radial indices
(n, p, q). Such a complicated behavior points to the hybrid
nature of “supermodes” in the disk optically coupled with
ABR [46].

In Figs. 10 and 11, we show the same quantities as a
function of the ring thickness for the fixed values of the other
parameters.

It is apparent that the number of ring pairs can be kept small
if the contrast between the higher and lower ABR refraction
indices αh and αl is large. Here, we took αa = αh = 2.63 and
α f = αl = 1 (air), and one can see that, in the ABR stopband,
adding a pair of concentric layers reduces the threshold of the
(Hz)7,1,p,q supermode nearly by an order of magnitude. Plots
of the partial domain overlap coefficients (see Figs. 9–11)
support the prediction that the threshold jumps up each time
the E-field is pushed from the active region because of strong
coupling to the modes of the rings of ABR. Note that here
the field of the mode can be pulled into both dielectric and air
rings and the relevant overlap coefficients reach high values.
This is because the ring thickness becomes comparable to the
wavelength in the ring material.

VII. CONCLUSION

We have highlighted important points of the Maxwell eigen-
value analysis for a dielectric microcavity modified for the
presence of active regions, i.e., the LEP. This formulation can
be called a “warm-cavity” electromagnetic model of laser to
emphasize its position between the cold-cavity (passive and
linear) and hot-cavity (active and nonlinear) models.



SMOTROVA et al.: OPTICAL THEOREM AND THRESHOLDS OF LASING IN MICROCAVITIES WITH ACTIVE REGIONS 29

We have also presented the OT for the lasers considered
in linear formulation. The derived expressions can be used
for verification of numerical results obtained for particular
configurations. Moreover, they have enabled us to propose, for
the first time, rigorous mathematical definitions of the open-
resonator volume (as a minimum sphere), the effective mode
volume, and the mode-active-region overlap coefficient: this,
in fact, provides grounding to these quantities used in semi-
classical laser physics and QED as phenomenological ones.

We have shown several numerical examples demonstrating
the nontrivial interplay between passive and active parts of the
laser cavities in their competition for the mode field, even in
the separable 1-D and 2-D configurations.

This approach goes far beyond traditional passive-cavity
simulations and opens the new and exciting area of advanced
linear modeling of microcavity lasers. The tailoring of the ac-
tive region shape can be an efficient tool for the threshold con-
trol and manipulation while keeping the emission frequency
essentially untouched. The latter is true so far as the gain-
induced contrast in the cavity is small, which is valid for the
low-threshold modes such as WG-like or DBR-assisted ones.
In fact, the LEP approach gives a firm mathematical footing
to the phenomenological semiclassical laser theory and holds
true for arbitrary laser configurations where Fabry–Perot-like
or, more generally, ray-tracing descriptions are not applicable.
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