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1. INTRODUCTION
Dielectric and semiconductor optical microcavities of vari-
ous shapes have become popular wavelength-selective op-
tical components for filtering, switching, lasing, modula-
tion, and spectroscopy.1–12 One of the attractive features
of such microcavities is that they can support several
types of natural eigenmodes that have significantly differ-
ent Q factors and radiation characteristics. They are
therefore suitable for different filter and laser applica-
tions. The fabrication of large (10–100-mm-sized) optical
cavities based on the waveguide structures with low
refractive-index contrast has long been achieved with
standard photolithography techniques. These large low-
confinement cavities can be simulated with acceptable ac-
curacy by use of approximate techniques such as geo-
metrical optics, billiard theory, and paraxial
approximation. However, the free spectral range (FSR)
of large cavities, which is inversely proportional to the
cavity size, is limited to 0.1–10 nm.9,11 Furthermore, the
weak optical confinement means that they are not very
suitable for spontaneous emission control in laser
applications.4

Therefore, for future wavelength-division-multiplexed
(WDM) systems, very compact microcavity resonators
with a wide FSR and the potential for high-density inte-
gration and the accommodation of many channels are
highly desirable. Modern nanofabrication techniques al-
low fabrication of very small (1.5–5 mm in diameter) pas-
sive and active high-index-contrast semiconductor micro-
cavities with large mode spacing and low threshold
1084-7529/2004/030393-10$15.00 ©
currents.3–5 Such nanoscale microresonator structures
are promising candidates for WDM integrated compo-
nents with very high packing density and offer potential
advantages in performance, size, and cost. However, ac-
curate simulation and optimization of such wavelength-
scale high-confinement cavities of various shapes calls for
fast, robust, and flexible algorithms based on the rigorous
formulation of scattering or eigenvalue problems.

Despite being flexible simulation tools, popular numeri-
cal techniques such as finite-difference methods or finite-
element methods have several major drawbacks in the
present context. Optical microcavities are often placed
into infinite space domains, in which case a discretization
of the problem requires large computational and memory
resources and can lead to errors caused by nonphysical
backreflections from the edge of the computational win-
dow. Furthermore, for complicated geometrical shapes,
staircasing errors may play a significant role in the accu-
racy of the resulting solution. In this paper we present
an efficient full-wave analysis of arbitrary-shape optical
microcavities on the basis of the boundary integral equa-
tion (BIE) technique. The advantage of the BIE formu-
lation is that the problem is moved from the open infinite
domain to a finite one (the contour of the cavity), thus re-
ducing the required computational effort. The use of ar-
tificial absorbers at the edge of the computational window
is avoided by a proper choice of the kernel (Green’s) func-
tions satisfying the radiation condition at infinity. All
this leads to very efficient numerical algorithms.

However, BIEs need a certain caution in their imple-
2004 Optical Society of America
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mentation. To reduce the original scattering or eigen-
value problem to a set of coupled BIEs, one can either ap-
ply the Green’s second identity to the field functions and
the Green’s functions9 or, alternatively, use single- or
double-layer surface-potential field representations.2,6

Both procedures lead to the so-called elementary integral
equations, which are known to have nonunique solutions
at a countable set of real-valued defect frequencies
fi* .9,13–15 For wavelength-scale bodies such frequencies
are widely spaced and, in many cases, can be distin-
guished from physical resonant frequencies, and thus el-
ementary integral equations can still be used as an accu-
rate simulation tool.2,6,9,16 However, it can be shown13,16

that the integral operators are not only singular at f
5 fi* but also ill conditioned for values of f in a domain
around fi* . The width of this domain is determined by
the complexity of the problem and the accuracy of the nu-
merical scheme. Moreover, the larger the cavity and/or
the higher the operational frequency, the smaller the dis-
tance between unknown defect frequencies. All the
aforementioned problems make the use of elementary in-
tegral equations for modeling and especially optimization
purposes at best questionable.

Though various formulations of uniquely solvable im-
proved BIEs have been developed for acoustic and micro-
wave scattering problems,14–17 their applications to the
analysis of optical components have been limited.18,19

The most promising of the improved BIE formulations is
the one derived first by Muller20 and used later by several
other authors.14,21,22 The merit of the set of Muller inte-
gral equations (MIEs) is twofold: First, they are free of
defects related to the loss of uniqueness, and, second, they
have smooth or integrable kernels and thus are of the
Fredholm second kind. Once formulated, MIEs have to
be solved numerically for all but a few canonical struc-
tures. Among the most popular discretization techniques
are the Galerkin and collocation methods.23,24 Since
MIEs are the Fredholm second-kind equations, any dis-
cretization technique should work well. However, as one
of the kernels of the MIEs is singular, special care should
be taken when a discretization scheme is applied because
the accuracy of the singular integral evaluation is crucial
for the convergence rate of the algorithm and overall ac-
curacy of the numerical solution. Furthermore, the pres-
ence of high-Q resonances, which are a dominant feature
in the electromagnetic field behavior in dielectric cavities,
can affect the accuracy of the numerical algorithm. A
failure of a local-basis discretization method and finite-
difference time-domain (FDTD) techniques to reproduce
high-Q resonances in dielectric cavities has been
reported,25,26 especially for high-contrast scatterers.

In this paper we discretize MIEs with the global trigo-
nometric Galerkin basis. We decompose each of the inte-
gral operators into a sum of a main part given by the ex-
plicit Fourier representation and the remaining part with
a smooth kernel that is integrated numerically. Such a
procedure leads to the exponentially fast convergence of
the solution,27 in contrast to the polynomial convergence
rates of the finite-difference method, finite-element
method, or collocation method. We study the perfor-
mance of the developed algorithm and demonstrate its ap-
plication by analyzing the resonant spectra of several
types of dielectric microcavities used in modern optical
WDM systems.

2. PROBLEM FORMULATION
Consider a two-dimensional (2-D) arbitrary-shape homo-
geneous dielectric cavity with complex medium param-
eters «c , mc as shown in Fig. 1. An original three-
dimensional microcavity problem was converted into an
equivalent 2-D formulation in the x –y plane by use of the
effective-index method.4 Experiments show that the
electric field of a mode in an optical microdisk cavity is
mostly either perpendicular to the plane of the microdisk
(TM mode) or lies in the disk plane (TE mode). Thus we
assume that the microdisk modes have the same spatial
dependence in the vertical direction as guided modes of
an equivalent slab waveguide at the same frequency (see
Fig. 2). The propagation constant of the corresponding
TE- or TM-guided mode of the slab was used as an effec-
tive refractive index of the cavity in the following 2-D
computations.

For simplicity of formulation, the external region is
considered to be uniform and is characterized by the com-
plex medium parameters «e , me , though the method can

Fig. 1. Geometry of the problem. Shaded area S is the cross
section of an optical microcavity with parameters «c and mc , en-
closed by an arbitrary smooth simple contour LS . A canonical
circular contour of radius a and global and local coordinate sys-
tems are also shown.

Fig. 2. Two-dimensional model of the microdisk with the effec-
tive refractive-index approximation for TE and TM polarizations.
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easily be generalized to consider layered dielectric
media.2,6,28 The total field can be characterized by a
single scalar function U, which represents either the Ez
or the Hz component for the case of TM or TE polariza-
tion, respectively. The whole space is separated into two
homogeneous regions (several regions if multiple micro-
cavities are considered), and in each region the function U
is written as follows:

U~rW ! 5 H U0~rW ! 1 Ue~rW !, rW ¹ S

Uc~rW !, rW P S
, (1)

where U0(rW ) either represents the field generated by ex-
terior sources or should be assumed zero if eigenfrequen-
cies of the microcavity are being sought.

For the uniqueness of the solution, the total field must
satisfy the following conditions: (1) the Helmholtz equa-
tion with the coefficients kc

2 5 «cmck
2 and ke

2 5 «emek
2

inside and outside the cavity, respectively; (2) a set of con-
tinuity conditions on LS that characterizes a transparent
boundary:

~Ue 1 U0!uLS
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and (3) the Sommerfeld radiation condition for the scat-
tered field at r 5 (x2 1 y2)1/2 → `. Here k 5 v/c (v is
the angular frequency, and c is the light velocity in the
vacuum); ]/]n is the normal derivative; t and n are the
tangential and inward normal unit vectors to LS at the
point r, respectively; and the coefficient a j is equal to ei-
ther m j in the TM-polarization case or « j in the TE-
polarization case ( j 5 e or c). Time dependence is
adopted as exp(2ivt) and omitted throughout the paper.

3. BOUNDARY INTEGRAL EQUATIONS
A. Muller Integral Equation Formulation
The integral representations for the fields in each region
can be obtained by applying the Green’s second identity to
the field function at the contour of the dielectric scatterer
and the corresponding Green’s function,

Uc~r! 5 E
LS

FUc~r8!
]Gc~r, r8!

]n8

2
Uc~r8!

]n8
Gc~r, r8!Gdl8, r P S, (3)

Ue~r! 5 E
LS

FUe~r8!

]n8
Ge~r, r8!

2 Ue~r8!
]Ge~r, r8!

]n8
Gdl8

1 U0~r!, r ¹ S, (4)

where dl8 is an elementary arc along LS , and the expres-
sions for the 2-D Green’s functions and their derivatives
can be found in Appendix A. By placing the observation
point at the contour, rW P LS , one obtains a pair of coupled
BIEs that can be solved numerically.9 However, the so-
lution of this set is not unique, and if the frequency of the
incident field coincides with defect frequencies of the
structure, undesired spurious resonances appear. To
avoid this problem, we reformulate the problem in terms
of a set of the second-kind MIEs. To this end, we add two
BIEs formulated in the regions inside and outside the
cavity, and their normal derivatives, and impose the
boundary conditions [Eqs. (2)] to obtain the following set
of coupled integral equations:
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Here the unknowns f(r) and c (r) are the limit values of
the field function and its normal derivative, respectively,
if approaching the contour LS from the inner region of the
cavity. Equations (5) and (6) are the classical BIEs of the
Fredholm second kind, which are uniquely solvable for
any incident field function twice continuous on LS. Note
that the kernels of MIEs tend to zero if the contrast be-
tween the cavity and the outer medium gets smaller.
Therefore one can conclude that the MIE technique re-
lates to the family of the analytical regularization
methods29 based on the inversion of the low-contrast limit
form of BIEs.

Having solved the set of Eqs. (5) and (6), we can com-
pute the far-field scattering characteristics as well as the
near-field portraits. Large-r evaluation of the integral in
the expression for the scattered field [Eq. (4)] reduces it to
Ue(r) 5 (1/r)1/2 exp(iker)C(u). Here the last factor is the
far-field scattering pattern given as

C~u! 5
1 1 i

4Apke

E
LS

H ikun8 • @ f~r8! 2 U0~r8!#

2 Fc ~r8! 2
]U0~r8!

]n8
G J exp~2ikur8!dl8, (7)

where ku 5 $ke cos u,ke sin u% and u is the observation
angle. The total scattering cross section is then defined
as follows:

ss 5
2

p
E

0

2p

uC~u!u2du. (8)

A partial verification of the numerical solution can be
done by checking the power conservation law, which for
the case of a lossless microcavity illuminated by a plane
wave incident at an angle g takes the following form: ss
5 28p Re@C(g)#.
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B. Trigonometric–Trigonometric Galerkin Method
To obtain a discrete form of the MIEs (5) and (6), we apply
a Galerkin method with angular exponents as global test
and trial functions, known as the trigonometric–
trigonometric Galerkin method. It has been demonstra-
ted2,6,27,29 that successful implementation of such a tech-
nique strongly depends on the specific Fourier represen-
tation of the discretized integral operator. If the operator
decomposes into a main part that has an explicit Fourier
representation and a remaining part, that is an integral
operator with a smooth kernel, then the application of the
trigonometric Galerkin method yields discrete numerical
schemes with optimal convergence rates. Although the
integral operators in Eqs. (5) and (6) do not have such
convolutional parts a priori, they can be decomposed into
two parts: the same operators defined on a circular con-
tour of radius a and the ones obtained as differences be-
tween the original and the circular-case operators. If ap-
plied to the discretization of the singular BIEs of the first
kind, this procedure enables one to treat the singularities
analytically and regularize BIEs by converting them into
a Fredholm second-kind block-matrix equation.2,6,29

For brevity, we present the details of the discretization
procedure for the case of the TM-polarized plane-wave
scattering from a microcavity with a dielectric permittiv-
ity «c , assuming that mc 5 me 5 1. If the curve Ls has
an analytical parameterization, x 5 x(s), y 5 y(s), and
0 < s < 2p, the set of Eqs. (5) and (6) can be rewritten as
follows:

f~s ! 5 E
0

2p

@ f~s8!~s, s8! 2 c ~s8!B~s, s8!#L~s8!ds8

1 U0~s !, (9)

c ~s ! 5 E
0

2p

@ f~s8!C~s, s8! 2 c ~s8!D~s, s8!#L~s8!ds8

1
]U0~s !

]n
, (10)

where A(s, s8) 5 ]F(s, s8)/]n8, B(s, s8) 5 F(s, s8),
C(s, s8) 5 ]2F(s, s8)/]n]n8, D(s, s8) 5 ]F(s, s8)/]n,
F(s, s8) 5 Gc(s, s8) 2 Ge(s, s8), and L(s) 5 @(dx/ds)2

1 (dy/ds)2#1/2. Using the small-argument approxima-
tions of the cylindrical functions, it can be proved6 that
the function F(s, s8) and its first-order normal deriva-
tives are regular functions if LS is smooth. The second-
order normal derivative, however, has a logarithmic sin-
gularity at s 5 s8:

lim
s→s8

]2F~s, s8!

]n]n8
5

k2

4p
@«e ln~keR ! 2 «c ln~kcR !#.

(11)

To obtain a discrete form of Eqs. (9) and (10) and simul-
taneously evaluate the log-singular integral analytically,
we first add and subtract to each of the operators A(s, s8)
to D(s, s8) the same operators defined on the circular
contour of radius a, A0(s, s8) to D0(s, s8) (see Appendix
A). Expanding all the functions in Eqs. (9) and (10) in
terms of the Fourier series with angular exponents as glo-
bal basis functions as
L~s !f~s ! 5
2

ipk (
~m !

fm exp~ims !,

L~s !c ~s ! 5
2

ip (
~m !

cm exp~ims ! (12)

and testing against the same set of functions yield the fol-
lowing set of linear algebraic equations:
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with Jm
j 5 Jm(kja) and Hm

j 5 Hm
(1)(kja) as the Bessel

and Hankel functions, respectively, and the prime repre-
senting the derivative with respect to the argument. The
matrix coefficients are defined as follows:

Amn
11 5 2Amn /k 2 2~1 2 dm,n!Lm2n /ipk,

Amn
12 5 Bmn ,

Amn
21 5 2Cmn /k2,

Amn
22 5 Dmn /k 2 2~1 2 dm,n!Lm2n /ipk, (16)

where dm,n is the Kronecker delta function. Note that all
the functions expanded into the double Fourier series are
constructed as the differences between the original ker-
nels and the circular-case ones and thus are regular at s
5 s8:

Amn 5
1

ip2 E
0

2pE
0

2p

@A~s, s8!

2 A0~s, s8!#exp~2ims !exp~ins8!dsds8. (17)

The right-hand functions are defined as one-dimensional
integrals,
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1
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E

0

2p exp~2ims !
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and together with 2-D integrals in Eq. (17) have to be
evaluated numerically. Finally, by introducing new un-
knowns, zm

1 5 am
11fm 1 am

12cm and zm
2 5 am

21fm
1 am

22cm , Eqs. (13) and (14) are reduced to the following
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final canonical form, a 2 3 2 block-type infinite-matrix
equation of the Fredholm second kind:

S z1

z2 D 1 FM11 M12

M21 M22G 3 S z1

z2 D 5 S e1

e2 D . (19)

The existence as well as the uniqueness of the solution of
Eq. (19) is guaranteed, and the accuracy can be controlled
by changing the size of the truncated matrix.

4. DETAILS OF COMPUTATIONS AND
CONVERGENCE ANALYSIS
A. Matrix Truncation Error
The Fredholm nature of the final block-matrix equation
(19) guarantees that the computational error of the ap-
proximate solution can be progressively minimized by in-
creasing the matrix truncation number N. However, it is
important to see what the rate of the error decrease is and
its dependence on the microcavity material and geometri-
cal parameters.

The results of the mathematical studies of log-singular
integral equations of potential theory show that applica-
tion of the trigonometric–trigonometric Galerkin tech-
nique together with the product integration method guar-
antees the optimal order convergence rate.27 As only one
equation [Eq. (10)] of our set is (logarithmically) singular,
the numerical convergence rate estimate is the same as in
the aforementioned studies: If intermediate calcula-
tions, like numerical integration, have been performed
with ‘‘infinite’’ accuracy, then the approximate numerical
solution converges to the exact one exponentially as the
truncation number of each block of the matrix is in-
creased. In practice, however, the integrals in Eqs. (17)
and (18) are not computed exactly, which leads to the dis-
crete Galerkin method, the convergence of which will be
discussed in the following section.

In general, the solution error is defined as iz 2 zNi ,
where zN are the unknowns computed by solving Eq. (19)
with each block truncated after N equations. As we do
not know the exact solution z, we compute the normalized
error, in the sense of the l2

2 norm, between two neighbor-
ing solutions versus the block truncation number N:

e~N ! 5 iz ~N ! 2 z ~N11 !iiz ~N !i21,

iz ~N !i 5 H (
unu < N

@ uzn
1~N !u2 1 uzn

2~N !u2#J 21/2

. (20)

To study the dependence of the computational error dec-
rement on the problem parameters, we consider a cavity
with a super-elliptical cross-sectional contour described
by the formula (x/mac)

2n 1 ( y/ac)
2n 5 1, where 1 < m

, ` is the elongation and 0 , n , ` is a corner-
sharpness parameter. If n 5 1, the contour becomes an
ellipse, and, if n → `, it turns into a rectangle of sides
mac and ac and rounded corners with a peak curvature
proportional to n/ac .

In Fig. 3(a) we present e(N) graphs computed for the
problem of the plane-wave scattering from two ellipses
with m 5 1.1 and «c 5 10.24 1 0.001i, one larger than
the other. The error plots are generated for the param-
eters corresponding to the excitation of the whispering-
gallery (WG) modes in the cavity: in the WG4,1-mode
resonance (kac 5 1.845) and just off this resonance (kac
5 1.93) and in and off the WG11,1-mode resonance (kac
5 4.279 and kac 5 4.3, respectively). One can see that
a rapid decrement of the error starts after N becomes
larger than the value of a characteristic optical size of the
cavity (kcac) [Fig. 3(a)], and the rate of this decrement de-
pends strongly on the peak curvature of the corners [Fig.
3(b)]. It is important to study the behavior of the algo-
rithm in the regions of the high-Q cavity resonances, as it
has been shown that local-basis discretization methods
may fail to provide an acceptable level of accuracy when
the same number of unknowns is used as for the off-
resonance solution.25,26 Furthermore, it was observed
that the errors in the internal field computation in the re-
gion of sharp internal field resonances in the spherical
cavity were located mostly on the sphere surface and de-
pended strongly on the refractive index of the cavity.25

However, as the WG-mode field is mostly located in the
area close to the cavity surface, a high accuracy of the
field computation in this region is highly desirable. The
results shown in Fig. 3(a) convincingly demonstrate that
our algorithm converges rapidly in the high-Q cavity reso-
nances. We have also computed a matrix condition num-
ber as a function of the problem size and observed that it
does not grow with the increase of N but tends to a con-
stant limit value Ncond as N → `. This limit value de-
pends on the problem parameters and is larger for cavi-
ties with sharper corners. For the parameters of Fig.
3(b), it was as follows: Ncond 5 163 (n 5 1), Ncond
5 222 (n 5 3), and Ncond 5 323 (n 5 5). Our experi-
ments with local-basis (pulse, linear, and second-order
polynomial) discretization schemes23 have shown much
slower convergence rates with noticeably worse conver-
gence for the resonance than the off-resonance points.

Fig. 3. Computational errors versus truncated matrix size for a
TM-polarized plane-wave scattering from a superelliptic micro-
cavity with parameters m 5 1.1 and «c 5 10.24 1 0.001i: (a)
the error in and off two WG-mode resonances of an elliptic (n
5 1) cavity, kac(WG4,1) 5 1.845 and kac(WG11,1) 5 4.279; (b)
the error for three superelliptic cavities (kac 5 4.3) for various
values of the corner-sharpness parameter (corners are shown in
the inset).
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B. Fast-Fourier-Transform Algorithm for the
Computation of Matrix Elements
In the practical implementation of the algorithm, there
are other sources of computational errors besides the ma-
trix truncation. As follows from Eq. (17), the matrix ele-
ments in Eq. (19) are calculated as double integrals over
the interval [0, 2p], which is the most time-consuming
part of the algorithm. For a standard Galerkin method,
converting the BIEs into a dense N 3 N matrix has a
computational complexity of the order N3. However, the
use of exponential basis and testing functions has an im-
portant computational merit. It enables us to calculate
matrix elements with the aid of the fast Fourier trans-
form (FFT), thus reducing the computation complexity of
the algorithm and hence CPU time. In this case the total
number of multiplications in performing a 2-D FFT for an
N-unknowns problem does not exceed N2 log2 N. Fur-
thermore, as it has been demonstrated in subsection 4.A.,
owing to the exponential convergence of the method, N
can be chosen to be small. To achieve higher accuracy,
we combine the FFT algorithm with higher-order Gauss–
Legendre quadratures.30 Thus the Fourier coefficients of
a function f(s) are evaluated as

fm 5
1

2p
E

0

2p

f~s !exp~2ims !ds

'
1

2M (
l51

Q

wl exp~2imŝl!

3 (
n50

M21

fS ŝ l 1
2pn

M D expS 2
2ipmn

M D , (21)

where ŝ l 5 p(sl 1 1)/M and sl , wl denote the abscissas
and weights, respectively, for the Gaussian quadrature on
the interval [21, 1] with Q nodal points. The last sum in
expression (21) is computed with the FFT algorithm.

C. Overall Convergence Rate
According to Ref. 31, we have the following estimate for
the N-unknowns final approximate solution after the nu-
merical integration has been performed: iz 2 z (N)i
< const N2d21, where d is a degree of precision of the nu-
merical quadrature. However, small values of N accept-
able for a projection scheme are always smaller than the
FFT size M required for an acceptable level of aliasing er-
rors. Therefore in practical computations we use an FFT
of size M . N and then truncate the result. Finally, we
can conclude that, though a final fully discretized scheme
does not have the exponential convergence rate, this rate
can be progressively improved by increasing the order of
the Gaussian quadrature.

The error estimate for the local-basis Galerkin method
by use of test and trial functions that are polynomials of
degree p and a numerical quadrature of degree d is as fol-
lows: iz 2 z (N)i < const(N2d21 1 N2p).31 This estimate
shows that to maintain the accuracy of the Galerkin
method, an integration technique accurate to the order of
the error in the discretization scheme must be employed.
On the other hand, it can be seen that it is pointless to
increase d to a value higher than p 2 1, since the overall
convergence rate is limited by the order of the test and
trial functions used. This represents the most serious
limitation to achieving arbitrary accuracy with standard
local-basis discretization algorithms.

5. NUMERICAL SIMULATIONS
When studying dielectric and semiconductor microcavi-
ties for laser and integrated optics applications, we are in-
terested in computing the spectrum of natural modes sup-
ported, together with the mode’s near- and far-field
distributions, Q factors, and FSR. These characteristics
enable one to estimate and tune practical design and per-
formance parameters such as laser pump threshold,
maximum output power, emission directionality, filter op-
erational frequencies, efficiency of coupling to bus
waveguides, and single- or multimode operation within
an optical communications window. For achieving a
single-mode operation at a 1.55-mm wavelength, an FSR
of the microcavity larger than the 30-nm-wide optical
communications window supported by erbium-doped am-
plifiers is required. This calls for the use of very small
(1–5-mm radius) semiconductor microcavities. Thus in
this section we study the characteristics of several 1–5-
mm-sized high-confinement optical microcavities fre-
quently used as compact filters and laser resonators in
dense WDM systems in the 1.55-mm wavelength band.

To study the optical spectra of microcavities, one can
excite them by the 2-D complex-source-point (CSP)
beam.32 CSP is a line field source with complex coordi-
nates: U inc 5 H0

(1)(kur 2 rcsu), rcs 5 $xcs , ycs% 5 r0
1 ib, r0 5 $x0 , y0%, and b 5 $b cos b, b sin b%. Such a
source produces a beam field in real space, and the
greater the imaginary part of the source coordinate, the
narrower the beam. This field is an exact solution of the
Helmholtz equation at any observation point, unlike the
Gaussian-type exponents frequently used to approximate
the beam fields in paraxial domains. For each cavity, the
beam incident angle and/or a separation between the
beam center and a cavity sidewall (beam impact param-
eter) have been tuned to achieve the most efficient cou-
pling into the highest-Q cavity modes.

Before applying our method to the analysis of general
microcavity shapes, we verify our results by comparing
them with data obtained by other methods, keeping a uni-
form accuracy of computations of 1024. As a first test ex-
ample, we chose a circular microdisk. Not only is such a
structure used in many practical optoelectronic applica-
tions, but also its 2-D equivalent problem has an analyti-
cal solution as a series of cylindrical functions. A fre-
quency scan of the total scattered power of the TE-
polarized CSP beam field from a circular microcavity with
a radius ac 5 1.5 mm and permittivity «c 5 6.0614
1 0.001i is shown in Fig. 4. The values of the total scat-
tered power are normalized to the power of the free-space
CSP beam. The minima in the plot (cavity resonances)
are observed owing to the absorption of the beam energy
in the cavity material when the frequency of the incident
beam coincides with the real part of the cavity’s complex
natural frequency. To keep the formulation general, the
radius of the extracted circular contour in the MIEs algo-
rithm implementation was chosen to be different from the
radius of the circular cavity under analysis (a Þ ac). In
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the wavelength range of 963–982 nm, we observe one
sharp minimum and one wide minimum corresponding to
the excitation of two WG modes of different Q factors in
the microcavity. A very good agreement of the results
with the series solution is demonstrated for all points of
the graph, including the sharp resonance position and
depth. The inset shows the measured emission spectra
of a 3-mm-diameter and 90-nm-thick GaAs microdisk.33

The wavelength of the sharp peak was measured to be
970.2 nm, and the corresponding value in our 2-D calcu-
lations was 970.24 nm. A small difference in the reso-
nance position is likely due to an effective-index approxi-
mation of the original three-dimensional problem.

As a second example, we study a microgear cavity stud-
ied numerically by the FDTD method7,8 and then
experimentally.34 The microgear cavity is essentially a
circular microdisk with a sinusoidal corrugation of the
disk radius that can be described parametrically as fol-
lows: r(s) 5 ac@1 1 d sin(ns)#. Here ac is a radius of an
unperturbed circular cavity, n is a corrugation period, and
d is the relative corrugation amplitude. Such a specific
contour deformation allows efficient splitting of a double-
degenerate WGn,1 WG mode of the microdisk, for which
the number of the azimuthal field variations is n 5 n/2,
as well as enhancing a lasing mode and suppressing a
parasitic mode.7,8,32 Owing to many variations of the
contour, numerical results obtained by FDTD techniques
may suffer from staircasing errors, and the BIE method
appears to be an optimal computer-aided-design tool pro-
viding higher accuracy with less computational effort.

The complex natural wavelengths (l̃ 5 l 1 il8) of the
microcavities were found as the wavelengths at which the
determinant of the block matrix [Eq. (19)] vanishes.
Once the mode’s natural wavelength is found, the modal-
field distribution can be computed, and the Q factor can
be obtained as follows: Q 5 l/2l8. In Fig. 5 we show
the resonant wavelengths and Q factors (curves) of TE-
polarized WG5,1

6 modes as a function of the corrugation
amplitude d for the InGaAs–InGaAsP microgear cavity7

Fig. 4. Validation of the MIEs solution: comparison of results
generated by the MIEs with the analytical solution and experi-
mental data. The inset shows an emission spectrum of an opti-
cally pumped GaAs microdisk 3 mm in diameter and 90 nm in
thickness [Ref. 33, Fig. 2(b)]. The effective refractive index used
in the 2-D computations was taken as nc 5 2.462.
with radius ac 5 0.8 mm, thickness h 5 0.18 mm (effec-
tive refractive index neff 5 2.63), and n 5 10. The wave-
lengths and Q factors are normalized to the unperturbed
circular-microdisk wavelength lc and Q factor, respec-
tively. The results obtained by the 2-D FDTD technique7

are plotted for comparison (circles). It can be clearly
seen that the algorithm based on MIEs enables us to dem-
onstrate a continuous shift of the microcavity’s lasing
wavelengths and Q factors with a continuous change of
the relative corrugation amplitude, whereas the FDTD re-
sults experience some nonphysical fluctuations. Similar
fluctuational behavior has been observed in the FDTD
simulations of the microgear cavity.8

Next, we study resonant spectra, the FSR, and modal-
field portraits of three popular optical microcavity shapes:
an ellipse, a racetrack, and a square. The wavelength
dependence of the total scattered power of the TM-
polarized CSP beam field from an elliptical microcavity
(x 5 acm cos s and y 5 ac sin s) with ac 5 0.95 mm, «c
5 10.24 1 0.001i, and m 5 1.1 is shown in Fig. 6. Two
families of WG-mode resonances can be seen, correspond-
ing to the first- and second-radial-order modes. The
WGn,1 have the highest optical confinement and lowest
material losses and therefore higher values of the Q fac-
tors and lower thresholds. All the higher-radial-order
modes are usually considered parasitic, and for certain
applications need to be suppressed.2,6 The near-field por-
traits, resonant wavelengths, and Q factors of the WG11,1
and WG7,2 modes are presented in Fig. 7.

Another microcavity shape that finds many applica-
tions in integrated optics is a racetrack (quadrupole)
resonator1 with the cross-section contour defined as x
5 acmr(s), y 5 acr(s), and r(s) 5 @11 e cos(2s)#/
A1 1 e2/2. The normalized scattered power of the CSP
beam scattering from a racetrack microcavity is shown in
Fig. 8. Within the computed wavelength range the
highest-Q resonances of this cavity are again first-radial-
order WG modes. Along with the WG modes,

Fig. 5. Normalized wavelengths and Q factors of WG5,1
6 modes of

a microgear cavity (ac 5 0.8 mm, neff 5 2.63, and n 5 10) as a
function of relative perturbation amplitude d. The results are
compared with those obtained by the FDTD technique (Ref. 7,
Figs. 5 and 6) (circles). Solid curves (filled circles) and dashed
curves (open circles) are the results for the enhanced and sup-
pressed modes, respectively.
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Fig. 6. Wavelength dependence of the total power scattered
from an elliptical microcavity (ac 5 0.95 mm, «c 5 10.24
1 0.001i, and m 5 1.1) excited by a TM-polarized CSP beam.
The FSR of the first-radial-order WG-mode resonances in the vi-
cinity of l 5 1.55 mm is 118 nm. The inset shows a schematic of
the CSP beam (kb 5 10, b 5 160°, kx0 5 kacm 1 kb 1 1, and
ky0 5 0) grazing the rim of the microdisk.

Fig. 7. Near-field intensity patterns (20% contours) of WG
modes in the elliptical microcavity. Corresponding resonances
in the normalized scattered power in Fig. 6 are marked as a and
b. (a) First-radial-order WG11,1 mode (l 5 1.395 mm, and Q
5 1.01 3 104), (b) second-radial-order WG7,2 mode
(l 5 1.497 mm and Q 5 2.91 3 102).

Fig. 8. Wavelength dependence of the total power scattered
from a recetrack microcavity (ac 5 1.2 mm, «c 5 10.24
1 0.001i, e 5 0.15, and m 5 1) excited by a TM-polarized CSP
beam. The FSR of the first-radial-order WG-mode resonances in
the vicinity of l 5 1.55 mm is 106 nm. The inset shows a sche-
matic of the incident CSP beam (kb 5 10, b 5 270°, kx0
5 kac/2, and ky0 5 kac 1 kb 1 0.1).
bow-tie resonances are excited in the racetrack microcav-
ity. They demonstrate a strong spatial directionality of
the output light that is very important for laser
applications.1 Near-field intensity patterns of a WG
mode and a bow-tie mode are presented in Figs. 9(a) and
9(b), respectively.

Finally, the wavelength dependence of the total scat-
tered power for a CSP beam incident at an angle b
5 45° to the sidewall of a square microcavity is plotted in
Fig. 10. The square shape of the microcavity has been
approximated by the superelliptic parametric formula:
x 5 acm cos sr(s), y 5 ac sin sr(s), and r(s) 5 (ucos su2n

1 usin su2n)21/2n. A square resonator supports standing-
wave modes of various types, as previously observed,12

and the highest-Q factor modes are the ones having the
nulls of the electric field along the diagonals [Fig. 11(a)].
It can be seen that though the mode spacing of the
highest-Q modes is rather large, the spectrum of the reso-
nances corresponding to the modes of different types [see

Fig. 9. Near-field intensity patterns (20% contours) of (a) WG
and (b) bow-tie modes in the racetrack microcavity. Correspond-
ing resonances in the normalized scattered power in Fig. 8 are
marked as a and b. (a) First-radial-order WG12,1 mode (l
5 1.587 mm and Q 5 1.32 3 103), (b) bow-tie WG7,2 mode (l
5 1.357 mm and Q 5 2.66 3 102).

Fig. 10. Wavelength dependence of the total power scattered
from a square microcavity (ac 5 1.45 mm, «c 5 10.24 1 0.001i,
n 5 10, and m 5 1) excited by a TM-polarized CSP beam. The
FSR in the vicinity of l 5 1.55 mm is 178 nm. The inset shows
a schematic of the incident CSP beam (kb 5 10, b 5 135°, kx0
5 kac 1 kb 1 0.1, and ky0 5 0).
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Fig. 11(b) as an example] is very dense. This suggests
that to achieve a single-mode operation of the square mi-
crocavity one should either decrease the size of the cavity
even further or introduce a deformation to suppress the
parasitic cavity modes.

6. CONCLUSIONS
A set of boundary integral equations for calculating opti-
cal modes in high-confinement resonant cavities has been
used. The BIEs are guaranteed to have a unique solu-
tion for any set of cavity design parameters unlike vari-
ous elementary formulations suffering from the appear-
ance of spurious numerical resonances. The BIEs have
been discretized by the Galerkin method with global
trigonometric test and trial basis functions to minimize
the size of the numerical problem and achieve the stabil-
ity and superior convergence of the final fully discrete nu-
merical scheme. The algorithms developed have enabled
us to accurately and efficiently compute the characteris-
tics of arbitrary-shape lossy dielectric and semiconductor
microcavities with various types of excitation. Our re-
sults were found to be in good agreement with FDTD
simulations available in the literature and shown to pro-
vide higher accuracy. The speed, flexibility, and robust-
ness of the algorithms create a framework for efficient de-
sign and optimization of novel-shape microcavities with
improved spectral characteristics.

APPENDIX A: TWO-DIMENSIONAL
GREEN’S FUNCTION AND ITS DERIVATIVES
The 2-D Green’s function of the uniform medium with pa-
rameters « j , m j and its first- and second-order normal de-
rivatives is as follows:

]Gj~r, r8! 5
i

4
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~1 !~kjR !, (A1)

]Gj~r, r8!
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5 2

ikj

4
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Fig. 11. Near-field intensity patterns (20% contours) of the
modes in the square microcavity corresponding to the resonances
in the normalized scattered power marked as a and b in Fig. 10.
(a) (l 5 1.33 mm and Q 5 3.48 3 103), (b) (l 5 1.425 mm and
Q 5 5.41 3 102).
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Here kj 5 kA« jm j; H0(1)
(1) ( • ) is the zero- (first-) order

Hankel function of the first kind; r and r8 are the vectors
from the origin to the observation and source points, re-
spectively; R 5 ur 2 r8u; and L(s) 5 @(dx/ds)2

1 (dy/ds)2#1/2 is the Jacobian of the contour LS . The
first- and second-order normal derivatives of R are given
by
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For the case of the axial-symmetrical problem for a circu-
lar cylinder of radius a, the expressions (A1)–(A3) take
the following form:
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where

R0 5 Usin
s 2 s8

2
U.

Integral operators with any of the kernel functions (A6)–
(A8) have the same set of orthogonal eigenfunctions
$exp(ims)%m52`

` , and their Fourier coefficients can be ob-
tained analytically6,16 in terms of cylindrical functions:
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Here, with m 5 0, 61,..., Jm
j 5 Jm(kja) and Hm

j 5 Hm
(1)

3 (kja) are the Bessel and first-kind Hankel functions of
order m, respectively, and the prime represents the de-
rivative with respect to the argument.
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