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We investigate the lasing spectra, threshold gain values, and emission directionalities for a two-dimensional mi-
crocavity laser with a “kite” contour. The cavity modes are considered accurately using the linear electromagnetic
formalism of the lasing eigenvalue problem with exact boundary and radiation conditions. We develop a numeri-
cal algorithm based on the Muller boundary integral equations discretized using the Nystrom technique, which
has theoretically justified and fast convergence. The influence of the deviation from the circular shape on the
modal characteristics is studied numerically for the modes polarized in the cavity plane, demonstrating oppor-
tunities of directionality improvement together with preservation of a low threshold. These advantageous features
are shown for the perturbed whispering-gallery modes of high-enough azimuth orders. Other modes can display
improved directivities while suffering from drastically higher threshold levels. Experiments based on planar
organic microcavity lasers confirm the coexistence of Fabry–Perot-like and whispering-gallery-like modes in
kite-shaped cavities and show good agreement with the predicted far-field angular diagrams. © 2013 Optical
Society of America
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1. INTRODUCTION
As already well documented, lasers with microcavities shaped
as thin flat circular disks with smooth-enough rims can sustain
whispering-gallery modes with very low thresholds [1–3].
The two-dimensional (2D) approximation, which implies
replacement of the bulk refractive index by its effective value,
works well for thinner-than-wavelength cavities. It predicts
that the whispering-gallery mode thresholds are exponentially
small relative to the in-plane optical size of the ideal circular
cavity [4], although in practice they are restricted by the sur-
face roughness. It is noteworthy that each mode with azimuth
index m > 0 is double degenerate in a circular cavity. The
emission on these modes is predominantly in the cavity
plane, where it has low directivity because of as many as
2m identical beams [1–4]. However, applications often require
sources of light with larger directivity of emission to process
optical signals with higher efficiency and within a smaller
volume.

A traditional method to obtain a narrow light beam is the
use of a collimating lens with a low-directional source in its
focus. The lens, however, is able to capture a portion of the
light that is radiated in a limited angular sector. Besides, the
use of a lens greatly increases the overall dimensions of a
light-emitting device. If the lens is made smaller and placed
nearer to a microlaser as suggested in [5], then the lens
becomes a passive resonator optically coupled with the
active resonator filled in with the gain medium and pumped.

This may lead, as has been shown in [6], to the pulling of
the working-mode field into the lens and eventually to the
unwanted growth of the lasing threshold.

As is evident, improvement of the directionality of mode
emission requires a departure from the circular shape. There-
fore, since the 1990s, researchers engaged in microlaser
studies have been using the in-plane cavity shape as an
engineering tool able to provide better directionality [7].

The later review papers [8–10] provide a reference source
for these studies. Among the promising modified shapes, they
have considered fully convex contours, such as ellipse,
stadium, cut circle, various regular polygons, and others
[11–15], and also partially concave “notched contours” [16,17].
Probably the highest expectations and the largest amount of
effort have been associated with a spiral resonator, with an in-
plane contour following an Archimedean spiral with a small
step [18–22]. Still, the thresholds of lasing measured for such
a shape are rather high and can be assigned to the discontinu-
ous and strongly perturbing nature of a circular contour with a
wavelength-sized step embedded therein. Therefore later
efforts have been associated with a smoother shape provided
by the limacon curve [23–26]. Following similar considera-
tions, it is possible to find other smooth perturbations of
the circle. One of them is a curve called a “kite,” which we
have selected for in-depth analysis. Unlike a limacon, a kite
is always smooth, although it can be both fully convex and
partially concave depending on the perturbation parameter
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(limacon obtains an inflection point if the perturbation is
above a certain value).

Still it is necessary to emphasize that simulations of micro-
laser modes in [5,8,10–12,13,15–17,20,21,23–26] have been
performed within the passive cavity model where instead
of the actual threshold one looks for the mode-quality factors.
As demonstrated in [27], low threshold is not equivalent to
high Q factor although the former is inversely proportional
to the latter—the overlap between the active region and
the modal electric field is equally important. Therefore more
adequate linear modeling of lasers is provided by the lasing
eigenvalue problem (LEP) specifically tailored to consider
open resonators equipped with active regions [4,6,9,22,27].
The LEP implies the introduction of material gain into the
whole microcavity or at least an active region and enables
extraction of the lasing frequencies and associated threshold
values of material gain as eigenvalues.

The LEP approach can be implemented with the aid of any
convergent numerical method originally developed for the
analysis of passive cavities. A comparative review of such
methods, from the “billiard theory” to finite-difference time-
domain codes to integral equations, can be found elsewhere
[9]. In this paper, we will use the Muller boundary integral
equations (BIEs) [28,29] as reliable and efficient tools for
analysis of the electromagnetic field in the presence of a
2D homogeneous dielectric object with an arbitrary smooth
boundary. This is because other types of BIEs suffer from
a serious drawback: they possess an infinite number of
“spurious eigenvalues”—real numbers that are the eigenval-
ues of the interior electromagnetic problem where the boun-
dary is assumed perfectly electrically conducting and the
inside filling is assigned material parameters of the outer
medium (e.g., free space) [30]. The spurious eigenvalues have
no physical meaning and hinder the search for true complex
eigenvalues with high Q factors. Examples of such IEs can be
found in [5,12,17,20,21,23,25,26]; it should be added that these
IEs can be still used in the search for low-Q eigenvalues.

In 2D, the Muller BIE is made in fact of two coupled
equations. Besides being free of spurious eigenvalues, it is at-
tractive because it is of the Fredholm second-kind type; i.e., it
has smooth or integrable kernels. The Muller BIE can be
discretized either with collocations [31] [i.e., meshing the
boundary and introducing local basis functions; this is some-
times called the boundary-element method (BEM)] or with a
Galerkin-type projection to global expansion functions [29].
As the optical cavities commonly have convex or at least
star-like boundaries, the latter way of discretization leads to
a more economic algorithm, although they both exhibit con-
vergence by virtue of the Fredholm theorems. According to
[29], the size of the resultant matrix is determined, in almost
equal manner, by three quantities: the maximum optical size of
the cavity, the normalized peak curvature of the boundary,
and the desired accuracy in digits. This should be emphasized
because, as a rule, the published works using BIE-BEM ignore
the last two parameters and blindly rely on the “rule of thumb”
of 10 mesh points per wavelength.

Here we build another efficient and convergent numerical
algorithm for discretization of the Muller BIE, based on the
interpolation polynomials and quadrature formulas as sug-
gested in [32,33]. Some preliminary results of this analysis
have been published in contributed conference papers

[34–36]; however, they are presented here in a more complete
and convincing manner. Special attention is paid to the con-
nection of the rate of convergence with the contour smooth-
ness. The developed algorithm is applied to investigation of
the H-polarized (vector E⃗ in the cavity plane; sometimes
called TE polarization) natural modes in 2D active kite-shaped
resonators. As the kite contour sustains one symmetry axis, all
modes split into two symmetry classes. We study the removal
of the mode degeneracy in terms of the frequency and thresh-
old due to the distortion of circular symmetry. The mode fields
in the near and far zones are also studied in detail both for
small and large deformations.

In the last section we present experimental data for the
thin planar kite-shaped convex cavities and compare them
with theoretically predicted results. The experiment has
been made on the dye-doped polymer microlasers, and it
confirmed the coexistence of several types of modes, notably
the perturbed whispering-gallery modes and the quasi-
Fabry–Perot modes.

2. LINEAR MODEL OF A MICROCAVITY
LASER
A. Lasing Eigenvalue Problem
The geometry of a generic 2D open dielectric resonator with a
smooth contour and the notations used are shown in Fig. 1.
We denote the boundary of the resonator as Γ, the outer do-
main as De, and the inner domain as Di. We assume that
n⃗ is the outer normal unit vector to the boundary Γ, and νj
(j � i, e) are the refractive indices of the nonmagnetic reso-
nator material and the outer space, respectively. Throughout
this paper an exp�−iωt� factor is used implicitly to express
time dependence.

For such a cavity subjected to uniform pumping, the LEP
[4,27] implies that the inner domain is filled with a gain
material so that the associated refractive index has a nonzero
negative imaginary part, νi � αi − iγ�γ > 0�. The outer space
is assumed lossless, νe � αe. Passive dielectric cavities (γ ≤ 0)
are known to possess an infinite number of discrete complex-
valued natural frequencies or, equivalently, wavenumbers ks
(counted using an integer index s), each of which correspond-
ingly generates a nonzero natural-mode electromagnetic field,

fE⃗s; H⃗sg. It is the presence of the active region (here coincid-
ing with the whole dielectric domain) that enables one to com-
pensate for the radiation losses of any specific mode and

Fig. 1. Geometry of a uniformly active 2D dielectric resonator of
arbitrary shape.

Smotrova et al. Vol. 30, No. 6 / June 2013 / J. Opt. Soc. Am. B 1733



make its natural wavenumber ks a real number. The associ-
ated value of γs > 0 is generally different for different modes
and corresponds to the threshold gain in the resonator
material. Note that the quantity of the modal gain coefficient
per unit length used in the semiclassical theory of lasers with
Fabry–Perot resonators is related to γ by g � kγ.

Mathematically, the problem of finding the values of ks and
γs and also the modal fields fE⃗s; H⃗sg in the near and far zones
can be seen as an electromagnetic eigenvalue problem (sim-
ilar to the scattering problem but without the incident field).
In view of the 2D cavity studied here, in order to characterize
the electromagnetic field, it is sufficient to consider a scalar
function Uj corresponding to the field components Ez or Hz,
depending on the polarization, in the domainsDj , j � i, e. This
function must be a solution to the boundary-value problem for
the Helmholtz equations,

�Δ� k2j �Uj�r⃗� � 0; r⃗ � �x; y� ∈ Dj; (1)

with the boundary conditions on Γ,

Ui�r⃗� � Ue�r⃗�; ηi∂Ui�r⃗�∕∂n � ηe∂Ue�r⃗�∕∂n; (2)

and additional conditions of (i) local power finiteness and
(ii) outgoing-wave behavior (Sommerfeld radiation condition)
for Ue at infinity [4,27]. The coefficients in Eq. (1) are defined
in such a way that kj � kνj . The boundary conditions (2) fol-
low from the demand that the tangential field components are
continuous across Γ. Therefore the constants in Eq. (2) are
defined as follows: ηj � 1∕ν2j in the case of H polarization
and ηj � 1 for E polarization. The goal is to find the values
of pairs of real numbers �ks; γs�, which generate nonzero
functions Uj�r⃗�.

Note that a real value for ks implies that the natural mode at
the threshold of lasing does not attenuate in time and decays
in space as a usual cylindrical wave, O�r−1∕2�. Thus, the intro-
duction of the active region characterized with the aid of γ > 0
leads to physically reasonable modal field behavior and opens
direct access to the mode thresholds. The fact that the LEP is
still a linear boundary-value problem should not be surprising
because at threshold the field amplitude of any real laser is
vanishingly small. More detailed discussion on the LEP and
its connection to the optical theorem and the semiclassical
theory of lasers can be found in [27].

B. Reduction to the Muller Boundary Integral Equations
For either of the two alternative polarizations, the reduction of
the 2D electromagnetic-field eigenvalue problem to a BIE is
based on the use of Green’s formulas [28,32]. This can be done
in many ways; however, only the Muller BIE possesses the
full equivalency to the original boundary-value problem for
Maxwell equations with all additional conditions, i.e., does
not give artificial raise to spurious eigenvalues [30].

We first introduce Green’s functions for the homogeneous
media, Gj�r⃗; r⃗0�, which are the solutions of the 2D Helmholtz
equations with the Dirac delta function δ�r⃗; r⃗0� at the right-
hand side. For a homogeneous mediumwith a refractive index
of νi, this isGj�r⃗; r⃗0� � �i∕4�H�1�

0 �kjR�, where R � jr⃗ − r⃗0j is the
distance between the points r⃗ and r⃗0, and H�1�

0 �·� is the Hankel
function of the first kind and zero-order.

Then, applying the second Green’s formula to the functions
Gj�r⃗; r⃗0� and Uj , we obtain (see also [37])

Uj�r⃗� �∓

Z
Γ

�
Uj�r⃗0�

∂Gj�r⃗; r⃗0�
∂n0 −Gj�r⃗; r⃗0�

∂Uj�r⃗0�
∂n0

�
dl0; r⃗ ∈Dj;

(3)

where dl0 is the infinitesimal arc element on Γ.
Denote φ�r⃗� � Ui�r⃗� and ψ�r⃗� � ∂Ui�r⃗�∕∂n, r⃗ ∈ Γ. Then

from the boundary conditions (2) it follows that Ue�r⃗� �
φ�r⃗� and ∂Ue�r⃗�∕∂n � �ηi∕ηe�ψ�r⃗�, r⃗ ∈ Γ. Further, in Eq. (3),
move the point r⃗ to the contour Γ. Taking into account that
the single-layer potential is continuous when crossing the
boundary [32], we obtain

φ�r⃗� �
Z
Γ
φ�r⃗0�A�r⃗; r⃗0�dl0 −

Z
Γ
ψ�r⃗0�B�r⃗; r⃗0�dl0 � 0. (4)

Kernels A�r⃗; r⃗0� and B�r⃗; r⃗0� are given below. On the differen-
tiation of Eq. (3) in the normal n⃗ and taking into account the
properties of the normal derivatives of the single- and double-
layer potentials [32], we obtain the second integral equation,

ηi � ηe
2ηe

ψ�r⃗� �
Z
Γ
φ�r⃗0�C�r⃗; r⃗0�dl0 −

Z
Γ
ψ�r⃗0�D�r⃗; r⃗0�dl0 � 0: (5)

The set of equations (4) and (5) forms the set of the Muller
BIE. Here, the kernel functions are

A�r⃗; r⃗0� � ∂Gi�r⃗; r⃗0�∕∂n0
− ∂Ge�r⃗; r⃗0�∕∂n0; (6)

B�r⃗; r⃗0� � Gi�r⃗; r⃗0� − �ηi∕ηe�Ge�r⃗; r⃗0�; (7)

C�r⃗; r⃗0� � ∂2Gi�r⃗; r⃗0�∕∂n∂n0
− ∂2Ge�r⃗; r⃗0�∕∂n∂n0; (8)

D�r⃗; r⃗0� � ∂Gi�r⃗; r⃗0�∕∂n − �ηi∕ηe�∂Ge�r⃗; r⃗0�∕∂n: (9)

The normal derivatives of the Green’s functions are calcu-
lated after the following expressions:

∂Gj�r⃗; r⃗0�∕∂n0 � �i∕4�kjH�1�
1 �kjR��R⃗ · n⃗0�∕R; (10)

∂Gj�r⃗; r⃗0�∕∂n � �−i∕4�kjH�1�
1 �kjR��R⃗ · n⃗�∕R; (11)

∂2Gj�r⃗; r⃗0�
∂n∂n0 � −

ik2j
4

H�1�
2 �kjR�

�R⃗ · n⃗0��R⃗ · n⃗�
R2

� ikj
4

H�1�
1 �kjR�

�n⃗0 · n⃗�
R

: (12)

In Eqs. (6)–(12), the quantities �R⃗ · n⃗�, �R⃗ · n⃗0�, and �n⃗0 · n⃗�
are the scalar products of the corresponding vectors. Assume
that the contour Γ parameterization is performed with the
aid of the function r�t� � fx�t�; y�t�g. Assuming that the
variables t and τ in parametric form correspond to r⃗ and r⃗0,
the distance between two points on the contour is
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R � ��x�t� − x�τ��2 � �y�t� − y�τ��2�1∕2, and the outer normal
unit vector to the boundary is n⃗ � �1∕L�t���dy∕dt;−dx∕dt�,
where L�t� is the Jacobian L�t� � ��dx∕dt�2 � �dy∕dt�2�1∕2.

C. Limiting Behavior of the Kernels
Thus, the kernels of the Muller BIE are linear combinations of
either the Green’s functions of the homogeneous media hav-
ing parameters of the outer and inner media, or their normal
derivatives of the first and second-order. The kernel functions
A�t; τ� in Eq. (6) and D�t; τ� in Eq. (9) are continuous at all
points of a smooth contour at t → τ. This is conditioned by
the following property (see, for instance, [38]):

∂Gj�t; t�∕∂n � χ0�t�∕2; (13)

where χ0�t� is the curvature (see [39]) of the contour Γ at the
point r⃗. The kernel functions B�t; τ� in Eq. (7) and C�t; τ� in
Eq. (8) have logarithmic singularities. If t → τ, then the limit-
ing behavior of these functions is given by the expressions

B�t; τ� ≅
t→τ

− �1∕2π��1 − ηi∕ηe� ln R; (14)

C�t; τ� ≅
t→τ

− �1∕2π��k2i − k2e� ln R: (15)

Note that the kernel B�t; τ� is singular only in the case of theH
polarization; in the case of the E polarization, it is continuous.
This analysis enables one to choose the appropriate method
of discretization of the integral equations discussed in the
next section.

D. Discretization Using the Quadratures
As mentioned, there are several approaches to a reasonable
discretization of BIEs. One of the most efficient discretization
techniques is the method of quadratures, also known as the
Nystrom method [32,33,37,40,41]. This method is based on
the approximation of smooth unknown functions by certain
polynomials and the replacement of the integrals with
approximate sums using the appropriate quadrature formulas.
Therefore the main point in the development of corresponding
numerical algorithms is placed on the derivation of quadrature
formulas that correctly take into account the behavior of the
integrand functions and, most importantly, their possible
singularities.

In this paper, we will consider the discretization of integral
equations with closed contours of integration that admit a
regular analytical 2π-periodic parameterization with the aid
of a function r�t� � fx�t�; y�t�g, t ∈ �0; 2π�. As some of the
kernel functions (6)–(9) have logarithmic singularities, it is
convenient to represent them in such a way that these singu-
larities are extracted; for uniformity, this decomposition is
performed for the smooth kernels as well,

F�t; τ� � F1�t; τ� ln
�
4 sin2

t − τ

2

�
� F2�t; τ�;

F � A;B; C;D; (16)

where A1�t; τ�, B1�t; τ�, C1�t; τ� and D1�t; τ� are the analytic
functions defined as follows:

A1�t; τ� � �−1∕4π��kiJ1�kiR� − keJ1�keR���R⃗ · n⃗0�∕R;
B1�t; τ� � �−1∕4π��J0�kiR� − �ηi∕ηe�J0�keR��;
C1�t; τ� � �1∕4π��k2i J2�kiR� − k2eJ2�keR���R⃗ · n⃗0��R⃗ · n⃗�∕R2

− �1∕4π��kiJ1�kiR� − keJ1�keR���n⃗0 · n⃗�∕R;
D1�t; τ� � �1∕4π��kiJ1�kiR� − �ηi∕ηe�keJ1�keR���R⃗ · n⃗�∕R: (17)

The functions A2�t; τ�, B2�t; τ�, C2�t; τ�, D2�t; τ� are found
from Eq. (16) by taking into account Eqs. (6)–(9). Further,
we introduce an equidistant mesh of nods on the contour Γ
at tp � πp∕N , p � 0; 1;…; 2N − 1. The integrals for each part
of the kernels are replaced with the sums using the quadrature
formulas. For the logarithmic parts, we use the quadrature for-
mula derived through the approximation of the integrand
functions by trigonometric polynomials [32,33,41],

Z
2π

0
ln
�
4 sin2

t − τ

2

�
F1�t; τ�f �τ�L�τ�dτ

≈
X2N−1

p�0

P�N�
p �t�F1�t; tp�f �tp�L�tp�; (18)

where the trigonometric polynomial of the order N has the
form

P�N�
p �t� � −�2π∕N�

XN−1

m�1

cos�m�t − tp��∕m

− �π∕N2� cos�N�t − tp��: (19)

For the other, continuous parts of kernels we use the trapezoi-
dal rule [42]

Z
2π

0
F2�t; τ�f �τ�L�τ�dτ ≈ �π∕N�

X2N−1

p�0

F2�t; tp�f �tp�L�tp�: (20)

In expressions (18) and (20), it is implied that F1 � A1, B1,
C1, D1 and F2 � A2, B2, C2, D2 and also f � φ, ψ . Upon
replacement, in the integral equations (4) and (5), of the inte-
grals by the quadratures (18) and (20), the following 4N × 4N
matrix equation is obtained:

�I� A�
�
Φ
Ψ

�
� 0; (21)

where the vectors of unknowns are Φ � fφ�tp�gp�0;2N−1 and

Ψ � fψ�tp�gp�0;2N−1, and the matrix A has a block structure,

A �
�
A −B
C −D

�
: (22)

Every block has the size of 2N × 2N , and its elements are
given by
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A�f�P�N�
p �ts�A1�ts;tp���π∕N�A2�ts;tp��L�tp�g2N−1

p;s�0;

B�f2ηe∕�ηe�ηi��P�N�
p �ts�B1�ts;tp���π∕N�B2�ts;tp��L�tp�g2N−1

p;s�0;

C�f�P�N�
p �ts�C1�ts;tp���π∕N�C2�ts;tp��L�tp�g2N−1

p;s�0;

D�f2ηe∕�ηe�ηi��P�N�
p �ts�D1�ts;tp���π∕N�D2�ts;tp��L�tp�g2N−1

p;s�0:

(23)

It is convenient to introduce a dimensionless value of
κ � ka, where a is some characteristic dimension of the 2D
cavity. Then, the lasing eigenvalues �κ; γ� are the roots of a
determinantal equation,

det�I� A�κ; γ�� � 0: (24)

Considering the accuracy of computations, we can note
that if the integrand function is analytic and 2π periodic, then,
according to [32], the error associated with Eqs. (18) and (20)
is of the order of O�exp�−σN��, where 2N is the number of
nods in the quadrature and σ is the half-width of the strip
in the complex plane to which the integrand functions
F1;2�t; τ�f �τ�L�τ� can be holomorphically continued.

The roots �κs; γs� of the approximate determinantal equa-
tion are found numerically using the iterative-type secant
method. In the process of our computations, the accuracy
of determining the roots has been fixed at the level of 10−7.
The number of iterations strongly depends on the nearness
of the initial guess to the true eigenvalue.

3. MODES OF MICROCAVITY LASER WITH
KITE CONTOUR
In this section, we present a numerical study of the H-
polarized lasing modes of a 2D uniformly active cavity shaped
as a kite. Here, we can consider the cavity contour as a
deformed circle and therefore study, in fact, the effect of the
perturbation of the circle on the spectrum of lasing frequen-
cies and associated thresholds, as well as on the directionality
of the emission. As a kite-contour parameterization, we use
2π-periodic analytic functions

x�t� � a�cos t� δ cos 2t − δ�; y�t� � a sin t; (25)

where a is the radius of a circular cavity in the limiting case
where δ � 0; we will study in detail the cases of a fully convex
contour for δ � 0.165 and a partially concave contour for
δ � 0.5. As explained in the previous section, the LEP eigen-
values, i.e., the normalized lasing frequencies κs and the asso-
ciated thresholds γs, are the roots of the determinantal
equation (24) of the order N . We solve this equation using
the iterative Newton method, which requires initial-guess
values of the roots. These values can be found by visualizing
the reliefs of the absolute value of the determinant as a func-
tion of two parameters, κ and γ, in a selected range of their
variation.

In Figs. 2(a) and 2(b), we show two examples of such reliefs
for δ � 0.165 (fully convex contour) and δ � 0.5 (partially
concave contour) in the range of normalized frequencies ka
between 8.0 and 10.0 that corresponds to the medium-sized
cavity. The vertical axis corresponds to γ in logarithmic scale
to distinguish between the modes having close thresholds.

The minima on the reliefs indicate the locations of eigenval-
ues. As one can see, the plane �κ; γ� is inhabited by the modes
of the kite (i.e., by the LEP solutions) in somewhat different
ways for a fully convex and a partially concave shape. In the
former case (δ � 0.165), there is a sequence of three minima
in the shown range that correspond to modes with noticeably
lower thresholds than all other modes. As will be further dem-
onstrated, each of these minima hides a close doublet of two
whispering-gallery-like (WG-like) modes of different parities
across the x axis, while the other modes, with higher thresh-
olds, are the Fabry–Perot-like (FP-like) and “volume” modes.
Here, the FP-like modes are actually a subset of the volume
modes displaying a chain of field maxima along a certain, gen-
erally curved, line inside the kite. In the latter case (δ � 0.5),
there are also three minima seen below the others in terms of
γ; however, each of them contains only one mode that keeps
certain WG-like features (see below) and has an x-odd mag-
netic field. A corresponding x-even sister mode has been
already perturbed so much that its threshold is comparable
or even larger than for the non-WG-like modes.

In Figs. 3(a) and 3(b), we present the dynamics of the lasing
frequencies and thresholds in the kite laser with varying de-
formation. Here, the curves for two pairs of modes are pre-
sented. One of them originates from two degenerate at δ � 0
dipole modes of the H1;4 type that have no WG behavior. The
other is related to two degenerate at δ � 0 modes of the H10;1

type that are clearly WG modes—to emphasize this, we will
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Fig. 2. Relief of determinant (a) for a fully convex kite δ � 0.165 and
(b) for a partially concave δ � 0.5. Other parameters are α � 1.5 and
N � 50. Marks correspond to the field patterns in Figs. 4 and 5.
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denote them as quasi-WGH10;1. So far, as the deformation is
small, at least if δ < 0.15, all four modes display similar behav-
ior, and actually WG-like modes are nearly degenerate while
non-WG modes become essentially split only in terms of fre-
quency. More dramatic changes occur if δ is getting larger and
especially around and after the critical value of 0.251 beyond
which the kite exhibits a concave part on its boundary. Each
mode keeps field parity across the x axis; however, its pattern
varies considerably. Note that the theorems of operator-
valued function analysis guarantee that each ks�δ� and γs�δ�
are continuous functions of the argument. We label the cor-
responding continuous modal branches as I, II, III, and IV.

Figures 4 and 5 demonstrate the amplitude near-field and
far-field patterns for the doublets of modes H1;4 and WGH10;1

in a weakly deformed convex kite-shaped microlaser and their
eventual counterparts for the large deformation, respectively.
Labels I–IV (V) correspond to marks in Figs. 2(a) and 2(b), and
also Figs. 3(a) and 3(b). These field patterns enable one to see
how the progressive deformation turns some of the initially
WG-like modes into FP-like and volume modes. In addition,
the field patterns of mode V in Fig. 5 demonstrate that in a
strongly deformed kite cavity, a specific family of modes

appears that adapt themselves to the appearance of a concave
part of the boundary. We have called them “horseshoe-like”
(HS-like) modes; they can be viewed, on the one hand, as
partial WG-like modes standing along the part of the cavity
boundary that is still concave and, on the other hand, as
specific FP-like modes standing along the curved path be-
tween the two most curved parts of the same boundary.
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Fig. 3. (a) Lasing frequencies and (b) thresholds as functions of the
kite deformation parameter δ, for the doublet of quasi-WGH10;1 (green
and black lines) and quasi-H1;4 (blue and red) modes, α � 1.5,N � 50.
Marks I–IV correspond to similar marks in Figs. 2, 4, and 5.
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Fig. 4. Near- and far-field patterns of jHzj for two modes that form
the quasi-WGH10;1 doublet (I), (II) and quasi-H1;4 doublet (III), (IV) in
a kite with contour parameter δ � 0.165. These field patterns corre-
spond to the marks in Figs. 2 and 3. Mode (I) is an odd WG-like one
with κ � 8.8511, γ � 7.352 � 10−2, and D � 3.86. Mode (II) is an even
WG-like one with κ � 8.8534, γ � 7.076 � 10−2, and D � 3.33. Mode
(III) is an odd FP-like one with κ � 8.8105, γ � 8.884 � 10−2, and
D � 3.54. Mode (IV) is an even FP-like one with κ � 8.733,
γ � 9.207 � 10−2, and D � 2.8. Other parameters are α � 1.5 and
N � 50.
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HS-like modes also have rather low thresholds and radiate
predominantly into the half-space toward which the concave
part of the contour is oriented.

A far-field expression for the mode field can be obtained
using the integral (3) and the asymptotic of the Hankel
function for large arguments [42], leading to the following
expression:

Ue�r; θ� �
r→∞

− �i� 1�eikerΦ�θ�∕
�
4

����������
πker

p �
; (26)

where θ is the angle of observation and Φ�θ� is the far-field
angular pattern,

Φ�θ� �
Z
Γ
fiφke�n⃗0 · �cos θ; sin θ��

� �ηi∕ηe�ψge−ike �r⃗0 ·�cos θ;sin θ��dl0: (27)

The directionality of mode emission can be conveniently char-
acterized using the quantity borrowed from the antenna
theory and referred to as directivity,

D � �2π∕P�jΦ�θmax�j2; P �
Z

2π

0
jΦ�θ�j2dθ; (28)

where θmax is the angle of the main beam radiation in the half-
space 0 ≤ θ ≤ π and P is, within a constant, the total power
radiated by a lasing mode. The values of directivity associated
with each mode are also indicated in Figs. 4 and 5. Note that
all modes of a circular resonator with azimuth index m > 1
and far-field patterns Φ�θ� � cos�mθ� or sin�mθ� have D �
2 and that omnidirectional emission for m � 0 results in
D � 1. Note also that an x-odd mode cannot have less than
two main beams and thus it displays generally (although
not always) smaller values of directivity than its sister mode
of the x-even parity. As is visible, the directivity of any mode of
the kite cavity is larger than for the unperturbed WG mode of
the circle.

In Figs. 6(a) and 6(b), we present, respectively, the reliefs
of the absolute value of determinant on the plane �k; γ� in the
range of normalized frequencies ka from 20 to 24 that corre-
spond to relatively large-sized cavities and its zoomed part
corresponding to the area shown by dashed lines, for a kite
with a small deformation (δ � 0.165). We do not show the re-
liefs for the larger deformations because, as is already clear
from the above presented data, in that case no low-threshold
modes are expected.

In Fig. 6(a), one can see a familiar almost periodic sequence
of minima in the domain of low thresholds around 0.01—these
are the closely spaced doublets of the WG-like modes surviv-
ing under small deformation. The zoomed relief in Fig. 6(b)
reveals a dense collection of non-WG modes having thresh-
olds between 0.05 and 0.035. The patterns presented in Fig. 7
demonstrate examples of the near and far fields of some of
these modes, with the values of normalized frequencies,
material thresholds, and directivities of emission explained
in the caption. Note that to keep the accuracy at the same level
as for the data presented in Figs. 2–5, we had to take twice
larger values of N in the interpolation scheme in our numeri-
cal algorithm.

A somewhat counterintuitive result is that the quasi-WG
modes whose inner fields are compressed to the resonator
boundary have larger values of directivity than the FP-like
and other non-WG-like modes. The domains of the intensive
scattering are the parts of the kite contour that have larger
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Fig. 5. Same as in Fig. 4 in a kite with contour parameter δ � 0.5.
These field patterns correspond to marks in Figs. 2 and 3. Mode
(I) is an odd FP-like one with κ � 9.0367, γ � 9.655 � 10−2, and
D � 3.49. Mode (II) is an even FP-like one with κ � 8.9111,
γ � 0.1022, and D � 3.23. Mode (III) is an odd volume one with
κ � 8.7076, γ � 0.135, and D � 4.08. Mode (IV) is an even volume
one with κ � 8.3764, γ � 0.1117, and D � 3.95. Mode (V) is an odd
HS-like one with κ � 9.0652, γ � 8.1136 � 10−2, and D � 5.65. Other
parameters are α � 1.5 and N � 50.
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curvatures, and the sector of radiation of several of the most
intensive beams can be explained using the ray-tracing and
tunneling considerations as shown [15,17,23–26]. If one takes
into account that the WG-like modes have considerably lower
thresholds than other modes, one can state that these modes
form a remarkable subset within the ensemble of solutions for
the fully convex kite cavity. This is true as far as the whole
cavity is uniformly active. If pumping is performed selectively
using a focused beam or shaped electrodes, then the overlap
between the active region and modal electric field becomes
important [27].

4. COMPARISON WITH EXPERIMENTAL
DATA
Experiments have been performed on kite-shaped dye-doped
polymer microlasers. Planar dimensions of such microlasers
(∼100–200 μm) are several orders of magnitude larger than
both the cavity thickness (∼0.5–0.8 μm) and the emission
wavelength (∼0.6 μm), allowing us to consider these cavities
as quasi-2D components. The fabrication work flow consists
of two steps. First the dye-doped polymer layer is obtained
by spin coating a mixture of poly(methylmetacrylate)
(Microchem 495 PMMA A6) polymer with 5 wt. % of a high-
purity noncommercial dye MD7 (4,4-difluoro-8-mesityl-3,5-
di(naphthalen-1-yl)-4-bora-3a,4a-diaza-s-indacene) [43] on a
commercial SiO2(2 μm)/Si substrate. The kite contour is then

obtained in the doped PMMA layer by means of electron-beam
lithography (Vistec EBPG 5000+). This allows us to achieve an
almost defect-free cavity surface with flat sidewalls.

During the experiment, a single microlaser is uniformly
pumped from the top with a frequency-doubled pulsed
Nd:YVO4 laser (532 nm, 500 ps, 10 Hz). The microlaser emis-
sion is then collected in the lateral directions (within the cav-
ity plane) with a lens (collection angle ∼6°), which focuses the
emission into an optical fiber connected to a spectrometer
(Acton SpectraPro 2500i) equipped with a cooled CCD camera
(Princeton Instruments PIXIS 100) [44]. All experiments have
been carried out at room atmosphere and temperature.
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Fig. 6. Relief of determinant (a) for the fully convex kite δ � 0.165
and (b) for a zoomed domain shown with dashed lines. Other param-
eters are α � 1.5 and N � 100. Marks correspond to the field patterns
in Fig. 7.
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Fig. 7. Near- and far-field patterns of jHzj for the WG-like, FP-like,
and volume modes. These field patterns correspond to the marks in
Fig. 6. Mode (I) is an even WG-like one with κ � 23.6404,
γ � 9.7644 � 10−3, and D � 6.78. Mode (II) is an even FP-like one with
κ � 23.3738, γ � 3.5438 � 10−2, and D � 5.48. Mode (III) is an odd
FP-like one with κ � 23.4871, γ � 3.4565 � 10−2, and D � 5.73. Mode
(IV) is an odd volume one with κ � 23.7649, γ � 3.8783 � 10−2, and
D � 6.7. Other parameters are α � 1.5, δ � 0.165, and N � 100.
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The experimental spectrum in Fig. 8(a) proves the coexist-
ence of different modes, which can be identified through their
different optical lengths in the Fourier transform of the spec-
trum [see Fig. 8(b)]. The explanation of the data processing is
detailed in [44]. Some spectral peaks are then assigned to
FP-like modes due to good agreement with the predicted op-
tical length. The other peaks should correspond to quasi-WG
modes, since their optical length is close to the perimeter.
Moreover the identification of these two types of modes is
reinforced by the analysis of the polarization states of their
emission [45]. Actually, the FP-like mode was shown to be po-
larized mainly within the cavity plane, while WG-like modes
exhibited prevalence for a polarization orthogonal to the cav-
ity plane. These experiments confirm numerical prediction of
the coexistence of FP-like and WG-like modes.

The angular far-field emission pattern of a given microlaser
is recorded by rotating the cavity in its plane, the whole setup
remaining unmodified. The plots in Figs. 8(c) and 8(d) corre-
spond to the maximum peak over the pixels of a certain spec-
tral region [610–619 nm for Fabry–Perot and 620–632 nm for

WGM; see Fig. 8(a)] for each direction of observation. There is
good qualitative agreement with the numerical predictions in
Fig. 7, for instance between patterns Fig. 8(c) and Fig. 7(II),
and between patterns Fig. 8(d) and Fig. 7(I).

In order to evidence the parts of the cavity boundary that
are involved in the emission process, we examined the light
outcoupling from the kite microlaser with the help of a CCD
camera mounted on a teleobjective (Navitar 1-6232, zoom
6000). This setup is positioned almost in the cavity plane,
in the direction of maximum emission of the quasi-WG modes
[∼60°; see Fig. 9(a)]. It is then possible to compare the loca-
tion of the cavity under white light with the hot spots under
pumping, as visible in Fig. 9(b). As depicted in Fig. 9(a), the
light outcoupling regions seem then to be the points of the
boundary with the highest curvature. This far-field observa-
tion is then consistent with the near-field pattern predicted
by numerical simulations in Fig. 7(I).

The experiments (spectrum, far-field patterns, and imag-
ing) are then in good agreement with the numerical predic-
tions, in spite of a difference in ka of two orders of
magnitude (∼20 for simulations and 1000 for experiments).

Inferring the threshold values of different modes is the main
advantage of the method presented in this article for analysis
of dielectric cavities. At the current stage of study we do not
exploit this advantage, as the primary goal of the experimental
verification was to confirm the mode coexistence and direc-
tional emission properties. Still, based on experimental study,
we can qualitatively confirm the predictions of the model,
stating that the Fabry–Perot-like modes have higher thresh-
olds compared to the WG-like modes. Proper study of this is-
sue demands analysis of the influence of cavity size on
thresholds of both modes types, and is left for the future
studies.

5. CONCLUSIONS
We have considered a 2Dmodel of the uniformly active dielec-
tric open resonator with a smooth contour. As an instrument
of analysis, we have used the Muller BIE adapted to extraction
of the lasing spectra and thresholds via the LEP formulation.
We have also presented the interpolation-type Nystrom
method of the BIE reduction to the determinantal equation
that has theoretically proven convergence. Implementing
the developed algorithm, we have performed a systematic

Fig. 8. Experimental emission characteristics of a microlaser with
a � 70 μm and δ � 0.165. (a) Spectrum recorded in the direction
60°. (b) Fourier transform of the spectrum in (a). The horizontal axis
is labeled in units of an, which is the optical length of the correspond-
ing circle radius. (c), (d) Emission patterns for FP-like mode and
WG-mode (WGM), respectively.

Fig. 9. Slightly oblique observation of light emission from a kite-
shaped microlaser. (a) Scheme of the in-plane configuration. (b) Ex-
perimental image in real colors during lasing. The boundaries of the
cavity and the layer-free part are emphasized with white lines.
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numerical analysis of the lasing frequencies and thresholds,
and also of the near- and far-zone fields for the modes of the
resonator that is shaped as a kite with a deformation param-
eter, changing the smooth contour from fully convex to
partially concave.

In the kite resonator, deformation of the contour from
the circle leads to removal of the mode degeneracy and
the appearance of doublets. The kite-cavity modes that
are the perturbations of the WG modes whose fields are con-
fined at the rim of the resonator are perturbed by the
deformation in such a way that the thresholds of both modes
in a doublet monotonically grow up if the parameter δ gets
larger. However, in a fully convex kite, these modes are
the most promising candidates for the working lasers
because of the lucky combination of both the best thresholds
and the best directionalities. Note that although their emission
occurs predominantly onto one half-space, it is never
“unidirectional” in the sense that it always has several main
beams.

Comparison of the measured spectral compositions of kite-
shaped microlasers and their far-field patterns with the com-
puted spectra and patterns has enabled us to clearly identify
the FP-like and WG-like modes in both cases. The measured
emission patterns and the computed ones show good qualita-
tive agreement, both in the direction of the most intensive
radiation and in the “shining” parts of the cavity contour.
The measured values of the lasing thresholds have displayed
the expected difference between WG-like modes and FP-like
modes, the latter being considerably higher than the former.
More details on the threshold investigation will be presented
in a separate publication.

Although 2D modeling describes the near and far fields in
the cavity plane relatively well, sometimes a full 3D far field is
needed. It can be found using either the near-to-far field trans-
formation or the method of effective currents. Still the high-Q
modes are known to radiate predominantly in the cavity
plane [46].
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