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We consider the modes of two-dimensional (2D) microcavity lasers as active open dielectric resonators using the
linear electromagnetic formalism of the lasing eigenvalue problem (LEP) with exact boundary and radiation con-
ditions. We reduce LEP to a nonlinear eigenvalue problem for the Muller boundary integral equation and build a
sophisticated numerical method accounting for the possible symmetry properties of sought solutions. Namely, we
take into account the presence of one, two, or four lines of symmetry. This helps split solutions into independent
classes, which contributes to the stability of calculations and reduces the size of the approximate matrix eigenvalue
problems. © 2017 Optical Society of America
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1. INTRODUCTION

Microcavity lasers have been an object of intensive research
since the 1990s, both experimentally and theoretically
[1–16]. Here, most of the works on their modeling were based
on the search of the complex-valued natural frequencies of pas-
sive cavities and therefore were not able to deliver the most
important lasing characteristic—the threshold gain. To over-
come this significant drawback, several approaches were pro-
posed recently [17–22], including the lasing eigenvalue
problem (LEP) [3,4,6,7,12,23]. LEP is a mathematical boun-
dary-value problem based on the classical electromagnetic equa-
tions for open resonators equipped with active regions. Then
the threshold value of material gain in the active region, for a
given mode, can be extracted from LEP as an eigenvalue, to-
gether with the corresponding frequency of lasing.

In the case of microcavity lasers, such as semiconductor,
doped-polymer, or crystalline, the task is determining the
modes of a dielectric resonator, which is fully or partially filled
in with a gain material. Although LEP can be combined with
any numerical method (except finite differences in the time do-
main because such codes cannot handle eigenvalue problems
directly), the most efficient approach is offered by the method
of analytical regularization [24,25]. For dielectric bodies, the
analytical regularization treatment means reducing the eigen-
value problem to the search for characteristic numbers of
the Muller boundary integral equation (BIE) [6,7,26]. The

Muller BIE is a judicious combination of electric-field and
magnetic-field integral equations (IEs) on the cavity’s boundary,
derived using Green’s formulas in the interior and exterior do-
mains and the dielectric-boundary conditions. This procedure
cancels the strong singularities in kernel functions and yields a
Fredholm IE of the second kind.

Thus the Muller BIE derivation effectively means the
explicit inversion of the small-contrast part of the vector
electromagnetic-field problem. The final result is a set of
two or four coupled equations in the case of 2D and 3D scat-
terers, respectively. Further, it can be discretized in trusted way
and then the eigenvalues are approximated with the roots of a
determinantal equation. This is a complex-valued transcenden-
tal equation, the roots of which are usually found by a suitable
combination of global search (pseudo-random) and local search
(iterative) algorithms. What is important is that the conver-
gence of the approximate eigenvalues to exact ones, with larger
discretization orders, is guaranteed mathematically [7,27].

If a microcavity is shaped as a thinner-than-wavelength flat
configuration, then one can reduce the dimensionality of analy-
sis from 3D to 2D in the median plane using the replacement of
the refractive index with its effective value [3,5]. This is in agree-
ment to the experimentally found fact that the emission from
thin cavities is observed mostly in the cavity plane, its direction-
ality being controlled by the shape of the contour. Such thin flat
cavities are commonly called 2D lasers [5]. This and other
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review papers [9–11,14,15] provide references for the numerous
efforts of researchers to find optimal shapes of the cavity con-
tours. Note that, in practice, the improvement of directionality
of emission must be achieved not at the expense of dramatic
growth in threshold as it happens with experimentally measured
“notched” and “spiral” 2D lasers. Therefore, a LEP can be an
attractive instrument in the numerical optimization, which
takes account of both the directivity and the threshold of lasing.

So far only spiral and kite-shape microcavity laser modes
were studied in [6] and [7] using this approach, where
Muller BIE was solved numerically by the Nyström discretiza-
tion. The kite shape has only one line of mirror symmetry,
which was not taken into account in [7]. Still other promising
shapes such as ellipse, rectangle, and regular polygons with
straight or curved sides can have two, four, and more lines
of mirror symmetry. They naturally call for being taken into
account.

As LEP is of great interest in the electromagnetic commu-
nity, we believe that the further development of numerical
methods for simulations of resonators with active regions is im-
portant. In our ongoing studies, we had noticed that the root-
search algorithm stability could be greatly improved if we took
into account the symmetry of the studied microcavity; that
means, split the solutions to the orthogonal classes of sym-
metry. Working with determinantal equation of a selected class
helps avoid hopping of the code to a nearby eigenvalue belong-
ing to a different class. Besides, this reduces the time for filling
in the matrix because the field function and its normal deriva-
tive have to be computed only on a part of the whole contour.

Therefore, below we present such an advanced algorithm
based on the ideas of [7], but enhanced by taking into account
the possible one, two, or four lines of mirror symmetry of the
cavity contour. Certain aspects of this algorithm have been
published in a contributed conference paper [28]; however,
we present here more details and make the corresponding dis-
cussion more convincing by presenting additional numerical
illustrations.

2. FORMULATION AND ANALYTICAL
REGULARIZATION OF THE LASING
EIGENVALUE PROBLEM

Assume that the electromagnetic field is time-harmonic and
choose the time dependence as exp�−ikct�, where c is the light
velocity in free space and k is the wavenumber. Consider the
statement of LEP as a boundary-value problem for a generic
resonator shown in Fig. 1. This is a dielectric body with the

finite inner domain Ωi bounded with the contour Γ from
the infinite outer domain Ωe . It is filled in with a homogeneous
nonmagnetic dielectric material that displays gain, i.e., has the
known positive real part αi and an unknown negative imagi-
nary part γ of the refractive index. By αe, we denote the known
positive refractive index of the environment Ωe .

We assume that Γ is a twice continuously differentiable
curve, and n is the outer normal unit vector to the boundary
Γ. We also denote by U the space of complex-valued functions,
continuous and continuously differentiable curves on Ωi and
Ωe , and twice continuously differentiable onΩi andΩe . A non-
zero function u ∈ U is referred to as an eigenfunction of the
LEP corresponding to an eigenvalue pair �ke; γ� with real com-
ponents ke > 0 and γ > 0 if the following conditions are sat-
isfied: the Helmholtz equation in each of the domains,

Δu�x� � k2j u�x� � 0; x ∈ Ωj; j � i; e; (1)

the transmission conditions,

u−�x� � u��x�; ηi
∂u−�x�
∂n�x� � ηe

∂u��x�
∂n�x� ; x ∈ Γ; (2)

and the Sommerfeld radiation condition at infinity,

u�r;ϕ� �
ffiffiffiffiffiffiffiffiffiffi
2

iπker

s
eikerΦ�ϕ�; r → ∞: (3)

Here kj � kνj; ηj � ν−2j in the H-polarization case and
ηj � 1 in the E-polarization case, j � i; e; νi � αi − iγ,
νe � αe , u��u−� is the limit value of the function u from inside
(outside) of the boundary Γ; ∂u∕∂n is the normal derivative; r
and ϕ are the polar coordinates of the point x; and Φ�ϕ� is the
far-field angular emission pattern. Note that as we are interested
in the real ke , then due to Eq. (3) the lasing mode field does not
display exponential growth at infinity.

To build a mathematically convergent algorithm, the
boundary-value problem in Eqs. (1)–(3) should be converted
to a Fredholm second-kind infinite-matrix equation. To obtain
such an equation, we follow [7] and reduce the LEP, in equiv-
alent manner, to the eigenvalue problem for the Muller BIE in
terms of two coupled equations:

u�x� �
Z
Γ
K 1;1�x; y�u�y�dl�y� −

Z
Γ
K 1;2�x; y�v�y�dl�y� � 0;

(4)

v�x� �
Z
Γ
K 2;1�x; y�u�y�dl�y� −

Z
Γ
K 2;2�x; y�v�y�dl�y� � 0;

(5)

where the notation v is used for the function proportional to
the normal derivative of the field function u, the vectors
x; y ∈ Γ:

u�x� � u−�x� � u��x�; (6)

v�x� � ηe � ηi
2ηi

∂u��x�
∂n�x� � ηe � ηi

2ηe

∂u−�x�
∂n�x� ; (7)

K 1;1�x; y� �
∂�Gi�x; y� − Ge�x; y��

∂n�y� ; (8)Fig. 1. Geometry and notations for a generic 2D uniformly active
dielectric microcavity; position vector is x � �x1; x2�.
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K 1;2�x; y� �
2�ηeGi�x; y� − ηiGe�x; y��

ηe � ηi
; (9)

K 2;1�x; y� �
∂2�Gi�x; y� − Ge�x; y��

∂n�x�∂n�y� ; (10)

K 2;2�x; y� �
2

ηe � ηi

∂�ηeGi�x; y� − ηiGe�x; y��
∂n�x� ; (11)

and Green’s functions of the homogeneous media are the
Hankel functions of the first kind and index 0:

Gi∕e�x; y� �
i
4
H �1�

0 �ki∕ejx − yj�: (12)

Note that the functions in Eq. (12) have logarithmic singu-
larities if their arguments coincide and their derivatives are,
generally speaking, even more singular. In contrast, the kernel
functions in Eqs. (8) and (11), and the function K 1;2�x; y� in
the E-polarization case have no singularities (are smooth), and
the function K 2;1�x; y� and the function K 1;2�x; y� (in the
H-polarization case) have logarithmic singularities (see [5]
for the corresponding asymptotic expressions). Thus, the regu-
larization procedure cancels the hyper-order singularities in the
IE kernels and their norms are finite in the L2 sense. This is
why Eqs. (4) and (5), collectively, correspond to a Fredholm
second-kind operator equation:

w� K �κ; γ�w � 0; (13)

where w � �u; v�. Here, the operator K �κ; γ� is generated by
the 2 × 2 matrix of the functions K i;j�x; y�; i; j � 1; 2, which
depend on the eigenvalue parameter �κ; γ�, with κ being the
suitably normalized real-valued frequency and γ being the
threshold value of the material gain. In laser modeling it is con-
venient to use κ as a product of the free-space wavenumber ke
with some linear dimension of the studied cavity. Note that the
gain per unit wavelength, frequently met in semiclassical laser
theories, can be found as g � kγ. Still we do not use it in our
work, as it is convenient only in Fabry–Perot-like cavities.

Inspection of the norm of operator K �κ; γ� in the L2 sense
shows that it behaves asO�ν2i − ν2e � (see [7]). By this reason, the
explained regularization procedure can be called “small-contrast
inversion.” As noted in [7], the Muller BIE is free of spurious
eigenfrequencies, which infest other, non-Muller, boundary IE
types and spoil all based on them numerical algorithms—see
details of this topic in [29,30].

Note also that eigenvalue problem in Eq. (13) is some-
what different from more conventional (called “linear”)
algebraic eigenvalue problem associated with the equation
w� λK w � 0, where operator K is independent of the eigen-
value λ. Therefore, it is called a “nonlinear algebraic eigenvalue
problem.” Besides, the eigenvalue parameter is not a scalar λ
and not a complex number, but a vector of two components,
�κ; γ�, each of which is a real number.

3. NYSTRÖM METHOD DISCRETIZATION
WITH ACCOUNT OF SYMMETRY

We propose a new version of the Nyström method of discre-
tization of the Muller IE, based on the account of the presence
of one, two, and four axes of symmetry (see Fig. 2) of the cavity

domain, which is split by these axes into two, four, and eight
subdomains.

Thanks to symmetry, we can look for the functions w �
�u; v� as solutions of Eqs. (4) and (5) only on the boundary
Γ�1� of the first inner domainΩ�1�

i with the corresponding outer
domain Ω�1�

e (the upper index is the subdomain number).
In the other subdomains the field function can be recovered
using the symmetry or anti-symmetry conditions. Then the
symmetry-adapted Green’s functions take the form of

Gi∕e�x; y� �
XM
p�1

cpF
�p�
i∕e�x; y�; (14)

whereM � 2, 4, or 8, depending on the number of the axes of
symmetry, and coefficients cp are given in Tables 1–3 below:

F �p�
i∕e�x; y� �

i
4
H �1�

0 �ki∕ejx − y�p�j�: (15)

We suppose that the boundary curve Γ is defined parametri-
cally as r�t� � �r1�t�; r2�t��, where t ∈ �0; 2π� and r1�t� �
f �t� cos�t�, r2�t� � f �t� sin�t�. As already mentioned in
Section 2, one or two (depending on the polarization) of

Fig. 2. Geometries of uniformly active 2D microcavities with
(a) one, (b) two, and (c) four axes of symmetry.

Table 1. Coefficients cp for One Axis of Symmetry

Modes Notation c1 c2
x1-even �m; n; e� 1 1
x1-odd �m; n; o� 1 −1

Table 3. Coefficients cp for Four Axes of Symmetry

Modes Notation c1 c2 c3 c4 c5 c6 c7 c8
x1-even, x2-even,
d 1-even, d 2-even

�m; n; eeee� 1 1 1 1 1 1 1 1

x1-even, x2-even,
d 1-odd, d 2-odd

�m; n; eeoo� 1 −1 −1 1 1 −1 −1 1

x1-odd, x2-odd,
d 1-odd, d 2-odd

�m; n; oooo� 1 −1 1 −1 1 −1 1 −1

x1-odd, x2-odd,
d 1-even, d 2-even

�m; n; ooee� 1 1 −1 −1 1 1 −1 −1

Table 2. Coefficients cp for Two Axes of Symmetry

Modes Notation c1 c2 c3 c4
x1-even, x2-even �m; n; ee� 1 1 1 1
x1-even, x2-odd �m; n; eo� 1 −1 −1 1
x1-odd, x2-odd �m; n; oo� 1 −1 1 −1
x1- odd, x2-even �m; n; oe� 1 1 −1 −1
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the kernel functions K have logarithmic singularities.
Following [7], we extract such a singularity from all four for
uniformity:

K �p�
k;l �t; τ� � Q �p�

k;l �t; τ� ln
�
4 sin2

t − τ
2

�
� P�p�

k;l �t; τ�; (16)

where k; l � 1; 2,

Q �p�
1;1�t; τ� �

keJ1�kejx − y�p�j� − kiJ1�kijx − y�p�j�
4π

×
��x − y�p�� · n�y�p���

jx − y�p�j ; (17)

Q �p�
1;2�t; τ� �

ηiJ0�kejx − y�p�j� − ηeJ0�kijx − y�p�j�
2π�ηe � ηi�

; (18)

Q �p�
2;1�t; τ� �

k2i J2�kijx − y�p�j� − k2e J2�kejx − y�p�j�
4π

×
��x − y�p�� · n�y�p�����x − y�p�� · n�x��

jx − y�p�j2

−
�n�x� · n�y�p���

jx − y�p�j

×
kiJ1�kijx − y�p�j� − keJ1�kejx − y�p�j�

4π
; (19)

Q �p�
2;2�t; τ� �

ηekiJ1�kijx − y�p�j� − ηikeJ1�kejx − y�p�j�
2π�ηe � ηi�

×
��x − y�p�� · n�x��

jx − y�p�j ; (20)

where J0;1;2�•� are the Bessel functions and P�p�
k;l �t; τ� are con-

tinuous functions. In computations, we use the trapezoidal rule
for the integration of these parts of integrand functions:Z

2π∕M

0

g�τ�dτ ≈ h
X2n
j�0

σjg�t j�; (21)

where t ∈ �0; 2π∕M �, h � π∕�nM �, t j � jh, σj � 1∕2 if
j � 0 or j � 2n, and 1 if 0 < j < 2n. For the logarithmic parts
of kernels, we use the quadrature formula for the integration of
integrands approximated by trigonometric polynomials:Z

2π∕M

0

g�τ� ln
�
4sin2

t −τ
2

�
dτ≈

X2n
j�0

σjR
�M;n�
j �t�g�t j�; (22)

where

R�M;n�
j �t� � −2h

XMn−1

m�1

cos�m�t − t j��
m

−
h cos�Mn�t − tj��

Mn
:

(23)

Denote now

a�p�k;l ;j�t� � R�p;M;n�
j �t�Q �p�

k;l �t; t j� � hP�p�
k;l �t; t j�; (24)

then

Z
Γ
K k;l �x; y�g�y�dl�y� ≈

X2n
j�0

σj
XM
p�1

cpa
�p�
k;l ;j�t�g�t j�jr 0�tj�j:

(25)

Finally, on introducing the notations ui � u�ti�, vi � v�ti�,
a�p�k;l ;i;j�t� � a�p�k;l ;j�ti�, r 0j � r 0�tj�, the unknown values ui, vi,
i � 0;…; 2n can be found from the following equations:

ui �
X2n
j�0

σj
XM
p�1

cp�a�p�1;1;i;juj − a
�p�
1;2;i;jvj�jr 0j j � 0; (26)

vi �
X2n
j�0

σj
XM
p�1

cp�a�p�2;1;i;juj − a
�p�
2;2;i;jvj�jr 0j j � 0; (27)

with coefficients cp given in Tables 1–3 below. Note that in
Eqs. (26) and (27) the discretization order is n, which is the
order of the interpolation polynomial in Eq. (23). Now
approximate eigenvalues �κ; γ� can be found from the nonlinear
algebraic eigenvalue problem:

w�n� � K �n;n��κ; γ�w�n� � 0; (28)

where the eigenvector w�n� consists of the elements ui, vi,
i � 0;…; 2n, while the composition of the entries of the ma-
trix K �n;n� of order 2�2n� 1� follows from Eqs. (26) and (27).

The solutions of Eq. (28) satisfy a finite-order determinantal
equation Det�I �n� � K �n;n��κ; γ�� � 0 and can be found by
various numerical methods. Note that the Fredholm property
of the Muller IE guarantees the convergence in the sense that
larger discretization orders n entail smaller computational
errors, in the l2-norm sense (see Appendix A for numerical ex-
amples). In our work, we solved this discrete equation by the
residual inverse iteration method using the roots found for a
circular active cavity as initial guess values.

In concern of the mode field functions, i.e., the LEP eigen-
functions, they have the following symmetry-accounting
approximate representations in the domains Ωi and Ωe , respec-
tively, �x ∈ Ωi∕e�:

u�x� � −
X2n
j�0

σj
XM
p�1

cp�a�p�1;1;j�x�uj − a�p�1;2;j�x�vj�jr 0j j; (29)

u�x� � −
X2n
j�0

σj
XM
p�1

cp�a�p�2;1;j�x�uj − a�p�2;2;j�x�vj�jr 0j j: (30)

A. Symmetry with Respect to One Axis

Accounting of one axis of symmetry divides the domainΩi into
two parts, and M � 2 [see Fig. 2(a)]. The coefficients cp are
presented in Table 1, and we use the following notations:

y�1� � �y1; y2�; y�2� � �y1; −y2�; (31)

R�1;2;n�
i;j � R�2;n�

ji−jj ; R�2;2;n�
i;j � R�2;n�

ji�j−2nj; (32)

R�2;n�
j � R�2;n�

j �0� � −
π

n

X2n−1
m�1

1

m
cos

mjπ
2n

−
�−1�jπ
�2n�2 : (33)
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B. Symmetry with Respect to Two Axes

Accounting of two axes of symmetry divides the domain Ωi
into four parts, and M � 4 [see Fig. 2(b)]. The coefficients
cp are presented in Table 2, and we use the following notations:

y�1� � �y1; y2�; y�2� � �−y1; y2�; (34)

y�3� � �−y1; −y2�; y�4� � �y1; −y2�; (35)

R�1;4;n�
i;j � R�4;n�

ji−jj ; R�2;4;n�
i;j � R�4;n�

ji�j−4nj; (36)

R�3;4;n�
i;j � R�4;n�

ji−j−4nj; R�4;4;n�
i;j � R�4;n�

ji�j−8nj; (37)

R�4;n�
j � R�4;n�

j �0� � −
π

2n

X4n−1
m�1

1

m
cos

mjπ
4n

−
�−1�jπ
�4n�2 : (38)

C. Symmetry with Respect to Four Axes

Accounting for four axes of symmetry divides the domain Ωi
into eight parts, and M � 8 [see Fig. 2(c)]. The coefficients cp
are presented in Table 3, and we use the following notations:

y�1� � �y1; y2�; y�2� � �y2; y1�; (39)

y�3� � �−y2; y1�; y�4� � �−y1; y2�; (40)

y�5� � �−y1; −y2�; y�6� � �−y2; −y1�; (41)

y�7� � �y2; −y1�; y�8� � �y1; −y2�; (42)

R�1;8;n�
i;j � R�8;n�

ji−jj ; R�2;8;n�
i;j � R�8;n�

ji�j−4nj; (43)

R�3;8;n�
i;j � R�8;n�

ji−j−4nj; R�4;8;n�
i;j � R�8;n�

ji�j−8nj; (44)

R�5;8;n�
i;j � R�8;n�

ji−j−8nj; R�6;8;n�
i;j � R�8;n�

ji�j−12nj; (45)

R�7;8;n�
i;j � R�8;n�

ji−j−12nj; R�8;8;n�
i;j � R�8;n�

ji�j−16nj; (46)

R�8;n�
j � R�8;n�

j �0� � −
π

4n

X8n−1
m�1

1

m
cos

mjπ
8n

−
�−1�jπ
�8n�2 : (47)

4. NUMERICAL RESULTS

In all computations, we assumed that the microcavity material
had the refractive index αi � 2.63 (this is the effective index for
a GaAs slab of 200 nm thickness in the infrared range) while
the environment was air with αe � 1 and hence ke � k; we
considered only the H-polarized modes because in thin cavities
their effective refractive index is significantly larger than for the
E-polarized modes.

A. Elliptic Microcavity Laser

Figure 3 shows the normalized frequencies of lasing κ � ka and
the threshold gains γ for the modes of a uniformly active micro-
cavity shaped as an ellipse with a side ratio a∕b � 0.5882.
Here, the symmetry accounting with respect to two axes
helps split solutions to four orthogonal classes of the
x1-even/odd, x2-even/odd modes (see Table 2) that contributes
to the stability of calculations and reduces the dimensions

of the finite-dimensional algebraic eigenvalue problem by
4 times.

Mode classification with the aid of indices m and n needs
special comments. The principles of such classification are clear
and unambiguous only in the simplest shapes, like a circle or a
square. As the ellipse can be viewed as a result of continuous
perturbation of a circle, and keeping in mind that the eigen-
values are also continuous functions of such perturbation,
we used, for each mode in the ellipse, the same notations
(i.e., indices) as for the eigenvalue-eigenfunction in the circle,
from which it was obtained by the contour perturbation. In
some cases, this way of assigning the indices keeps correspon-
dence to the actual field pattern—this is so, for instance, for the
whispering-gallery modes with radial index of 1 even after their
transformation to the modes of an ellipse with considerable
eccentricity. In the other cases this principle does not corre-
spond to the actual view of the field pattern—typically this hap-
pened to the modes of the circle with higher radial indices. In
any case, such a principle of assigning the indices is understand-
able and reproducible.

Note also that all modes of a perfectly circular cavity with
the azimuth index m > 0 are double degenerate, and the trans-
formation of a circle to an ellipse removes this degeneration.
This explains the presence of doublets of modes of the same
indices, however of the different symmetries, with respect to
the x1 axis (or x2 axis) on the plane �κ; γ� in Fig. 3. Within
any fixed interval of frequencies, the lowest thresholds are ob-
served for the doublets of perturbed whispering-gallery modes
with the radial index n � 1. Interestingly, the frequencies of
two modes in each doublet are almost the same; however,
the thresholds are sizably different. The lowest thresholds, in
each doublet, are always found for the x1 odd mode. This is
understandable because its field has zero values at the longer
axis of the ellipse, where the contour curvature is the largest,
which entails lower radiation losses.

Figure 4 shows the near- and far-field patterns of three
doublets of the H-polarized modes of the elliptic microcavity,
indicated in Fig. 3. Note that the modes in panels (a) and (b)

Fig. 3. Normalized frequencies of lasing and threshold gains for the
active elliptic microcavity laser. Modes �m; n; oo� are marked with
crosses, modes �m; n; ee� are marked with pluses, modes �m; n; eo�
are marked with right triangles, �m; n; oe� are marked with top trian-
gles, where m is the azimuth index and n is the radial index.
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show features of the whispering-gallery modes, while in panels
(d) and (e) show those of the bow-tie modes.

Here the far-field angular pattern Φ�ϕ� is computed as
(see [7])

Φ�ϕ� �
Z
Γ

�
iu�y�ke �n�y� · �cos ϕ; sin ϕ�� � 2ηi

ηe � ηi
v�y�

�
× e−ike�y·�cos ϕ;sin ϕ��dl�y�: (48)

The directionality of mode emission can be conveniently
characterized using the quantity borrowed from the antenna
theory and referred to as directivity:

D � 2πP−1jΦ�ϕmax�j2; P �
Z

2π

0

jΦ�ϕ�j2dϕ; (49)

where ϕmax is the direction of the maximum radiation in the
half-space 0 ≤ ϕ ≤ π and P is, within a constant, the total
power radiated by a lasing mode. Note that for any mode with
index m > 0 of a perfectly circular cavity, the directivity is
D � 2.

B. Square Microcavity Laser

A uniformly active microcavity shaped as square with the side
2a is an example of a more complicated configuration having as
many as four lines of symmetry: middle lines and diagonals. We
used a smooth approximation of the square with the aid of
“super-circle” characterized by the parametric equations

r1�t� � af �t� cos t; r2�t� � af �t� sin t; (50)

f �t� � ��cos t�2p � �sin t�2p�−�1∕2p�; t ∈ �0; 2π�; (51)

which yield a circle if p � 1 and a square if p → ∞.
Figure 5 shows the normalized frequencies of lasing

and the threshold gains for the modes of such a laser.
In the mode notation �m; n; x�, we denote by m the
number of maxima of the mode field along the x1 side of
the square while n is their number along the x2 side. In these
computations, we took p � 10 that provided the curvature
radius of the smoothed corners to be at least 10 times smaller
than the free-space wavelength for the modes with ka ≤ 10.
As we have found, making p larger (i.e., making the corners

Fig. 4. Modal fields and emission patterns of elliptic microcavity laser.

Fig. 5. Normalized frequencies of lasing and threshold gains for the
active square microcavity. Modes having symmetry with respect to four
axes (see Table 3) are marked with stars; and modes having symmetry
with respect to two axes (see Table 2) with crosses.
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sharper) resulted in the change of LEP eigenvalues in the
fourth digit.

The numbers in the mode notations correspond to the num-
ber of bright spots of the mode field along the sides of the
square (see Fig. 6). The modes marked with red symbols were
obtained by the change in p from 1 to 10 from the modes of the
circle with radial index n � 1 (with blue symbols, from n � 2;
and with violet symbols, from n � 3).

As one can see, the lowest thresholds are associated with the
modes which have a high degree of anti-symmetry with respect
to the x1 and x2 axes and also to the diagonals d 1 and d 2 of the
square. These are the modes with indices �2m; 2m; oooo�
and �2m� 1; 2m� 1; eeoo�.

Their reduced thresholds can be explained by the smaller
radiation losses than for the other modes that are caused by
destructive interference (because of anti-symmetry) of the far
fields emitted from different parts of the cavity contour.
Besides, the modes with zero fields at the diagonals have lower
thresholds because, in this case, the high-curvature corners have
a smaller effect on the scattering.

Figures 6 and 7 show the near-field and far-field patterns of
the H-polarized modes of the square microcavity having two
and four axes of symmetry, respectively. Note that the modal
field patterns shown in panels (a) and (b) of Fig. 6 are identical
to the rotation by 90°, although they were computed using dif-
ferent determinantal equations. This can serve as additional
partial verification of the algorithm.

5. CONCLUSION

Account of existing mirror symmetries in the integral-equation
analysis of the lasing modes of 2D microcavity lasers leads to
the splitting of solutions to orthogonal classes of modes with
the corresponding even and odd field symmetries. After
that, each class can be computed separately as the roots of

independent determinantal equations. This greatly improves
the stability of calculations because iterative root-search algo-
rithms become safe from the hopping to the closely located
eigenvalues of different classes of symmetry. We used the
Muller BIE in the LEP formulation and presented the details
of the Nystrom-type algorithms, which accounted for the field
symmetries with respect to one, two, and four lines of sym-
metry. The power of the modified algorithms was illustrated
with numerical examples related to the frequencies, thresholds,
and field patterns of the modes of elliptic and square microcav-
ity lasers. The mentioned account of symmetries also reduced
the dimensions of the algebraic eigenvalue problem by 2, 4, and
8 times, respectively, which led to considerable saving of the
computation time.

Fig. 7. Square microcavity laser: modal fields and emission patterns
having mirror symmetry with respect to four axes.

Fig. 6. Square microcavity laser: modal fields and emission patterns
having mirror symmetry with respect to two axes.
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APPENDIX A

The convergence of the meshless Nystrom algorithm applied to
discretization of the Muller BIE was grounded mathematically
in [7]. It was found that the rate of convergence is exponential
with respect to the order of discretization n (see [7], p. 1736). It
is natural that our sophisticated algorithm, which takes account
of the lines of symmetry, also shows exponential convergence, if
n → ∞. This is demonstrated by the plots in Fig. 8. Here we
show the dependences of the relative error, defined as

εr �
k�κn; γn� − �κ̃; γ̃�k2

k�κ̃; γ̃�k2
; (A1)

of approximate eigenvalues �κn; γn�, computed for the micro-
cavity lasers with contours shaped as a circle, ellipse and square
(super-circle with p � 10), on the order of interpolation poly-
nomial n. As before, we assume that refractive index is
αi � 2.63. By �κ̃; γ̃�, we denote the approximate eigenvalues
computed for the largest used order of the interpolation poly-
nomial. For each point except the starting point, the number of
iterations needed to reach the corresponding level of accuracy
has to be adapted to that accuracy and varied from 3 to 15.

The plots in Fig. 8 show that the rate of exponential decay of
computational error with n depends on the maximum curva-
ture of the contour involved. The fastest rate is for a circle and it
becomes some 8 times smaller if the contour has “edges”
smoothed with λ∕10 rounding, as for the super-circle with
p � 10. Still, in any case, the machine precision is achieved
with n in dozens or small hundreds; this is an achievement be-
yond any dreams if one uses non-Muller BIE, less-sophisticated
discretization, or a rough commercial code.
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