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Exact off-resonance near fields of small-size
extended hemielliptic 2-D lenses illuminated

by plane waves
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The near fields of small-size extended hemielliptic lenses made of rexolite and isotropic quartz and illuminated
by E- and H-polarized plane waves are studied. Variations in the focal domain size, shape, and location are
reported versus the angle of incidence of the incoming wave. The problem is solved numerically in a two-
dimensional formulation. The accuracy of results is guaranteed by using a highly efficient numerical algorithm
based on the combination of the Muller boundary integral equations, the method of analytical regularization,
and the trigonometric Galerkin discretization scheme. The analysis fully accounts for the finite size of the lens
as well as its curvature and thus can be considered as a reference solution for other electromagnetic solvers.
Moreover, the trusted description of the focusing ability of a finite-size hemielliptic lens can be useful in the
design of antenna receivers. © 2009 Optical Society of America
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. INTRODUCTION
ompact hemielliptic dielectric lenses made of low-index
aterials are used in many millimeter (mm) and sub-mm
ave antennas to improve the radiation characteristics of
rimary feeds or, reciprocally, to enhance sensitivity of de-
ectors [1,2]. The elliptical shape of the front of the lens
hat is commonly used in such antennas is suggested by
ay-optics considerations. Such a shape is capable of col-
ecting all the rays impinging on the lens surface along
he major axis in the rear focus, if the ellipse eccentricity
s related to material permittivity as e=�−1/2. This rule
enerally works out well for hemielliptic lenses of com-
aratively large electrical size. For lenses whose size is
omparable to the wavelength, the focusing ability be-
omes questionable. As is known, in this case there is no
onger a focal point; instead, a focal spot appears whose
ize, shape, and location depend on the lens parameters
s well as the polarization and angle of incidence of the
ncoming wave [3,4]. This phenomenon is explained by
he greater impact of internal reflections on the electro-
agnetic behavior in reduced-size lenses. It escapes accu-

ate description in the high-frequency approximations
ommonly used in the analysis of dielectric lens antennas
DLA), but a better understanding of the focusing ability
f small-size lenses would facilitate the design of DLAs
ith improved performance. For instance, such analysis

an help estimate the maximum size of the receiver or
eed array and determine the optimal locations for its el-
ments.

Any dielectric lens has a finite closed boundary and
herefore is, in fact, an open dielectric resonator of a cer-
ain shape. Thus its electromagnetic behavior is deter-
ined by the interplay of two major optical mechanisms,
1084-7529/09/020259-6/$15.00 © 2
amely, geometrical-optics focusing and wavelength-scale
nternal resonances. The latter can be observed if the in-
ident field frequency hits the real part of the complex-
alued frequency of a natural mode of the resonator. The
resence of high-Q resonances (103 and higher) depends
n the lens shape, size, and dielectric constant. Intrinsic
o dielectric lenses typically used in the design of mm and
ub-mm wave DLAs are, for instance, whispering-gallery
odes in circular and spherical lenses [5] and half-bow-

ie modes in hemielliptic lenses [6]. The latter modes are
losely related to the bow-tie modes in full elliptic and
tadium-shape dielectric cavities studied numerically in
7].

Outside the high-Q resonances, geometrical-optics fo-
using is dominant. For instance, low-index ���4� ex-
ended hemielliptic lenses of several wavelengths in size,
ypically used in integrated DLAs, generally demonstrate
he priority of the focusing mechanism over the resonance
ne. However, the latter can become dominant for the
ame lenses made of high-index material ���10� such as
ilicon [6].

This coexistence and overlap of the optical and modal
eatures in the behaviors of small-size dielectric lenses
ake accurate description of their electromagnetic prop-

rties a challenging task. As has been recently demon-
trated, the high-frequency approximations such as geo-
etrical and physical optics (GO, PO) cannot fulfill this

ask [8], even though they are often successfully used for
he analysis of DLAs, especially in the emission regime,
.g., [9–11]. This is because they fail to account for the fi-
ite curvature of the lens and hence to accurately repro-
uce the multiple internal reflections even for off-
esonance excitation. Further more, accurate description
009 Optical Society of America
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f the resonance properties of such lenses is troublesome
ven for full-wave approaches such as FDTD [12,13].

In general, efficient focusing is a useful feature of a
ens, while resonances can be viewed as undesirable. In
his paper we study compact extended-hemielliptic lenses
ade of low-index materials (rexolite and isotropic

uartz) that are typical for DLAs operating in the mm
ave range and illuminated with monochromatic plane
aves. The method used allows accurate characterization
f electromagnetic fields both in and off the so-called half-
owtie resonances whose features have been studied in
6,8,12]; however, in contrast to the mentioned papers the
oal of the present study is the off-resonance behavior of
he lens. Here, we deal with the 2-D lens model. In com-
arison with more realistic 3-D descriptions, such a model
as obvious computational advantages while retaining
he capability of studying all relevant physical phenom-
na. Besides, the 2-D model is known to be a good ap-
roximation for a thin planar lens, provided that the bulk
efractive index is replaced with its effective value.

The paper is organized as follows. The problem formu-
ation and a brief description of the method used are
iven in Section 2. Numerical results are presented in
ection 3, and conclusions are summarized in Section 4.

. PROBLEM FORMULATION
ND OUTLINE OF SOLUTION
e consider the 2D lens as a homogeneous dielectric cyl-

nder whose profile is described by an analytical curve
hat is a smooth junction of a hemiellipse and a hemisu-
erellipse (rectangle with rounded corners [8]). Two
urves are joint at the points �0, ±a�, where a is the minor
emiaxis of the ellipse (Fig. 1). Although all parameters
an be arbitrary, in computations the eccentricity of the
emielliptic frontal part is chosen in accordance with the
O focusing rule, i.e., as the inverse of the refractive in-
ex. The extension of the lens rear part is taken equal to
he ellipse focal distance. For numerical simulations we
elect the lens material to be lossless rexolite ��=2.53�
nd quartz ��=3.8�. The latter is assumed to be isotropic
fused silica). Their bottom size 2a equals 4�0, where �0 is
he wavelength of the incident wave in free space.

ig. 1. (Color online) Geometry and notations of the 2D model of
he extended hemielliptic lens.
To characterize the true electromagnetic performance
f finite-size lenses, we use an in-house algorithm based
n the Muller boundary integral equations (BIE) and ca-
able of providing a controlled accuracy of the numerical
olution for any set of lens parameters [8,12–14]. The ef-
ciency of the algorithm is enhanced by the method of
nalytical regularization and the trigonometric Galerkin
iscretization scheme. This leads to the matrix equation
f the Fredholm-second-kind type whose elements are
omputed as Fourier expansion coefficients of smooth or
ntegrable BIE-kernel functions. This technique guaran-
ees uniqueness of the solution as well as its fast mono-
onic convergence. Details of the mathematical approach
an be found in [14] and therefore are not described here.

It must be noted that the other types of BIEs met in the
iterature suffer from a serious demerit: they possess an
nfinite number of spurious purely real eigenfrequencies
15]. They are the eigenvalues of the interior electromag-
etic problem for the perfectly electrically conducting
oundary filled with the material of the outer medium
usually air). Because of their presence the corresponding
IEs have largely academic interest, as in the numerical
olution of the scattering problem they lead to erroneous
pikes whose width depends on the coarseness of the al-
orithm. The frequency dependences display a “forest” of
uch spikes if the size of the scatterer exceeds a few wave-
engths, and therefore such BIEs can be used at best in
he computations of subwavelength scatterers (such as in
16]). In the eigenmode analysis, such BIEs lead to stable
lgorithms only if the eigenfrequency has a sizable imagi-
ary part (low-Q resonances) [17,18], and they fail for
igh-Q ones such as whispering-gallery modes (this is ad-
itted in [17]).
Fortunately, the Muller BIEs (two coupled equations in

-D and four in 3-D) are free of the mentioned spurious
igenvalues. Being the Fredholm second-kind IEs, they
an be solved numerically with virtually any nonpatho-
ogical discretization scheme. This can be meshing the
oundary (collocations or “pulse-basis-delta-testing” in
oment-method terminology) as in [19], Galerkin projec-

ion on the global functions [14], or a Nystrom-type inter-
olation scheme as in [20]. In all cases the convergence is
uaranteed if the contour is a continuous and smooth
urve (i.e., has a continuous derivative). Note that the
ize of the matrix that must be inverted is determined
see [14]) by three factors: optical size of dielectric scat-
erer, peak normalized curvature of its contour, and the
umber of desired correct digits. Thus, a blind use of the
amous “rule of thumb” of taking ten points per lambda is
ar from being correct. More detailed comparative analy-
es of various BIE and also volume IE formulations for di-
lectric scatterers can be found in a recent review [21].

. NUMERICAL RESULTS
he near-field maps presented in Fig. 2 are for a rexolite

ens illuminated by unit-amplitude E- and H-polarized
lane waves impinging on the lens under various angles
f incidence �. In the figures, the scales correspond to co-
rdinates multiplied by the free-space wavenumber k
2� /�0. The peak field values for each near-field map are

ndicated as maxima of the relevant color bars. The scale
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f each bar is defined as one-tenth of its maximum. For
onvenience of comparison, the focal spot coordinates ob-
ained for various angles of incidence are put together in
ig. 2(c). Here, the focal spot’s boundary corresponds to
0% of the peak field amplitude value (or 64% of the peak
eld intensity value). The term “focal spot” means the
pot containing the highest field value and located closest
o the focal point predicted by GO. Note that for the larger
ngles of incidence several spots with comparable values
f the field appear [see Fig. 3(f)].

The field patterns within the lens clearly show the im-
ortance of internal reflections. In contrast to GO, which
redicts a single focal point in the ellipse rear focus, one
an see a standing wave pattern with several spots of al-
ost equal field amplitude. For the varying illumination

ngle ���0° � these spots migrate along the flat bottom of
he lens and vary both in size and shape. Moreover, the
pots’ size, shape, and location also depend on the polar-
zation; that is, in the H-polarization the focal spots of the

component are shifted by � /4 inside the lens, and their

ig. 2. (Color online) Near-field maps of rexolite extended hem
mplitude E- and H-polarized plane waves.
z

ormalized peak field amplitudes are about 1.5 times
igher than those for the E-polarization. The former is ob-
erved because of the phase shift of � /4 that exists be-
ween the E- and H-field components, whereas the latter
s explained by the difference in the boundary conditions.
amely, all field components are continuous across the
ir–dielectric boundary in the E-case, while a jump in the
-field normal component takes place in the H-case, pro-
ortional to �. Finally, the difference in size and shape of
he spots observed for the E- and H-polarizations appears
ue to the difference in the reflection/transmission prop-
rties for the E- and H-waves propagating inside the lens
nd affecting the focal spot formation (see Appendix A).
The near fields of the isotropic-quartz lens illuminated

y the plane E- and H-waves (Fig. 3) reveal a greater role
layed by internal reflections in the formation of the field
atterns than for the lenses made of less dense materials.
he high-field spots (including the focal spots) become
maller in size evidently because the wavelength in
uartz is shorter than in rexolite.

c lens (�=2.53, ka=12.56, l1=0.8, l2=1.285) illuminated by unit-
iellipti
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It is interesting to note that for each material the size
nd shape of the focal spots observed for all incidence
ngles ��20° remain the same for either of the two po-
arizations (note the curves characterizing the focal spots’
ehavior as given in Fig. 4). This can be explained by the
ncrease in the lens’s receiving aperture that compensates
o some extent for the loss of the lens’s focusing ability
ue to aberrations inherent to any realistic lens. For �
20° the spots become twice as large in size and the peak

ntensity decreases rapidly [the near-field maps for a
uartz lens illuminated at 40° are omitted for brevity, but
he corresponding focal spot contours for both polariza-
ions are given in Fig. 3(c)].

These observations indicate the maximum size of a fo-
al array of receivers that can be used in the design of a
eam-switching DLA. Moreover, the knowledge of the fo-
al spot sizes and locations for different angles of the
lane-wave incidence can help determine the optimal lo-
ations and spacing for focal array elements.

ig. 3. (Color online) Near-field maps of quartz extended hem
mplitude E- and H-polarized plane waves.
In order to extend the results of the near-field analysis
o lenses of other sizes, we have plotted in Fig. 5 the peak
eld values—defined as the highest field amplitude

c lens (�=3.8, ka=12.56, l1=0.6, l2=1.165) illuminated by unit-

ig. 4. (Color online) (a) Normalized peak field values in the fo-
al spots of the rexolite and quartz lenses and (b) normalized co-
rdinates of the corresponding points versus the angle of inci-
ence of plane waves. Dashed–dotted lines in (b) indicate the size
f the lens extension �al �.
iellipti
1
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ithin the focal spot, for rexolite and quartz lenses sym-
etrically illuminated by plane waves—versus the nor-
alized frequency. As one can see, the peak field value

rows proportionally to the electrical size of the lens (Fig.
). The oscillations observed highlight the presence of in-
ernal reflections and their impact on the focal spot for-
ation. This is confirmed by the higher amplitude of

ipples observed for the quartz lens. The difference be-
ween polarizations (roughly a factor of �1/2) can be ex-
lained by the different level of back reflection of the in-
ident wave and by the difference in transparency of the
ens boundary for the “rays” inside the lens (see Appendix
).
As to the location of the focal spots, it remains un-

hanged for the lenses of any size, that is, for the
-polarization the Ez-component focal spots lie at the

ens boundary, whereas for the H-polarization the
z-component spots are shifted inside the lens for about a

uarter of the wavelength in the material (Fig. 6).

. CONCLUSIONS
he previously developed highly efficient numerical algo-
ithm based on Muller BIE has been applied to the analy-
is of 2D models of compact extended hemielliptic dielec-
ric lenses whose size and materials are typical for mm-

ig. 5. (Color online) Normalized peak field values in the focal
pots of the rexolite and quartz lenses symmetrically ��=0° � il-
uminated by unit-amplitude plane E- and H-waves versus the
ormalized frequency.

ig. 6. (Color online) Horizontal coordinates �kx� of the points
ith the highest field values defined in the focal spots of the rexo-

ite and quartz lenses illuminated symmetrically ��=0° � by
lane E- and H-waves versus the normalized frequency. The
ashed–dotted lines indicate the normalized sizes of the lens ex-
ensions for both lenses. The field values at the corresponding
oints are given in Fig. 5.
ave lens antennas. The exact near fields for the lenses
xcited by the plane waves under various angles of inci-
ence have been plotted. They demonstrate nontrivial
lectromagnetic behavior of the small-size lenses that
annot be accurately characterized by the conventional
igh-frequency methods often applied to the analysis of
uch lenses.

Studying off-resonance focusing by moderately small
enses, we have found that with a rexolite or quartz lens
f the cross-sectional size of 3 to 5 free-space wavelengths
ne can obtain focal-spot peak field values that are 3 to 8
imes larger than in the incident plane wave. These nu-
erical results are accurate and thus can be considered

s a reference solution for other electromagnetic solvers;
hey can also serve as a guideline for design of antennas
nd lenses.

PPENDIX A: REFLECTION
ND TRANSMISSION COEFFICIENTS
OR THE PLANE E- AND H-WAVES
NCIDENT ON THE AIR–DIELECTRIC
OUNDARY
ransmission and reflection coefficients of a plane wave
rbitrarily incident on a plane air–dielectric boundary
an be determined using the classical Fresnel formulas.
he reflection coefficient dependences on the angle of in-
idence are shown in Fig. 7 to illustrate the discussion of
he numerical results obtained for the considered lenses.

Although for an extended hemielliptic lens of compact
ize the curvature of the profile is high and thus cannot be
eglected, the curves in Fig. 7 for the plane waves imping-

ng on the rexolite and quartz boundaries with air help us
o understand the differences in the impact of internal re-
ections on near-field pattern formation.
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