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Lasing frequencies and thresholds of the dipole
supermodes in an active microdisk
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The lasing spectra and threshold values of material gain for the dipole-type supermodes of an active microdisk
concentrically coupled with an external passive microring are investigated. TE polarized modes are treated
accurately using the linear electromagnetic formalism of the 2-D lasing eigenvalue problem (LEP) with exact
boundary and radiation conditions. The influence of the microring on the lasing frequencies and thresholds is
studied numerically, demonstrating threshold reduction opportunities. This is explained through the analysis
of the mode near-field patterns and the degree of their overlap with the active region, as suggested by the
optical theorem applied to the LEP solutions. © 2008 Optical Society of America
OCIS codes: 140.0140, 140.3560, 140.3945, 140.3410.
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. INTRODUCTION
icrocavity lasers are expected to serve as key elements

f compact photonic integrated circuits because of their
mall size and low-threshold operation. The lowest
hresholds are observed in on-pedestal circular disks and
n low-index-substrate cavities equipped with embedded
uantum wells or layers of quantum dots. This is because
uch lasers work in the whispering-gallery (WG) modes
hose optical fields experience almost total internal re-
ection at the disk rim [1–3]. To achieve a pronounced
G effect, the disk rim, being as smooth as possible, must

e at least several wavelengths in the disk material,
ence the angular index m of the working mode is usually
ot smaller than 5. Reduction of the microdisk size be-
ond this limit is desirable; however, it leads to an in-
rease of the lasing threshold as the low-angular-index
odes in subwavelength circular cavities do not display
G behavior [4]. Note also that in thin microdisks the
odes form two distinctive families, one having the opti-

al field with the Hz component dominating over the Ez
omponent, and the other vice versa (the z axis being the
isk axis). It is the former family, usually denoted as TE,
hat has smaller thresholds, as supported by numerous
xperiments. This has been convincingly explained with
he aid of the effective refractive index theory: this quan-
ity is always larger for the TE family of modes than for
he TM one.

Apart from cascading several quantum wells in the
tand-alone disk, there are two ways to lower the mate-
ial threshold for the disk modes by modifying the disk
nvironment. One is to collect several microdisks in a cy-
lic photonic molecule (CPM) [5,6]. Simulations show that
ecause of the symmetry- or antisymmetry-assisted opti-
1084-7529/08/112884-9/$15.00 © 2
al field interference, the Q factor of any specific optically
oupled mode (“supermode”) in the passive (pump off)
PM can be made larger [7], and the threshold in the ac-

ive (pump on) CPM can be made lower than for a stand-
lone cavity [8–10]. Here, working with small-m non-WG
odes in each disk has an additional advantage. Accord-

ng to the modeling results the lowering of the threshold
f a supermode built on the larger-m WG modes in el-
mentary disks requires a very precise selection of the
istance between adjacent disks [9]. This therefore re-
uires either accurate prefabrication modeling or postfab-
ication geometry tuning, which is difficult to achieve. In
ontrast, for the supermodes built on the small-m TE-type
on-WG modes, such as the H0,1 or H1,1 ones in each sub-
avelength elementary disk, the lowering of the thresh-
lds can be achieved more easily by bringing them to-
ether in a very tight circular array [10]. In this case
here are two convenient engineering tools: the number of
lementary small-size cavities and the separation be-
ween them. The larger the number of cavities and the
maller the separation, the smaller the CPM threshold.
ote that these effects, although predicted at the early

tage of research [5] and now supported by simulations,
till await experimental verification.

Another way to lower the threshold for a small sub-
avelength circular microdisk is to embed it into an an-
ular Bragg reflector (ABR), which can provide in-plane
adial optical confinement as a result of in-phase reflec-
ions [11,12]. Here, the number of pairs of ABR layers is
sually exploited as an engineering design tool. In the on-
ubstrate patterned designs with shallow grooves, it is
requent for experimental papers to display microphoto-
raphs of cavities placed inside ABRs of 30–100 periods.
008 Optical Society of America
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n the case of deeply etched grooves this number can be
ade smaller due to the larger effective-index contrast

etween the layers, in the same manner as for the flat-
ayered Bragg reflectors [13].

Until recently the analysis of ABR-assisted circular
avities has been restricted to the study of passive reso-
ators and the associated Q factors of their eigenmodes—
ee the comprehensive list of relevant publications in [14].
t is important to remember that the natural modes of
ny open cavity are discrete in the sense that their fre-
uencies form a discrete set of numbers, always complex-
alued. Mathematically, the modal Q factor is a quantity
rigidly” linked to a mode, i.e., it may also take only dis-
rete values. Neglecting this fact is not unusual (see, e.g.,
14]); however it leads to erroneous conclusions. For in-
tance, it suggests plotting the Q factor as a continuous
unction of the real-valued frequency.

Analysis of the lasing thresholds for an ABR-assisted
ctive cavity—i.e., a true microlaser—by using the bal-
nce between radiation losses and material optical gain is
different type of electromagnetic field problem. An at-

empt to consider an ABR laser of that type was reported
n [15]; however, there the reduction from a 3-D to a 2-D

odel involved field functions that did not satisfy the
elmholtz equations, the size of active region was not

pecified, and the material gain was not considered as an
igenvalue. This analysis was greatly improved in [16],
here the TE-type 2-D eigenvalue problem for the ABR

aser was correctly considered with frequency and mate-
ial threshold gain as eigenvalue parameters. Still the
ize of the active region, where the gain was assumed as
n “active” imaginary part of the refractive index, was not
learly introduced, so that formally the whole infinite ex-
ernal domain was active. This is not true, of course, as
xperimental ABR lasers, even if etched out of one large
ample with a quantum well stretching across the whole
tructure, always have a finite active region defined by
he spot of the focused pumping beam [11]. Furthermore
e note that using only one angular index m is not suffi-

ient for identifying the lasing modes because each azi-
uth family contains an infinite number of modes, and

he radial-dependence index (or indices) is (are) needed to
emove the ambiguity.

Unlike the papers mentioned, here we will study in the
-D approximation an active microdisk placed in the cen-
er of one passive microring and find the effect of the lat-
er on the thresholds of the lasing modes of the “dipole”
ype, i.e., those having m=1. This model corresponds to
he realistic situation when the pumping is applied to the
entral disk only, and the external circular layers remain
assive. In computations, we will also assume that both
he disk and the ring materials differ only in the presence
r absence of material gain, respectively. The space be-
ween them is assumed to be filled with a passive mate-
ial having a smaller refractive index; to emphasize the
bserved effects we will take it as air in computations.
his situation models deeply etched, surface-relief, on-
ubstrate ABR lasers and is also applicable to cylindrical
apillary lasers [17]. Interestingly, in view of the recently
eported achievement of fabrication of a 600 nm diameter
isk laser standing on a 100 nm diameter pedestal [18],
ne may imagine that in principle a ring on a pedestal of
imilar width can be manufactured as well. We restrict
ur consideration to the TE-polarized modes and treat
hem accurately using the so-called LEP formalism whose
etails can be found in [4] (see also [3] and references
herein).

In Section 2, we briefly review the formulation of LEP
nd the derivation of basic equations. Section 3 presents
he numerical results demonstrating that any lasing
ode is always a “supermode” because of the optical cou-

ling between passive and active parts of the whole cav-
ty. In Section 4, we show that the dependences of the

ode thresholds on the geometrical and material param-
ters of the partial domains can be conveniently ex-
lained using the overlap coefficients suggested by the op-
ical theorem. This analysis is presented in Section 5. In
articular, the modal field of any disk mode can be pulled
nto the passive region (i.e., pushed out of the active re-
ion) leading to increased threshold. Conclusions are
ummarized in Section 6.

. FORMULATION OF LASING PROBLEM
ND BASIC EQUATIONS

he ABR-assisted microdisk laser is an example of an op-
ical circuit consisting of several optically coupled ele-
ents, where the active region does not coincide with the
hole resonance structure. This is because, as mentioned,
BRs are manufactured with multiple rings and grooves
hile the pumping beam is focused on the central cavity

nto a spot several micrometers in diameter to prevent the
evice from lasing on the ring modes. In this paper we
tudy the simplest configuration of this sort, a uniformly
umped active disk inside one passive ring, with the
pace between them filled with a less optically dense ma-
erial.

Figure 1 shows the in-plane geometry of a microdisk
avity placed in the center of a microring. We introduce
he polar coordinates �r ,�� and denote the disk radius a,
he separation between the disk and the ring d, and the
hickness of the ring w. We assume that in the pump-off
egime the disk has real-valued refractive index �a. How-
ver, if the pumping is applied the disk becomes active
nd attains a uniform material gain �, so that its refrac-

ig. 1. (Color online) In-plane geometry of active circular micro-
avity concentrically coupled with a passive ring.
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ive index becomes complex-valued: v=�a− i�, ��0. Here,
he contribution of the pumping to the real part of the re-
ractive index can be neglected as it is very small in com-
arison with �a. The refractive index of the domain be-
ween the cavity and the ring is denoted �g and the ring
efractive index is �r (for simplicity, both these refractive
ndices are assumed real-valued), and the outer medium
s air. The time dependence is implied as e−i�t, and the
ree-space wavenumber is k=� /c=2� /�, where � is wave-
ength.

In the 2-D model, we consider the TE polarization with
he aid of the Hz field component denoted as U�r ,��. The
EP statement implies that U must satisfy the Helmholtz
quation with the piecewise constant coefficient equal to
2, k2�r

2, k2�g
2, and k2v2 in the air, ring, gap, and active

egion, respectively. At all the boundaries, the continuity
onditions are imposed on the tangential field compo-
ents. Additionally, the condition of local power finiteness
nd the radiation condition are to be satisfied. As the LEP
s a source-free problem, we look for two real numbers,
=ka and �, as eigenvalues [4] generating nonzero func-
ions U. The first of these numbers is the normalized las-
ng frequency, while the second is the threshold material
ain. Thanks to the real-valued k, the radiation condition
t r→	 is the usual 2-D Sommerfeld condition, so that
he modal field does not diverge at infinity. Further we ex-
and the field function inside each domain as

U�r,�� = �
m=0

	

�Am
s Jm�kvsr� + Bm

s Hm�kvsr��cos m�, �1�

here Jm�.� and Hm
�1��.� are the Bessel and Hankel func-

ions, s=1, . . . ,M is the number of the radial domain
ounted from the center, and M is the total number of con-
ours (here M=3). From the condition of local energy fi-
iteness and the radiation condition it follows that Bm

1

0 and Am
M+1=0, respectively. Thanks to the circular sym-

etry, each term in Eq. (1) can be studied separately. In-
eed, substitution of Eq. (1) into the boundary conditions
ssociated with the sth boundary leads to the following
wo equations, valid independently for each value of the
odal azimuth index m=0,1,2, . . .:

Am
s+1Jm��vs+1
s� + Bm

s+1Hm
�1���vs+1
s�

= Am
s Jm��vs
s� + Bm

s Hm
�1���vs
s�,

�Am
s+1Jm� ��vs+1
s� + Bm

s+1Hm
�1����vs+1
s��/vs+1

= �Am
s Jm� ��vs
s� + Bm

s Hm
�1����vs
s��/vs, �2�

here 
1=1, 
s�1=as�1 /a are the normalized rim radii;
2=a+d; a3=a2+w; �1=�=�a−Im �; �2,3=�g,r; and the
rime denotes differentiation with respect to the argu-
ent. Collecting the equations like Eq. (2) from all bound-

ries, we obtain a 2M�2M matrix equation. In operator
otation it can be written as C�m�X�m�=0, where X�m�

�Am
s ,Bm

s �s=1
M , and C�m�= �Cij

�m��i,j=1
2M is a matrix operator.

hen the search for the LEP eigenvalues reduces to find-
ng the zeros of the infinite number of independent finite-
rder determinants,

Det�C�m���,��� = 0, m = 0,1,2, . . . . �3�
As suggested by the theory of functions of complex vari-
bles, the lasing-problem eigenvalues of each mth family
orm a discrete (i.e., infinite but countable) set on the
lane �� ,��. Thus, one angular index m is not enough to
istinguish modes from each other, and another, radial,
ndex must be used. To find eigenvalues, we use an in-
ouse numerical algorithm based on the two-parameter
ecant-type iterative method, with initial guess values
aken as the eigenvalues of � and � for the lasing modes
n a stand-alone circular resonator—see [4]. This appears
o be a more direct characterization of eigenvalues than
ooking for the values of � and � minimizing the ampli-
ude of (in fact, nonexistent) in-going cylindrical waves in
he host space, as was done in [16] within the transfer-
atrix formalism.

. EFFECT OF CONCENTRIC COUPLING
he characteristic equations derived are valid for arbi-

rary geometrical and material parameters. In our nu-
erical study we assume that the microdisk and the ring

re separated by the air gap, i.e., �g=1, and their pump-
ff refractive indices are the same, i.e., �a=�r=2.63. This
alue accords, for example, with the effective refractive
ndex �eff

H of the lowest quasi-TE-polarized mode in the
ir-clad GaAs/InP material systems for �=1.55 m, if the
isk and ring thicknesses are 100 nm. In the same disk,
he lowest quasi-TM-polarized modes have a much
maller effective refractive index, namely, �eff

E =1.31.
herefore they have much higher thresholds and can be

gnored [4].
In Figs. 2(a) and 2(b), we present the dependences of

he lasing frequencies and thresholds on the normalized
isk-to-ring separation d /a for the dipole-type modes
m,n,q,p with m=1 in the cavity and with thin ring w
0.2a. Here, the first index m shows the number of the
eld variations in azimuth. The other indices, i.e., n, q,
nd, p, are the numbers of field variations in the active
isk, air gap, and ring, respectively. In contrast to a
ingle-disk cavity, here we have to keep several radial in-
ices indicating mode field variations in each partial re-
ion. This is a reflection of the fundamental observation
hat the natural modes of the cavity made of several par-
ial domains are in fact the “supermodes,” i.e., combina-
ions of optically coupled modes of separate domains. This
ituation is quite similar to that of the modes in a cavity
uilt as a linear or cyclic photonic molecule [7–9].
At small values of d (the smallest value is 0.01a as in-

icated), the four modes in Figs. 2(a) and 2(b) denoted by
he in-circle numbers 1 to 4 are the dipole modes with cor-
esponding radial indices n=1,2,3,4, respectively, of the
ircular cavity of radius a+w with an active central circle
f radius a. This is highlighted by the dashed horizontal
traight lines presenting the threshold and frequency val-
es of the modes H1,n �n=1,2,3,4� in the stand-alone ac-
ive microdisk of radius a and material �a [4]. As one can
ee, if the air-gap separation d is increased their lasing
requencies �1,n,q,p decrease monotonically [Fig. 2(a)] and
end to the same value corresponding to the mode H1,1 in
he stand-alone disk of radius a+w with active central
ircle of radius a (given by the horizontal dotted line). The
hreshold variation that accompanies the same change of
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eparation is more dramatic (by several times) both in the
ense of reduction and growth [Fig. 2(b)]. Broadly speak-
ng, at any specific value of d /a there are two or three

odes whose frequencies are near the mentioned limiting
alue. The one whose frequency is nearer to the frequency
f the H1,1 mode in the stand-alone all-active disk of ra-
ius a, �1,1=1.405, always has the smallest threshold.
The locations of the minima and maxima and their ex-

reme values correlate with the transformation of the
ode patterns along the structure radius—see Fig. 3 for

he H-field patterns visualized at the points marked in
ig. 2(a). The minima of thresholds are observed if high-

ntensity H-field spots concentrate in the active region,
nd the leakage out of the cavity is reduced (Figs. 3 D, F,
, J, L, N). The maxima of thresholds appear in the situ-
tions when intensive field spots are pushed out of the ac-
ive region to the air gap between the cavity and the ring
Figs. 3 C, E, G, I, K, M). This is accompanied by in-
reased leakage. Moving the ring away from the active
avity leads to the field redistribution inside the structure

ig. 2. (Color online) Normalized lasing frequencies (a) and
hresholds (b) of the H1,n,q,p supermodes in the active disk loaded
ith a passive external dielectric ring versus the normalized air-
ap separation between the disk and the ring. Ring thickness is
=0.2a, refractive indices are �a=�r=2.63, �g=1.
hat can be characterized by the varying partial indices n
nd q. Note that for the modes presented in Figs. 2 and 3,
he passive ring thickness is fixed and has the small value
=0.2a so that the “ring” index p=0.
It is interesting to note that if d /a changes, all eigen-

alues of the considered H1,n,q,0 supermodes migrate
long one and the same trajectory on the plane �� ,��. In-
reasing the distance from the disk to the ring just moves
he eigenvalues along this trajectory from the right to the
eft as shown in Fig. 4. However, the start point on this
rajectory is different for each dipole-type supermode.
hese start points are marked with open symbols in Fig. 4
nd correspond to the modes H1,n in the stand-alone disk
f radius a+w with active central circle of radius a.
herefore, such a trajectory on the plane �� ,�� seems to
e a sort of signature for the dipole-mode family �m=1�.
ts shape, however, depends on the radii and material
omposition of the ringlike passive domains.

A different type of the mode behavior is observed if we
hange the passive ring thickness while the air-gap thick-
ess is fixed. The dependences of the lasing frequencies
nd thresholds on the normalized ring thickness w /a are
resented in Fig. 5. The frequency dependences are piece-
ise monotonic [Fig. 5(a)], with each monotonic section

orresponding to the different mode type in terms of the
ring” partial radial index p. This is revealed after visu-
lization of the corresponding H-field patterns at the
arked points (see Fig. 6). Here, all near-field patterns

abeled from B to K demonstrate high confinement of the
ptical field in the central active disk, while the pattern
abeled A shows considerable leakage out of the cavity. In-
eed the latter pattern corresponds to threshold near a lo-
al maximum in Fig. 5, and the patterns from B to K have
een computed in the minima of thresholds. Varying the
ing thickness results in the appearance of new H-field
ariations in the ring while the numbers of variations in
he cavity and air gap, n and q, are the same. On the plots
f modal thresholds as a function of w /a in Fig. 5(b), one
an see again a series of minima and maxima of the
hresholds. The minima occur at the middle points of the
onotonic frequency-dependence sections, and the

hreshold maxima correspond to their “ends,” where the
odes transform from one type to another, with the par-

ial “ring” index p changing by one.

. OPTICAL THEOREM FOR THE LASING
ODES

he plots of mode thresholds versus the cavity param-
ters and the mode H-field patterns show a certain corre-
ation that calls for an accurate quantification. Fortu-
ately, a tool for such quantification already exists in the
heory of Maxwell’s equations—this is the optical theorem
OT). The OT is the real-valued identity that is derived
rom the complex-valued Poynting theorem [19] in the
ime-harmonic plane wave scattering and links the total
xtinction cross section of a scatterer with the amplitude
f the forward-scattered field in the far zone. The Poyn-
ing theorem can also be applied to any field functions
atisfying Maxwell’s equations in the absence of given
urrents or incident field, i.e., to the eigensolutions. The
ost general form of the resulting identity, for the

omplex-valued k, is
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� 1
2��

S

E� � H� *ds = �i/2�	
V

�k*�*Z0
−1
E� 
2 − kZ0
H� 
2�dv,

�4�

here the left-hand part is the total outward flux of the
oynting vector averaged over the period of oscillations
hrough the boundary S of the “minimum sphere” V

ig. 3. (Color online) Near-field 
Hz�r ,��
 patterns for the sup
0.2a, refractive indices are �a=�r=2.63, �g=1.
ontaining all passive and active regions (so that the do-
ain outside it is homogeneous and filled with air); piece-
ise continuous functions � and  are the relative permit-

ivity and permeability, respectively; and the asterisk
eans complex conjugation.
Suppose now that we are considering a generic lasing
ode, to which we will assign, for brevity and in view of

iscreteness of the LEP eigenvalues, a single cumulative

es H1,n,q,p at the points marked in Fig. 2; ring thickness is w
ermod
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ndex j. We apply Eq. (4) to the corresponding mode field
E� j ,H� j�, taking into account that Im kj=0 and the active-
egion dielectric constant is �a=�j

2=�2−�j
2−2i��j, and ad-

itionally assuming that all materials are nonmagnetic,
=1. Then the OT tells that, for the lasing mode number

, the radiation losses are exactly balanced with the power
enerated in the active region Va, provided that the ma-
erial gain equals �j:

�Z0/2�Re�
S

E� j � H� j
*ds = �jkj�a	

Va


E� j�R� ,kj,�j�
2dv, �5�

here R� is a radius vector.
In the case of the laser depicted in Fig. 1, the active re-

ion is only a part of the whole cavity volume, which also
ontains the air gap Vg and the ring Vr. Therefore it is
onvenient to introduce, for each jth mode, the total mode
olume,

Wj�kj,�j� =	
V

�a
2
E� j�R� ,kj,�j�
2dv =	

Va

�a
2
E� j
2dv

+	
Vg

�g
2
E� j
2dv +	

Vr

�r
2
E� j
2dv, �6�

nd also the partial factors �j
�a� ,�j

�g� ,�j
�r��1:

�j
�f� = Wj

�f�/Wj, Wj
�f��kj,�j� =	

Vf

�f
2
E� j�R� ,kj,�j�
2dv,

f = a,g,r. �7�

The meaning of each factor is a measure of the overlap
f the corresponding active or passive region with the
-field of the jth mode; note that �j

�a�+�j
�g�+�j

�r�=1. It is
mportant to remember that these quantities make sense

ig. 4. (Color online) Eigenvalue migration on the plane �� ,��
hen the air-gap separation parameter d /a varies. Ring thick-
ess is w=0.2a, refractive indices are �a=�r=2.63, �g=1. In-
ircle numbers correspond to the mode notations of Fig. 2. The
pen symbols correspond to eigenvalues for supermodes H1,n,q,p
t the initial value of the parameter d /a=0.01. The filled color
ymbols on the curve correspond to eigenvalues of supermodes

1,n,q,p at d /a=0.5, 1.0, 1.5 (from right to left). The off-curve sym-
ols correspond to the eigenvalues for the all-active disk of radius
.

nly as discrete values linked to the modes. Now the OT
iven by Eq. (5) can be rewritten as

�j =

�Z0/2�Re�
S

E� j � H� j
*ds

kj�a�Va

E� j�R� ,kj,�j�
2dv

=
�aPj

�j
�a�kjWj

, �8�

here

Pj = �Z0/2�Re�
S

E� j � H� j
*ds �9�

s the flux of power lost for radiation or the emission cross
ection. All quantities in the right-hand part of Eq. (8) are
etermined by the integration of the field functions,
hich indirectly depend on the material gain �j through

he Maxwell equations. The quantity Pj /kjWj is the ratio
f the radiated powers to the powers stored inside the
hole cavity, thus its inverse has the meaning of the “Q

actor” of the cavity with active region Q̃ , and hence

ig. 5. (Color online) Normalized lasing frequencies (a) and
hresholds (b) of the H1,n,q,p modes in the active disk placed in-
ide a passive ring versus the normalized ring thickness. Air-gap
eparation is d=0.5a, and refractive indices are �a=�r=2.63, �g
1.
j
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�j =
�a

�j
�a�Q̃j

. �10�

This simple formula is very insightful. Indeed, as both

j
�a� and Q̃j depend on the squared field components, their
hanges with respect to small variations in the threshold
� are �=O�����2�. Therefore if �j�1 then, in the first ap-
roximation, one may take both �j

�a� and Q̃j as the values
alculated by neglecting �j. It means that one may take
he passive cavity Q factor, Qj=Re kj /2
Im kj
, as the ap-
roximate substitute for Q̃j and calculate the active-
egion mode overlap factor by using the passive-cavity
eld functions.
Thus, a high Q factor in the pump-off regime is not

nough for the low threshold in the pump-on case, be-

ig. 6. (Color online) Near-field 
Hz�r ,��
 patterns for the superm
arked by B to K in Fig. 5. Conversely, case A corresponds to th

a=�r=2.63, �g=1.
ause it can be spoiled by the poor overlap between the
ode electric field and the active region. In the simplest

ase of a fully active cavity (this can be only a free-
tanding slab in 1-D, a circle in 2-D, and a sphere in 3-D),

p
�a��1 and �j=�a /Q̃j�a /Qj.

. NUMERICAL ANALYSIS WITH THE AID
F OVERLAP FACTORS

n our laser consisting of the concentrically coupled active
isk and passive ring, the computation of the overlap fac-
ors for the TE modes leads to the necessity of integrating
he squares and cross products of cylindrical functions
nd their derivatives of the same index m (mode angular
ndex). In each partial domain, the expressions resulting

H1,n,q,p at the minima of threshold � corresponding to the points
threshold. Air-gap separation is d=0.5a, refractive indices are
odes
e high
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rom Eq. (1) lead to the following generic-form integrals
here we omit the domain index f and the argument of cy-
indrical functions ��f
):

Ws =	
Vs

�2
E
2
d
d�

=
��2Z0

2

2�s�s
* 	

as

as+1

�
Am
s 
2�Jm−1Jm−1

* + Jm+1Jm+1
* �

+ Am
s Bm

s*�Jm−1Hm−1
�1�* + Jm+1Hm+1

�1�* � + Am
s*Bm

s �Jm−1
* Hm−1

�1�

+ Jm+1
* Hm+1

�1� �

+ 
Bm
s 
2�Hm−1

�1� Hm−1
�1�* + Hm+1

�1� Hm+1
�1�* ��
d
. �11�

Depending on whether we have an active domain or a
assive one, this involves the products of functions with
ither complex-conjugate arguments or the same real-
alued argument. Correspondingly we have to apply one
f two explicit formulas, one found in [20],

Zm���
�Tm���*
�
d


=



�
� �*Zm���
�Tm−1

* ���
� − �jZm−1
* ���
�Tm���
�

�2 − �*2 � , �12�

nd the other obtained from Eq. (12) with the aid of some
lgebra in the limiting case as Im �→0,

Zm���
�Tm���
�
d
 =

2

4
�2Zm���
�Tm���
�

− Zm−1���
�Tm+1���
�

− Zm+1���
�Tm−1���
��, �13�

here Zm�·� and Tm�·� are arbitrary cylindrical functions.
Note that the analog of Eq. (13) given as Eq. (B3) of Ap-

endix B of [14] is wrong because of the lost “2” before the
rst term and the extra “2” before the second and third
erms. Indeed, if in Eq. (B3) one changes the Neumann
unction to the Bessel function one must obtain formula
B3). However, the mistakes in the coefficients noted pre-
ent it.

Using formula (12) we find that the electric field power
tored in the central active circle is

Wmn
�a� =

Z0
2A0

2a2

2�mn�mn
Im��mnJm���mn

* �Jm−1���mn��. �14�

The electric field power contained in a passive ringlike
omain is computed according to Eq. (11) that involves 16
erms generated by Eq. (13) with corresponding limits of
ntegration.

The plots in Fig. 7 demonstrate the dynamics of the
1,n,q,p mode overlap coefficients for three regions of the

onsidered laser cavity (active circle, passive air-gap ring,
nd passive dielectric ring) as a function of the relative
ize of the air gap, i.e., they correspond to the plots in Fig.
. As one can observe, the air-gap overlap coefficients

1,n,q,p
�g� behave very similarly to the mode thresholds

[see Fig. 2(b)], while the active-region overlap co-
1,n,q,p
fficients �1,n,q,p
�a� behave similarly to the inverse values of

he thresholds. This is because here the dielectric-ring
hickness is small �w=0.2a� and, as a result, the ring
verlap coefficients are a small fraction of unity unless
he ring shrinks to the active region—see Fig. 7(c). Thus,
ow-threshold regimes correspond to the mode E field be-
ng pulled into the active region, while the high thresh-
lds correspond to the field being pushed out of it, i.e., into

ig. 7. (Color online) Active-region (a), passive air-gap (b), and
assive ring (c) mode overlap factors for the H1,n,q,p supermodes
n the active disk loaded with a passive dielectric ring versus the
ormalized air-gap separation between the disk and the ring.
ther parameters are the same as in Fig. 2.
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he air gap in the case of the narrow ring. If the dielectric
ing gets wider, then the E field can be effectively pulled
nto the ring as well. Therefore the threshold variations
n Fig. 5 are explained by the E field’s redistribution be-
ween the active region, the air gap, and the ring. Sharp
umps in thresholds are always caused by the formation
f new electric field variations (additional bright spots) in
he ring, i.e., changing the “ring” partial index p by one.
ll these variations occur in full agreement with expres-
ion (10).

. CONCLUSIONS
e have studied numerically the lasing frequencies and

hresholds for the non-WG dipole-type modes in a 2-D
odel of an active microdisk enclosed by a concentric pas-

ive microring. A specialized linear eigenvalue problem,
.e., the LEP, has enabled our doing this in a mathemati-
ally flawless and physically transparent manner. We
ave demonstrated that the mode thresholds can be low-
red by an order with respect to the corresponding values
n a stand-alone disk, provided that the separation be-
ween the active cavity and the ring and the thickness of
he latter are tuned properly. However, because of the
resence of the ring, the dipole mode of the active disk
plits into a multiplet of the supermodes, each of them
aving a certain number of field variations in radius
long the whole combined structure. This is clearly re-
ealed by the near-field mode patterns. If the air-gap size
aries, the supermode eigenparameters move along the
ame trajectory on the frequency-threshold plane, in turn
emonstrating a similar threshold reduction when the
requency approaches one of the values corresponding to
he H1,n modes in the stand-alone active cavity.

Trying to understand the thresholds’ behavior in such a
avelength-scale combined optical cavity, we have come

o the necessity of studying the partial-region overlap co-
fficients with the mode E-field pattern. These quantities
or the active and passive parts of the cavity are sug-
ested by the classical OT applied to the lasing-mode
eld. Their computation has shown that it is the active-
egion overlap coefficient that always correlates with the
nverse value of the threshold for a given mode.

It is expected that the results obtained can shed new
ight on the complicated mode behavior in ABR-assisted

icrodisk lasers having larger numbers of partial passive
egions (rings and grooves) optically coupled with the cen-
ral active region whose low-index mode threshold the
BR is hoped to reduce.
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