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1. INTRODUCTION

Microcavity lasers are expected to serve as key elements
of compact photonic integrated circuits because of their
small size and low-threshold operation. The lowest
thresholds are observed in on-pedestal circular disks and
in low-index-substrate cavities equipped with embedded
quantum wells or layers of quantum dots. This is because
such lasers work in the whispering-gallery (WG) modes
whose optical fields experience almost total internal re-
flection at the disk rim [1-3]. To achieve a pronounced
WG effect, the disk rim, being as smooth as possible, must
be at least several wavelengths in the disk material,
hence the angular index m of the working mode is usually
not smaller than 5. Reduction of the microdisk size be-
yond this limit is desirable; however, it leads to an in-
crease of the lasing threshold as the low-angular-index
modes in subwavelength circular cavities do not display
WG behavior [4]. Note also that in thin microdisks the
modes form two distinctive families, one having the opti-
cal field with the H, component dominating over the E,
component, and the other vice versa (the z axis being the
disk axis). It is the former family, usually denoted as TE,
that has smaller thresholds, as supported by numerous
experiments. This has been convincingly explained with
the aid of the effective refractive index theory: this quan-
tity is always larger for the TE family of modes than for
the TM one.

Apart from cascading several quantum wells in the
stand-alone disk, there are two ways to lower the mate-
rial threshold for the disk modes by modifying the disk
environment. One is to collect several microdisks in a cy-
clic photonic molecule (CPM) [5,6]. Simulations show that
because of the symmetry- or antisymmetry-assisted opti-
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cal field interference, the Q factor of any specific optically
coupled mode (“supermode”) in the passive (pump off)
CPM can be made larger [7], and the threshold in the ac-
tive (pump on) CPM can be made lower than for a stand-
alone cavity [8-10]. Here, working with small-m non-WG
modes in each disk has an additional advantage. Accord-
ing to the modeling results the lowering of the threshold
of a supermode built on the larger-m WG modes in el-
ementary disks requires a very precise selection of the
distance between adjacent disks [9]. This therefore re-
quires either accurate prefabrication modeling or postfab-
rication geometry tuning, which is difficult to achieve. In
contrast, for the supermodes built on the small-m TE-type
non-WG modes, such as the Hy ; or H; ; ones in each sub-
wavelength elementary disk, the lowering of the thresh-
olds can be achieved more easily by bringing them to-
gether in a very tight circular array [10]. In this case
there are two convenient engineering tools: the number of
elementary small-size cavities and the separation be-
tween them. The larger the number of cavities and the
smaller the separation, the smaller the CPM threshold.
Note that these effects, although predicted at the early
stage of research [5] and now supported by simulations,
still await experimental verification.

Another way to lower the threshold for a small sub-
wavelength circular microdisk is to embed it into an an-
nular Bragg reflector (ABR), which can provide in-plane
radial optical confinement as a result of in-phase reflec-
tions [11,12]. Here, the number of pairs of ABR layers is
usually exploited as an engineering design tool. In the on-
substrate patterned designs with shallow grooves, it is
frequent for experimental papers to display microphoto-
graphs of cavities placed inside ABRs of 30-100 periods.
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In the case of deeply etched grooves this number can be
made smaller due to the larger effective-index contrast
between the layers, in the same manner as for the flat-
layered Bragg reflectors [13].

Until recently the analysis of ABR-assisted circular
cavities has been restricted to the study of passive reso-
nators and the associated Q factors of their eigenmodes—
see the comprehensive list of relevant publications in [14].
It is important to remember that the natural modes of
any open cavity are discrete in the sense that their fre-
quencies form a discrete set of numbers, always complex-
valued. Mathematically, the modal Q factor is a quantity
“rigidly” linked to a mode, i.e., it may also take only dis-
crete values. Neglecting this fact is not unusual (see, e.g.,
[14]); however it leads to erroneous conclusions. For in-
stance, it suggests plotting the Q factor as a continuous
function of the real-valued frequency.

Analysis of the lasing thresholds for an ABR-assisted
active cavity—i.e., a true microlaser—by using the bal-
ance between radiation losses and material optical gain is
a different type of electromagnetic field problem. An at-
tempt to consider an ABR laser of that type was reported
in [15]; however, there the reduction from a 3-D to a 2-D
model involved field functions that did not satisfy the
Helmholtz equations, the size of active region was not
specified, and the material gain was not considered as an
eigenvalue. This analysis was greatly improved in [16],
where the TE-type 2-D eigenvalue problem for the ABR
laser was correctly considered with frequency and mate-
rial threshold gain as eigenvalue parameters. Still the
size of the active region, where the gain was assumed as
an “active” imaginary part of the refractive index, was not
clearly introduced, so that formally the whole infinite ex-
ternal domain was active. This is not true, of course, as
experimental ABR lasers, even if etched out of one large
sample with a quantum well stretching across the whole
structure, always have a finite active region defined by
the spot of the focused pumping beam [11]. Furthermore
we note that using only one angular index m is not suffi-
cient for identifying the lasing modes because each azi-
muth family contains an infinite number of modes, and
the radial-dependence index (or indices) is (are) needed to
remove the ambiguity.

Unlike the papers mentioned, here we will study in the
2-D approximation an active microdisk placed in the cen-
ter of one passive microring and find the effect of the lat-
ter on the thresholds of the lasing modes of the “dipole”
type, i.e., those having m=1. This model corresponds to
the realistic situation when the pumping is applied to the
central disk only, and the external circular layers remain
passive. In computations, we will also assume that both
the disk and the ring materials differ only in the presence
or absence of material gain, respectively. The space be-
tween them is assumed to be filled with a passive mate-
rial having a smaller refractive index; to emphasize the
observed effects we will take it as air in computations.
This situation models deeply etched, surface-relief, on-
substrate ABR lasers and is also applicable to cylindrical
capillary lasers [17]. Interestingly, in view of the recently
reported achievement of fabrication of a 600 nm diameter
disk laser standing on a 100 nm diameter pedestal [18],
one may imagine that in principle a ring on a pedestal of
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similar width can be manufactured as well. We restrict
our consideration to the TE-polarized modes and treat
them accurately using the so-called LEP formalism whose
details can be found in [4] (see also [3] and references
therein).

In Section 2, we briefly review the formulation of LEP
and the derivation of basic equations. Section 3 presents
the numerical results demonstrating that any lasing
mode is always a “supermode” because of the optical cou-
pling between passive and active parts of the whole cav-
ity. In Section 4, we show that the dependences of the
mode thresholds on the geometrical and material param-
eters of the partial domains can be conveniently ex-
plained using the overlap coefficients suggested by the op-
tical theorem. This analysis is presented in Section 5. In
particular, the modal field of any disk mode can be pulled
into the passive region (i.e., pushed out of the active re-
gion) leading to increased threshold. Conclusions are
summarized in Section 6.

2. FORMULATION OF LASING PROBLEM
AND BASIC EQUATIONS

The ABR-assisted microdisk laser is an example of an op-
tical circuit consisting of several optically coupled ele-
ments, where the active region does not coincide with the
whole resonance structure. This is because, as mentioned,
ABRs are manufactured with multiple rings and grooves
while the pumping beam is focused on the central cavity
into a spot several micrometers in diameter to prevent the
device from lasing on the ring modes. In this paper we
study the simplest configuration of this sort, a uniformly
pumped active disk inside one passive ring, with the
space between them filled with a less optically dense ma-
terial.

Figure 1 shows the in-plane geometry of a microdisk
cavity placed in the center of a microring. We introduce
the polar coordinates (r, ¢) and denote the disk radius a,
the separation between the disk and the ring d, and the
thickness of the ring w. We assume that in the pump-off
regime the disk has real-valued refractive index «,. How-
ever, if the pumping is applied the disk becomes active
and attains a uniform material gain 7, so that its refrac-

Fig. 1. (Color online) In-plane geometry of active circular micro-
cavity concentrically coupled with a passive ring.
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tive index becomes complex-valued: v=a,—-i7y, y>0. Here,
the contribution of the pumping to the real part of the re-
fractive index can be neglected as it is very small in com-
parison with «,. The refractive index of the domain be-
tween the cavity and the ring is denoted a, and the ring
refractive index is «, (for simplicity, both these refractive
indices are assumed real-valued), and the outer medium
is air. The time dependence is implied as e~**, and the
free-space wavenumber is k=w/c=27/\, where \ is wave-
length.

In the 2-D model, we consider the TE polarization with
the aid of the H, field component denoted as U(r, ¢). The
LEP statement implies that U must satisfy the Helmholtz
equation with the piecewise constant coefficient equal to
k%, k2d7, k2a§, and k%v? in the air, ring, gap, and active
region, respectively. At all the boundaries, the continuity
conditions are imposed on the tangential field compo-
nents. Additionally, the condition of local power finiteness
and the radiation condition are to be satisfied. As the LEP
is a source-free problem, we look for two real numbers,
k=ka and v, as eigenvalues [4] generating nonzero func-
tions U. The first of these numbers is the normalized las-
ing frequency, while the second is the threshold material
gain. Thanks to the real-valued %, the radiation condition
at r—oo is the usual 2-D Sommerfeld condition, so that
the modal field does not diverge at infinity. Further we ex-
pand the field function inside each domain as

©

Ulr,@) = X, [A3d,,(kvgr) + By,H,, (kvgr)]cos me, (1)

m=0

where J,,(.) and Hﬁi)(.) are the Bessel and Hankel func-
tions, s=1,...,M is the number of the radial domain
counted from the center, and M is the total number of con-
tours (here M=3). From the condition of local energy fi-
niteness and the radiation condition it follows that Bl
=0 and A%”:O, respectively. Thanks to the circular sym-
metry, each term in Eq. (1) can be studied separately. In-
deed, substitution of Eq. (1) into the boundary conditions
associated with the sth boundary leads to the following
two equations, valid independently for each value of the
modal azimuth index m=0,1,2,...:

Afrlem(KUsuPs) + Bleg)(KUs+1ps)

= A5, (kvp,) + B, HY (kvgps),

[ASAT) (kU 1ps) + BST HY (k04,190 V0
=[A3J) (kvyp,) + BSHY (kvyp) s, (2)

where p;=1, p,~1=a,~1/a are the normalized rim radii,
ag=a+d; ag=as+w; vi=v=a,-Im vy, vy3=a,,; and the
prime denotes differentiation with respect to the argu-
ment. Collecting the equations like Eq. (2) from all bound-
aries, we obtain a 2M X 2M matrix equation. In operator
notation it can be written as C™X =0, where X"
={A} B}, évil, and C(m)={CEm)}i2x%1 is a matrix operator.
Then the search for the LEP eigenvalues reduces to find-
ing the zeros of the infinite number of independent finite-
order determinants,

Det[C"™(x,y]=0, m=0,1,2,.... 3)
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As suggested by the theory of functions of complex vari-
ables, the lasing-problem eigenvalues of each mth family
form a discrete (i.e., infinite but countable) set on the
plane (k,v). Thus, one angular index m is not enough to
distinguish modes from each other, and another, radial,
index must be used. To find eigenvalues, we use an in-
house numerical algorithm based on the two-parameter
secant-type iterative method, with initial guess values
taken as the eigenvalues of x and vy for the lasing modes
in a stand-alone circular resonator—see [4]. This appears
to be a more direct characterization of eigenvalues than
looking for the values of x and y minimizing the ampli-
tude of (in fact, nonexistent) in-going cylindrical waves in
the host space, as was done in [16] within the transfer-
matrix formalism.

3. EFFECT OF CONCENTRIC COUPLING

The characteristic equations derived are valid for arbi-
trary geometrical and material parameters. In our nu-
merical study we assume that the microdisk and the ring
are separated by the air gap, i.e., a,=1, and their pump-
off refractive indices are the same, i.e., a,=a,=2.63. This
value accords, for example, with the effective refractive
index ag]cf of the lowest quasi-TE-polarized mode in the
air-clad GaAs/InP material systems for A=1.55 um, if the
disk and ring thicknesses are 100 nm. In the same disk,
the lowest quasi-TM-polarized modes have a much
smaller effective refractive index, namely, af =1.31.
Therefore they have much higher thresholds and can be
ignored [4].

In Figs. 2(a) and 2(b), we present the dependences of
the lasing frequencies and thresholds on the normalized
disk-to-ring separation d/a for the dipole-type modes
H, ,.p With m=1 in the cavity and with thin ring w
=0.2a. Here, the first index m shows the number of the
field variations in azimuth. The other indices, i.e., n, q,
and, p, are the numbers of field variations in the active
disk, air gap, and ring, respectively. In contrast to a
single-disk cavity, here we have to keep several radial in-
dices indicating mode field variations in each partial re-
gion. This is a reflection of the fundamental observation
that the natural modes of the cavity made of several par-
tial domains are in fact the “supermodes,” i.e., combina-
tions of optically coupled modes of separate domains. This
situation is quite similar to that of the modes in a cavity
built as a linear or cyclic photonic molecule [7-9].

At small values of d (the smallest value is 0.01a as in-
dicated), the four modes in Figs. 2(a) and 2(b) denoted by
the in-circle numbers 1 to 4 are the dipole modes with cor-
responding radial indices n=1,2,3,4, respectively, of the
circular cavity of radius a +w with an active central circle
of radius a. This is highlighted by the dashed horizontal
straight lines presenting the threshold and frequency val-
ues of the modes H; ,, (n=1,2,3,4) in the stand-alone ac-
tive microdisk of radius a and material «, [4]. As one can
see, if the air-gap separation d is increased their lasing
frequencies «; , 4, decrease monotonically [Fig. 2(a)] and
tend to the same value corresponding to the mode H; ; in
the stand-alone disk of radius e¢+w with active central
circle of radius a (given by the horizontal dotted line). The
threshold variation that accompanies the same change of
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Fig. 2. (Color online) Normalized lasing frequencies (a) and
thresholds (b) of the H, , , , supermodes in the active disk loaded
with a passive external dielectric ring versus the normalized air-
gap separation between the disk and the ring. Ring thickness is
w=0.2a, refractive indices are a,=a,=2.63, a,=1.

separation is more dramatic (by several times) both in the
sense of reduction and growth [Fig. 2(b)]. Broadly speak-
ing, at any specific value of d/a there are two or three
modes whose frequencies are near the mentioned limiting
value. The one whose frequency is nearer to the frequency
of the H; ; mode in the stand-alone all-active disk of ra-
dius a, k1,1=1.405, always has the smallest threshold.
The locations of the minima and maxima and their ex-
treme values correlate with the transformation of the
mode patterns along the structure radius—see Fig. 3 for
the H-field patterns visualized at the points marked in
Fig. 2(a). The minima of thresholds are observed if high-
intensity H-field spots concentrate in the active region,
and the leakage out of the cavity is reduced (Figs. 3 D, F,
H, J, L, N). The maxima of thresholds appear in the situ-
ations when intensive field spots are pushed out of the ac-
tive region to the air gap between the cavity and the ring
(Figs. 3 C, E, G, I, K, M). This is accompanied by in-
creased leakage. Moving the ring away from the active
cavity leads to the field redistribution inside the structure

Vol. 25, No. 11/November 2008/J. Opt. Soc. Am. A 2887

that can be characterized by the varying partial indices n
and q. Note that for the modes presented in Figs. 2 and 3,
the passive ring thickness is fixed and has the small value
w=0.2a so that the “ring” index p=0.

It is interesting to note that if d/a changes, all eigen-
values of the considered H;,,( supermodes migrate
along one and the same trajectory on the plane («,y). In-
creasing the distance from the disk to the ring just moves
the eigenvalues along this trajectory from the right to the
left as shown in Fig. 4. However, the start point on this
trajectory is different for each dipole-type supermode.
These start points are marked with open symbols in Fig. 4
and correspond to the modes H; ,, in the stand-alone disk
of radius a+w with active central circle of radius a.
Therefore, such a trajectory on the plane (k,?y) seems to
be a sort of signature for the dipole-mode family (m=1).
Its shape, however, depends on the radii and material
composition of the ringlike passive domains.

A different type of the mode behavior is observed if we
change the passive ring thickness while the air-gap thick-
ness is fixed. The dependences of the lasing frequencies
and thresholds on the normalized ring thickness w/a are
presented in Fig. 5. The frequency dependences are piece-
wise monotonic [Fig. 5(a)l, with each monotonic section
corresponding to the different mode type in terms of the
“ring” partial radial index p. This is revealed after visu-
alization of the corresponding H-field patterns at the
marked points (see Fig. 6). Here, all near-field patterns
labeled from B to K demonstrate high confinement of the
optical field in the central active disk, while the pattern
labeled A shows considerable leakage out of the cavity. In-
deed the latter pattern corresponds to threshold near a lo-
cal maximum in Fig. 5, and the patterns from B to K have
been computed in the minima of thresholds. Varying the
ring thickness results in the appearance of new H-field
variations in the ring while the numbers of variations in
the cavity and air gap, n and ¢, are the same. On the plots
of modal thresholds as a function of w/a in Fig. 5(b), one
can see again a series of minima and maxima of the
thresholds. The minima occur at the middle points of the
monotonic frequency-dependence sections, and the
threshold maxima correspond to their “ends,” where the
modes transform from one type to another, with the par-
tial “ring” index p changing by one.

4. OPTICAL THEOREM FOR THE LASING
MODES

The plots of mode thresholds versus the cavity param-
eters and the mode H-field patterns show a certain corre-
lation that calls for an accurate quantification. Fortu-
nately, a tool for such quantification already exists in the
theory of Maxwell’s equations—this is the optical theorem
(OT). The OT is the real-valued identity that is derived
from the complex-valued Poynting theorem [19] in the
time-harmonic plane wave scattering and links the total
extinction cross section of a scatterer with the amplitude
of the forward-scattered field in the far zone. The Poyn-
ting theorem can also be applied to any field functions
satisfying Maxwell’s equations in the absence of given
currents or incident field, i.e., to the eigensolutions. The
most general form of the resulting identity, for the
complex-valued £, is
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Fig. 3. (Color online) Near-field |H,(r,¢)| patterns for the supermodes H,,, at the points marked in Fig. 2; ring thickness is w

=0.2a, refractive indices are a,=¢,=2.63, a,=1.

(%)jﬂ E X H*ds = (i/2) f (k*e*ZGE|? - kuZo/H|?)dv,
S v

(4)
where the left-hand part is the total outward flux of the

Poynting vector averaged over the period of oscillations
through the boundary S of the “minimum sphere” V

containing all passive and active regions (so that the do-
main outside it is homogeneous and filled with air); piece-
wise continuous functions ¢ and u are the relative permit-
tivity and permeability, respectively; and the asterisk
means complex conjugation.

Suppose now that we are considering a generic lasing
mode, to which we will assign, for brevity and in view of
discreteness of the LEP eigenvalues, a single cumulative
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circle numbers correspond to the mode notations of Fig. 2. The
open symbols correspond to eigenvalues for supermodes H , g,
at the initial value of the parameter d/a=0.01. The filled color
symbols on the curve correspond to eigenvalues of supermodes
H,,,,atd/a=0.5,1.0, 1.5 (from right to left). The off-curve sym-
bols correspond to the eigenvalues for the all-active disk of radius
a.

index j. We apply Eq. (4) to the corresponding mode field

{E'j,ﬁ i}, taking into account that Im ;=0 and the active-

. . . . 2 9 .
region dielectric constant is e,=vj=a"- yf—Zzayj, and ad-
ditionally assuming that all materials are nonmagnetic,
u=1. Then the OT tells that, for the lasing mode number
J, the radiation losses are exactly balanced with the power
generated in the active region V,, provided that the ma-
terial gain equals y;:

E;x Hds = ykja, f E;(R,kj,7)dv, (5)
V,

a

(Zo/2)Re 3&

S

where R is a radius vector.

In the case of the laser depicted in Fig. 1, the active re-
gion is only a part of the whole cavity volume, which also
contains the air gap V, and the ring V,. Therefore it is
convenient to introduce, for each jth mode, the total mode
volume,

Wik), ) = J Q2R kj, v)|dv = f Z|E)|*dv
\% v,
+f a§|éj2dv+f 2|E,*dv, (6)
\% Vv

g r

and also the partial factors FJ(“),TJ(.g),FJ(r <1:

I =WPIw, WPk, ) = f of BB,k ) dv,
Vi

f=a,g,r. (7)

The meaning of each factor is a measure of the overlap
of the corresponding active or passive region with the
E-field of the jth mode; note that F;“)+F;3)+FJ(’)=1. It is
important to remember that these quantities make sense

Vol. 25, No. 11/November 2008/J. Opt. Soc. Am. A 2889

5.5
T 14
2507% % x %
54.5_ H I J K
o
2 4.0 - _ _ _H:
g : g
5.3.5- G
o i
= 3.0
R, === —
'-‘—'; 25—4 C D Hl.z
52.0— B
P 1A
ﬁ l-S‘W
10- IHl,l

. 0.01 0.21 0.41 0.61 0.81
w/a, relative ring thickness

(2)

7, threshold gain

10” . . 1
0.01 0.21 0.41 0.61 0.81
w/a, relative ring thickness

(b)
Fig. 5. (Color online) Normalized lasing frequencies (a) and
thresholds (b) of the H, ,,, modes in the active disk placed in-
side a passive ring versus the normalized ring thickness. Air-gap

separation is d=0.5a, and refractive indices are «,=«,=2.63, a,
=1.

only as discrete values linked to the modes. Now the OT
given by Eq. (5) can be rewritten as

(Zo/2)Re fﬁ E;x Hds

S aapj
'VJ: > > 2 = (a) > (8)
kjcofv |ERk;,y)Pdv  1;"kW;
where
P;=(Zy/2)Re 35 E;x Hjds (9)
S

is the flux of power lost for radiation or the emission cross
section. All quantities in the right-hand part of Eq. (8) are
determined by the integration of the field functions,
which indirectly depend on the material gain vy, through
the Maxwell equations. The quantity P;/k;W; is the ratio
of the radiated powers to the powers stored inside the
whole cavity, thus its inverse has the meaning of the “Q

factor” of the cavity with active region Qj, and hence
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Fig. 6. (Color online) Near-field |H,(r, ¢)| patterns for the supermodes H, , ,, at the minima of threshold y corresponding to the points
marked by B to K in Fig. 5. Conversely, case A corresponds to the high threshold. Air-gap separation is d=0.5a, refractive indices are

a,=a,=2.63, a,=1.

Ay

@

This simple formula is very insightful. Indeed, as both

Y (10)

F](-“) and Qj depend on the squared field components, their
changes with respect to small variations in the threshold
Sy are A=0[(6y)?]. Therefore if ¥;<1 then, in the first ap-
proximation, one may take both I'® and Qj as the values
calculated by neglecting ;. It means that one may take

the passive cavity Q factor, @;=Re k;/2|Im k,|, as the ap-

proximate substitute for Qj and calculate the active-
region mode overlap factor by using the passive-cavity
field functions.

Thus, a high Q factor in the pump-off regime is not
enough for the low threshold in the pump-on case, be-

cause it can be spoiled by the poor overlap between the
mode electric field and the active region. In the simplest
case of a fully active cavity (this can be only a free-
standing slab in 1-D, a circle in 2-D, and a sphere in 3-D),

I'Y=1and y=a,/Q;~ a,/Q;.

5. NUMERICAL ANALYSIS WITH THE AID
OF OVERLAP FACTORS

In our laser consisting of the concentrically coupled active
disk and passive ring, the computation of the overlap fac-
tors for the TE modes leads to the necessity of integrating
the squares and cross products of cylindrical functions
and their derivatives of the same index m (mode angular
index). In each partial domain, the expressions resulting
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from Eq. (1) lead to the following generic-form integrals
(here we omit the domain index f and the argument of cy-
lindrical functions xvp):

W, = f ?|E[*pdpde
VS

fn'azzg Qs+l
_ s |2 * *
= 21/51/* f [|Am| (Jm—lJm_1 + Jm+1Jm+1)

AL By a4 T H )+ AVBG (T H

+ Jj,HlHSrﬂl
(1)« (1)«
+ B PH L H Y+ HY H Y )]pdp. (11)

Depending on whether we have an active domain or a
passive one, this involves the products of functions with
either complex-conjugate arguments or the same real-
valued argument. Correspondingly we have to apply one
of two explicit formulas, one found in [20],

f Z,(kvp) T, (kv p)pdp

p[ V2 (kVp) T, (kvp) = viZs,_ (kvp) T, (vp)
(12)

Tk s ’

and the other obtained from Eq. (12) with the aid of some
algebra in the limiting case as Im v—0,

K

2
p
f Z(rap)Ty(rap)pdp = {22, (kap) Ty (kap)

= Zp1(kap)Ty, 1(kap)
_Zm+1(KaP)Tm—1(Kap)], (13)

where Z,,(-) and T,,(-) are arbitrary cylindrical functions.
Note that the analog of Eq. (13) given as Eq. (B3) of Ap-
pendix B of [14] is wrong because of the lost “2” before the
first term and the extra “2” before the second and third
terms. Indeed, if in Eq. (B3) one changes the Neumann
function to the Bessel function one must obtain formula
(B3). However, the mistakes in the coefficients noted pre-
vent it.
Using formula (12) we find that the electric field power
stored in the central active circle is
2422
W=

)Jm—l(Kan)]- (14)

Im[ v, (kv

. The electric field power contained in a passive ringlike
domain is computed according to Eq. (11) that involves 16
terms generated by Eq. (13) with corresponding limits of
integration.

The plots in Fig. 7 demonstrate the dynamics of the
H,,,, mode overlap coefficients for three regions of the
considered laser cavity (active circle, passive air-gap ring,
and passive dielectric ring) as a function of the relative
size of the air gap, i.e., they correspond to the plots in Fig.
2. As one can observe, the air-gap overlap coefficients
re behave very similarly to the mode thresholds

1,n,9.p
Yingp [s€e Fig. 2(b)], while the active-region overlap co-
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Fig. 7. (Color online) Active-region (a), passive air-gap (b), and
passive ring (c) mode overlap factors for the H, , , , supermodes
in the active disk loaded with a passive dielectric ring versus the
normalized air-gap separation between the disk and the ring.
Other parameters are the same as in Fig. 2.

efficients F(lazl ’ behave similarly to the inverse values of
the thresholds. This is because here the dielectric-ring
thickness is small (w=0.2a) and, as a result, the ring
overlap coefficients are a small fraction of unity unless
the ring shrinks to the active region—see Fig. 7(c). Thus,
low-threshold regimes correspond to the mode E field be-
ing pulled into the active region, while the high thresh-
olds correspond to the field being pushed out of it, i.e., into
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the air gap in the case of the narrow ring. If the dielectric
ring gets wider, then the E field can be effectively pulled
into the ring as well. Therefore the threshold variations
in Fig. 5 are explained by the E field’s redistribution be-
tween the active region, the air gap, and the ring. Sharp
jumps in thresholds are always caused by the formation
of new electric field variations (additional bright spots) in
the ring, i.e., changing the “ring” partial index p by one.
All these variations occur in full agreement with expres-
sion (10).

6. CONCLUSIONS

We have studied numerically the lasing frequencies and
thresholds for the non-WG dipole-type modes in a 2-D
model of an active microdisk enclosed by a concentric pas-
sive microring. A specialized linear eigenvalue problem,
i.e., the LEP, has enabled our doing this in a mathemati-
cally flawless and physically transparent manner. We
have demonstrated that the mode thresholds can be low-
ered by an order with respect to the corresponding values
in a stand-alone disk, provided that the separation be-
tween the active cavity and the ring and the thickness of
the latter are tuned properly. However, because of the
presence of the ring, the dipole mode of the active disk
splits into a multiplet of the supermodes, each of them
having a certain number of field variations in radius
along the whole combined structure. This is clearly re-
vealed by the near-field mode patterns. If the air-gap size
varies, the supermode eigenparameters move along the
same trajectory on the frequency-threshold plane, in turn
demonstrating a similar threshold reduction when the
frequency approaches one of the values corresponding to
the H , modes in the stand-alone active cavity.

Trying to understand the thresholds’ behavior in such a
wavelength-scale combined optical cavity, we have come
to the necessity of studying the partial-region overlap co-
efficients with the mode E-field pattern. These quantities
for the active and passive parts of the cavity are sug-
gested by the classical OT applied to the lasing-mode
field. Their computation has shown that it is the active-
region overlap coefficient that always correlates with the
inverse value of the threshold for a given mode.

It is expected that the results obtained can shed new
light on the complicated mode behavior in ABR-assisted
microdisk lasers having larger numbers of partial passive
regions (rings and grooves) optically coupled with the cen-
tral active region whose low-index mode threshold the
ABR is hoped to reduce.
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