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Abstract
The excitation of the surface plasmon resonances on a graphene strip and a disk in free space is studied
numerically as a 2D and 3D electromagnetic wave-scattering problem, respectively. The associated
mathematical model is based on the Maxwell equations with resistive boundary conditions on the surface of a
zero-thickness strip or disk, where the graphene electron conductivity is included as a parameter and
determined from the Kubo formalism. It is shown that plasmon resonance frequencies in the terahertz range
shift with variation of the chemical potential of the graphene. Far-field and near-field patterns are plotted at
several resonance frequencies.
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1. Introduction

Graphene is a planar one-atom-thick structured layer of
carbon atoms which are arranged in a regular hexagonal
pattern. Recently it has attracted the attention of the
research community due to its amazing mechanical, electronic
and optical properties. Graphene is also a zero bandgap
semiconductor with conductivity tuned either by electrostatic
or magnetostatic gating. It can support surface plasmon
waves and, if patterned, resonance modes at low-THz
frequencies. These properties of graphene make it a promising
material for the development of ultrathin fast nanoelectronic
devices [1–7]. To study electromagnetic wave scattering by
a graphene object it is necessary to combine the Maxwell
boundary value problem with a phenomenological model of
the graphene conductivity [8]. The main challenge of such
an approach is to involve a zero thickness of the scatterer
into the model. This can be done by modeling graphene as
an equivalent resistive surface (also called impedance surface
because of the complex-valued resistivity). Then one can use
various mesh-based and meshless codes for the numerical
analysis of the wave scattering.

In this paper we present analytical–numerical methods
to solve the scattering of electromagnetic waves by a single
graphene strip and a disk in the free space and use them
to study plasmon resonance excitation on these objects. We
suppose that the size of each graphene scatterer (half-width
of the strip and radius of the disk) is larger than 50 nm. This
is because it has been experimentally demonstrated [9] that
the edge effects on the graphene conductivity appear only in
structures with dimensions smaller than 100 nm. Then we can
disregard the edge effects on the graphene conductivity and
use the electrical conductivity model developed for infinite
graphene sheets. To solve the associated Maxwell boundary
value problems we reduce each of them to a single or a set of
integral equations (IEs). In the case of the scattering by a strip,
such IE is a second-kind equation with a hyper-singular or
log-singular integral operator, depending on the polarization.
To reduce it to a matrix equation we use a Nystrom-type
method with the Chebyshev or Gauss–Legendre high-order
quadratures, respectively. In the case of a disk we reduce
the problem to a set of coupled dual IEs in the spectral
domain and then to a set of Fredholm second-kind IEs. Further
we use a Nystrom-type discretization scheme to reduce it

12040-8978/13/114007+09$33.00 c© 2013 IOP Publishing Ltd Printed in the UK & the USA

http://dx.doi.org/10.1088/2040-8978/15/11/114007
mailto:mikhail.balaban@gmail.com
http://stacks.iop.org/JOpt/15/114007


J. Opt. 15 (2013) 114007 M V Balaban et al

Figure 1. Micro-size graphene strip.

to a matrix equation. These numerical methods serve as a
reliable instrument to study the electromagnetic response of
the graphene strip and the graphene disk to the plane wave
and the dipole-field excitation, respectively.

2. Problem statement

Consider two boundary value problems of the time-harmonic
[exp(−iωt)] electromagnetic field scattering by a planar
graphene scatterer.

• The first is a plane H-polarized wave scattering by a
graphene flat strip of the width d. Suppose that the strip
stretches along the z-axis of the Cartesian coordinate
system (figure 1) and β is the plane wave incidence angle
measured from the x-axis.

• The second problem is the scattering of a point-source field
by a graphene disk of the radius a (figure 2). Here we
will consider two types of sources: vertical electrical and
horizontal magnetic elementary dipoles located above the
disk at the distance h and shifted from the disk axis by the
distance r0.

Decompose the total field (EE, EH) as a sum of the incident
electromagnetic field (EEin, EHin) and the field scattered by
the strip or the disk (EEsc, EHsc). Assume that the scattered
field satisfies homogeneous Maxwell equations outside
the scatterer, while the total field satisfies the following
resistive-type boundary conditions [4–7]:(

E+tg + E−tg
)
= 2σ−1

En×
(

H+tg − H−tg
)
,(

E+tg − E−tg
)
= 0.

(1)

Here En is the unit vector normal to the strip or disk surface
in the direction of the y-axis or z-axis, respectively, and σ is
the graphene surface conductivity, which can be determined
from the Kubo formalism and expressed as a sum of intraband
(σintra) and interband (σinter) contributions given by the
following expressions [3–5]:

σintra =
i e2kBT

π h̄(ω + i/trelax)

×

(
µc

kBT
+ 2 ln

[
exp

(
−
µc

kBT

)
+ 1

])
, (2)

Figure 2. Micro-size graphene disk.

σinter =
i e2(ω + i/trelax)

π h̄2

×

∫
∞

0

fd(−ε)− fd(ε)

(ω + i/trelax)2 − 4(ε/h̄)2
dε, (3)

where e is the electron charge, kB is the Boltzmann constant,
T is the temperature, h̄ is the reduced Planck constant, ω is
the angular velocity, trelax is the electron relaxation time, µc is
the chemical potential, and fd is the Fermi–Dirac distribution
function.

For completeness of formulation, we request also that the
total electromagnetic field satisfies the radiation condition at
infinity and the condition of local integrability of power off
the domain of sources, if any, and including the vicinities of
strip edges and disk rim.

3. Micro-size graphene strip

3.1. Solution method: hyper-singular IE and Nystrom-type
discretization

To solve the scattering problem by a flat graphene strip, we
consider the 2D Helmholtz equation and resistive boundary
conditions (1) on the strip surface S = {(x, y): x ∈ [0, d], y =
0}. First, we take the H-polarized plane electromagnetic wave
(Ez = Hx = Hy = 0) as an incident field and reduce the
problem to the 2D boundary value problem for the unknown
scattered field function.

Suppose that Hz(Er) = Hsc
z (Er) + e−ik(x cosβ+y sinβ) is the

z-component of the total magnetic field and Hsc
z (Er) is the

unknown function. Here Er = (x, y) ∈ R2 is the radius vector
of the observation point, and k is the free-space wavenumber.
Express the unknown function as a double-layer potential,

Hsc
z (Er) =

i
4

∫
S

w(Er)
∂H(1)

0 (k|Er − Er0|)

∂n(Er)
dEr, (4)

where w(Er) = H+z (Er) − H−z (Er) is the x-component of the
electric current induced on the strip (note that in our case there
is no z-component of the current) and H(1)

0 (·) is the first-kind
Hankel function of zero order. Here the indices ± correspond
to the limit values of the field from the top and bottom sides
of the strip, respectively.

As the next step, we substitute expression (4) into the
boundary conditions (1) and use the properties of the limit
values of the double-layer potentials. After the introduction
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of the dimensionless (normalized by the strip half-width)
Cartesian coordinates (t, s), we obtain the following IE for
the unknown function w(t) where t ∈ [−1, 1]:

4(σZ0)
−1w(t0)+

∫ 1

−1
w(t)

H(1)
1 (χ |t − t0|)

|t − t0|
dt = f (χ, t0),

t0 ∈ (−1, 1). (5)

Here, χ = kd/2 and f (χ, t0) = 4 sinβ e−iχ(t0+1) cosβ is given
by the incident field function. Note that the IE obtained is
fully equivalent to the original boundary value problem [10];
this is a second-order hyper-singular equation whose integral
operator should be understood in the sense of Hadamard’s
finite part. It is also important that in [11] it has been shown
that the x-component of the electric current w(t) tends to zero
as a square root of the distance to the strip edge. Thus, w(t)
can be represented as w(t) = w̃(t)(1 − t2)1/2, where w̃(t) is a
new smooth function to be found.

To solve IE (5) numerically with mathematically
guaranteed convergence and hence controlled accuracy, one
can use either the method of analytical regularization or the
Nystrom-type discretization [12]. Here we will follow the
latter approach and hence we extract the singular part of the
corresponding integral operator (by analogy with [10]). After
that, we discretize IE with the aid of the Chebyshev-type
quadrature formula and then collocate the obtained discrete
counterpart of IE (this procedure is also known as the method
of discrete singularities [13] or advanced Nystrom-type
method [14, 15]). As a result, we obtain the matrix equation,

n∑
k=1

Askw̃(tk) = f (χ, t0s). (6)

Here, the matrix coefficients are defined as (s, k =
1, . . . , n)

Ask =
i
π
αsk −

2i

πχ2 βsk +
π

(n+ 1)
M(χ, tk, t0s)(1− t2k)

+ 4(σZ0)
−1δsk

√
1− t2k , Z0 =

√
µ0/ε0 (7)

αsk = −
π

n+ 1
(1− t2k)

[
ln 2+ 2

n∑
l=1

Tl(tk)Tl(t0s)

l

+
(−1)k

n+ 1
Tn+1(t0s)

]
,

βsk =


π

(n+ 1)

(1− t2k)(1− (−1)k+s)

(tk − t0s)2
, s = k

−
π(n+ 1)

2
, s 6= k,

(8)

where Tl(t) is the Chebyshev polynomial of the second kind,
δsk is the Kronecker delta, and M(χ, t, t0) = χ−1H(1)

1 (χ |t −
t0|)/|t− t0|−(i/π) ln |t− t0|+2i/(πχ2

|t− t0|2) is the smooth
function for all t, t0 ∈ [−1, 1]. Note that here we use the
same set of nulls of the second-kind Chebyshev polynomials
as both the discretization nodes {tk}k=1,...,n and collocation
nodes {t0s}s=1,...,n. It is known that such reduction of IE
(5) to a matrix analog (6) leads to a numerically efficient
algorithm which has guaranteed and fast convergence (this

follows from the convergence of the quadrature formulas)
and controlled (by means of the order of interpolation
used) computation accuracy [11]. After solving the matrix
equation (6) numerically, we find the set of unknown function
values in the node points {w̃(tk)}k=1,...,n and obtain the
function w(t) at the interval [−1, 1] using the interpolation
formula. Also note that the z-component of the magnetic field
in the near- and far-zone can be expressed in terms of the
unknowns,

Hsc
z (Er) =

π iχ
4(n+ 1)

n∑
s=1

w̃(ts)(1− t2s )y

×
H(1)

1 (k
√
(x− d(ts + 1) / 2)2 + y2)√

(x− d(ts + 1) / 2)2 + y2
,

for all Er = (x, y) ∈ R2
\ S, (9)

Hsc
z (Er) ∼=

|Er|→∞
(2 / iπk | Er |)1/2eik|Er|8(θ), (10)

8(θ) =
π sin θ

4(n+ 1)

n∑
s=1

w(ts)(1− t2s )e
−iχ(ts+1) cos θ , (11)

where 8(θ) is the scattering pattern.
For completeness of analysis, in the alternative case of

the E-polarized wave scattering (Hz = Ex = Ey = 0) the
scattered field can be expressed as a convolution of electric
current v(Er) = ∂/∂En(Er)[E+z (Er) − E−z (Er)] with the Green’s
function, i.e. as a single-layer potential

Esc
z (Er) =

ik
4

∫
S

v(Er)H(1)
0 (k|Er − Er0|) dEr. (12)

Making operations similar to H-case, we obtain an IE
with a logarithmic singularity in the kernel,

4(σZ0)
−1v(t0)+ χ

∫ 1

−1
v(t)H(1)

0 (χ |t − t0|) dt = g(χ, t0),(13)

where g(χ, t0) = 4ie−iχ(t0+1) cosβ is given by the incident
field function.

Without going into details, this IE is solved similarly to
the case of H-polarization using a Nystrom-type discretization
with the Gauss–Legendre quadrature formulas (for more
details see [10, 14]).

3.2. Numerical results and discussion

To study the features of the plane wave scattering and
absorption by a strip scatterer, the figures-of-merit are the
total scattering cross-section (TSCS) and the absorption cross-
section (ACS) [10]. We have studied these characteristics in
the case of the normal incidence of an H-polarized plane
wave on the graphene strip (β = π/2). Figure 3 shows the
normalized by 2d plots of TSCS and ACS versus frequency
for the strip with the width of 50 µm; the parameters of
graphene are presented in the boxes.

As one can see, free-standing graphene strip demonstrates
abundant number of surface plasmon resonances in the
range from 1 to 10 THz. Figure 3 also shows that an
increase of the chemical potential µc up-shifts the plasmon

3
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Figure 3. Normalized TSCS (a) and ACS (b) versus the frequency for the graphene strip (d = 50 µm) illuminated by the normally incident
H-polarized plane wave.

Figure 4. Total near-field patterns for a stand-alone graphene strip of d = 50 µm at f = 2.057 THz (a), f = 4.83 THz (b), f = 6.678 THz
(c) and f = 8.078 THz (d).

resonance frequencies and boosts their quality factors, which
is explained by the smaller losses in graphene.

More numerical results on the scattering and absorption
of an H-polarized plane by a single graphene strip in free
space, including inclined incidence, can be found in [10]. The
same paper contains accurate numerical study of the scattering

by finite multi-strip graphene gratings using the Nystrom
algorithm similar to the used here.

Figure 4 presents the total near-field patterns (i.e. the
values of |Hz |) in four plasmon resonances Ps, s = 1, 3, 5, 7
marked in figure 3(b). Each of these plasmons can be
interpreted as a Fabry–Perot-like standing wave, which is

4
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Figure 5. Normalized radiation patterns of the scattered field at the
plasmon frequencies marked in figure 3(b).

formed by the reflections of the surface plasmon natural wave
of a graphene layer from the strip edges. This wave has the
propagation constant that can be found analytically using the
GBC (1) as

αp = k
√

1− (σZ0/2) 2. (14)

Then, following [16, 17], i.e. neglecting the losses and
assuming for simplicity a zero reflection phase of such wave
at the strip edge, the resonance frequencies can be found as
roots of certain approximate characteristic equations. For the
plasmon modes that are either even or odd with respect to the
strip middle point, such equations can be cast to the common
form as

sin
(
Re(αp)d

)
≈ 0, (15)

that entails Re(αp)d ≈ sπ , s = 1, 2, 3, . . .. Then the
corresponding natural frequencies are associated with the
odd-index (s = 1, 3, . . .) or even-index (s = 2, 4, . . .) roots,
respectively.

It is the wavelength of the mentioned plasmon surface
wave (i.e. not the free-space wavelength) that becomes a
characteristic length in the studied scattering problem. Note

that only the odd-index plasmon resonances can be excited in
the case of the normal incidence because of their modal field
symmetry across the strip middle point, while the even-index
plasmons remain dark modes in this case.

A wider-than-the-wavelength graphene strip behaves as
an imperfect flat mirror that is visible in the far-field scattering
patterns presented in figure 5. Indeed, at any frequency one
can see two predominant lobes: the shadow lobe and the
specularly reflected-wave lobe. If, however, the frequency
approaches one of the surface plasmon frequencies one can
observe the appearance of additional smaller lobes whose
intensity depends on the quality factor of the corresponding
plasmon resonance and whose number correlates with the
index of the plasmon, i.e. with the number of the current
variations along the strip width.

In contrast to the H-polarization, in the case of the
E-polarized wave scattering no plasmon resonances appear.
In figure 6, we present the dependences of the normalized
TSCS versus the frequency (a) for the same strip and the
chemical-potential values as in figure 3, and a sample total
near-field pattern at f = 3 THz, and (b) for the graphene with
µc = 1 eV (green curve).

4. Micro-size graphene disk

4.1. Solution method: coupled dual IEs and method of
analytical regularization

To solve the 3D scattering problem by a graphene disk, we
use the method of dual IEs in the spectral domain together
with the concept of analytical regularization [18]. We start
by introducing the dimensionless (normalized to the radius of
the disk) cylindrical coordinates (ρ, ϕ, ζ ) with the origin at
the disk center. The following expressions for the normal and
tangential to the disk scattered field components in terms of
the scalar and vector Fourier–Hankel transform can be written
to satisfy the Maxwell equations and the condition of radiation

Figure 6. Normalized TSCS versus the frequency (a) and total near-field pattern at f = 3 THz (b) for a stand-alone graphene strip of
d = 50 µm illuminated by a normally incident E-polarized plane wave.
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at infinity:(
Esc,±

z (ρ, ϕ, ζ )

Z0Hsc,±
z (ρ, ϕ, ζ )

)
=

∞∑
m=−∞

eimϕ
∫
∞

0
eiγ (κ)|ζ |J|m|(κρ)

×

(
κesc,±

m,z (κ)

κhsc,±
m,z (κ)

)
dκ, (16)(

Esc,±
r (ρ, ϕ, ζ )

−iEsc,±
ϕ (ρ, ϕ, ζ )

)
=

∞∑
m=−∞

eimϕ
∫
∞

0
eiγ (κ)|ζ |H̄m(κρ)

×

(
±iγ (κ)esc,±

m,z (κ)

−ka hsc,±
m,z (κ)

)
dκ (17)(

Z0Hsc,±
r (ρ, ϕ, ζ )

−iZ0Hsc,±
ϕ (ρ, ϕ, ζ )

)
=

∞∑
m=−∞

eimϕ
∫
∞

0
eiγ (κ)|ζ |H̄m(κρ)

×

(
±iγ (κ)hsc,±

m,z (κ)

ka esc,±
m,z (κ)

)
dκ. (18)

Here, Z0 is the free-space impedance, γ (κ) = [(ka)2− κ2
]
1/2

is a complex-valued function with the branch corresponding
to Im(γ (κ)) ≥ 0, k is the free-space wavenumber, and H̄m(κρ)

is the matrix kernel of the vector Hankel transform given by
(see, for instance, [19])

H̄m(κρ) =

(
J′
|m|(κρ) mJ|m|(κρ)/(κρ)

mJ|m|(κρ)/(κρ) J′
|m|(κρ)

)
. (19)

Also, here Jm is the first-kind Bessel function of the order
m, J′m its first-order derivative, and esc,±

m,z (κ) and hsc,±
m,z (κ) are

the images of the field components normal to the disk in the
spectral domain. By substituting expressions (17), (18) into
the boundary conditions (1) we reduce the scattering problem
to the following set of the coupled dual IEs for each azimuthal
index:

∫
∞

0
H̄m(κρ)

 γ (κ)
(

usc,−
m (κ)+ uin,−

m (κ)
)
+ 2 ka (Z0σ)

−1usc,−
m (κ)

i ka
(

vsc,+
m (κ)+ vin,+

m (κ)
)
+ 2i (Z0σ)

−1γ (κ)vsc,+
m (κ)


dκ = 0̄ (ρ < 1)∫
∞

0
H̄m(κρ)

(
i ka usc,−

m (κ)

−γ (κ)vsc,+
m (κ)

)
dκ = 0̄ (ρ > 1) ,

(20)

where usc,±
m (κ), vsc,±

m (κ) are the images of the jumps and the
average values of the scattered field components normal to
the disk, respectively. These are the functions to be found.
Functions uin,±

m (κ) and vin,±
m (κ) are known and determined by

the incident field.
To solve the obtained dual IEs (20) we follow the method

of analytical regularization [18] and invert the most singular
part (which is the static part) of the integral operators of
IEs analytically. At the end of this procedure, we obtain the
following set of coupled Fredholm second-kind IEs:

usc,−
m (λ) = i

∫
∞

0
κ−1

((
w(k)+

2ka

Z0σ

)
usc,−

m (κ)

+ γ (κ)uin,−
m (κ)

)
S|m|−1/2(κ, λ) dκ

− iAl
m

√
2
0(|m| + 1)
0(|m| + 1/2)

J|m|+1/2(λ)

λ1/2 , (21)

vsc,+
m (λ) = − ka

Z0σ

2
λ1/2

γ (λ)

×

∫
∞

0
κ−1/2

×

(
vsc,+

m (κ)+ vin,+
m (κ)

)
× S|m|+1(κ, λ) dκ − 2mDr

m
J|m|(λ)

γ (λ)
, (22)

Al
m
0(|m| + 1)
0(|m| + 3/2)

− (ka)−12Dr
m
0(|m| + 1/2)
0(|m|)

=
√

2
∫
∞

0
κ−3/2

((
w(κ)+

2ka

Z0σ

)
usc,−

m (κ)

+ γ (κ)uin,−
m (κ)

)
J|m|+1/2(κ) dκ, (23)

iZ0σ sgn(m)Al
m + sgn(m)2Dr

m

= kaZ0σ

∫
∞

0
κ−1

(
vsc,+

m (κ)+ vin,+
m (κ)

)
J|m|(κ) dκ. (24)

Here w(κ)= γ (κ)−iκ, 0(x) is the Euler gamma function, and
Sµ(κ, λ) is the smooth kernel function given by the integral
and closed-form expressions as

Sµ(κ, λ) = κ
1/2λ1/2

∫ 1

0
Jµ(κv)Jµ(λv)v dv

=
κ1/2λ1/2

κ2 − λ2

(
λJµ−1(λ)Jµ(κ)− κJµ−1(κ)Jµ(λ)

)
.

(25)

The properties of the Fredholm second-kind IEs
guarantee the existence and uniqueness of their solution, thus
it is possible to use any reasonable analytical or numerical
scheme to solve them. We use the numerical technique which
is based on the truncation of the integration interval to the
finite one combined with the discretization of the truncated
equations using the Nystrom-type scheme [20]. Finally we
obtain a set of linear algebraic equations and solve them
numerically using the Gauss inversion of the corresponding
matrix.

4.2. Numerical results and discussion

To study the excitation of the graphene-disk plasmon
resonances by the point sources, we chose, as the figures-
of-merit, the power radiated by the chosen source in the
presence of the graphene disk and the power lost due to
absorption. As a source we take one of two dipoles, namely a
horizontal magnetic dipole and a vertical electric dipole. Both
values will be normalized by the power radiated by the same
source located in free space, P0 = (12π)−1CI2(kg)2. Here the
electric (magnetic) dipole case implies C = Z0 (C = 1/Z0)

with I being the electric (magnetic) dipole current, and g is
the dipole ‘length,’ so that Ig is electric (magnetic) dipole
moment. Our aim is to study the excitation of the graphene
plasmon resonances as the source of the incident field shifts
from the disk axis toward the rim of the disk. We also analyze
(similarly to the case of graphene strip) how the resonances
shift if the chemical potential of graphene gets larger.

We start our consideration with the dipoles located on
the disk axis (r0 = 0) and change the chemical potential of

6
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Figure 7. Normalized radiated and absorbed powers versus frequency for the graphene disk (a = 25 µm) excited by the on-axis horizontal
magnetic dipole.

Figure 8. Normalized radiated powers versus frequency for the graphene disk (a = 25 µm) excited by the on-axis (a) and the shifted (b)
vertical electric dipoles.

the graphene (µc = 0.25; 0.5; 0.75; 1.0 eV). Figure 7 shows
the normalized radiated and absorbed powers as a function
of the frequency in the case of horizontal magnetic dipole
excitation.

One can see several resonance peaks on each curve.
They correspond to the family of plasmon resonance modes
with one variation of the field along the disk azimuth and
several variations along the disk radius. Thus, for example,
the resonance frequency f = 1.5425 THz for the red curve
in figure 7(a) corresponds to the resonance mode with a
single variation of the field along the azimuth (without
variation along the radius). The typical far-field pattern in such
resonance looks like the pattern in figure 9(d). Also note the
up-shifting of the resonance frequency with increasing of the
graphene chemical potential (this is the same as increasing the
electrical bias of the graphene material).

Figure 8(a) shows frequency dependences of the
normalized radiated power for the same parameters of
graphene disk but in the case of the on-axis vertical electrical
dipole excitation. Such incident field has no variations along
the azimuth and thus it excites only azimuthally symmetric
(m = 0) surface plasmon modes. Figures 9(a)–(c) show
the radiation patterns at three resonance frequencies f =
3.1368, 4.5512 and 9.3182 THz for the red curve (which
corresponds to the graphene chemical potential of 0.5 eV) in
figure 8(a).

Figure 8(b) shows frequency dependences of the
normalized radiated power for several different source-point
locations. We start shifting the vertical electrical dipole from
the axis of the disk to the rim and find excitation of plasmon
modes of different azimuthal families (m = 0, 1, 2, . . .).

7
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Figure 9. Far-field radiation patterns in the case of the graphene disk excited by the vertical electrical dipole; on-axis dipole location,
r0 = 0; f = 3.1368 THz (a), f = 4.5512 THz (b), f = 9.3182 THz (c) and shifted dipole location, r0 = 0.9a; f = 1.5425 THz (d),
f = 2.3071 THz (e), f = 8.9016 THz (f).

In line with the discussion in section 4.1 (see also [16,
17]), the plasmon resonance frequencies of graphene disk can
be found from the approximate equation as follows:

Jm
(
Re
(
αp
)

a
)
≈ 0, m = 0, 1, 2, . . . (26)

where αp is given by (14).
The 3D far-field radiation patterns presented in fig-

ures 9(d)–(f) have been computed at three resonance frequen-
cies f = 1.5425, 2.3071 and 8.9016 THz corresponding to the
excitation of the plasmon modes with m = 1, 2, 4 and marked
in figure 8(b).

5. Conclusions

We have presented two modeling methods and fast convergent
numerical algorithms for the analysis of the excitation of the
surface plasmon modes on a flat graphene strip and a flat
graphene disk located in the free space. The modeling is
based on the Maxwell equations and resistive-type boundary
conditions on the strip or disk surface, where the graphene
electron conductivity is included as a parameter. In the case
of the graphene strip, the associated 2D scattering problem
is reduced to a hyper-singular IE of the second type which
we have solved using Nystrom-type discretization and the
Chebyshev quadrature formulas. In the case of the graphene
disk, the scattering problem is essentially a 3D one. It has been
reduced to a set of coupled dual IEs for each azimuthal order
(in the spectral domain) and further to the coupled pair of
Fredholm second-kind IEs which we have solved numerically
using the Nystrom-type discretization.

Using the above-presented computational instruments,
we have studied the excitation of a graphene strip by the
H- and E-polarized plane waves and a graphene disk by the

elementary dipoles, horizontal magnetic and vertical electric.
In each case we have computed the power characteristics
such as scattering and absorption cross-sections and the
radiated and absorbed powers, respectively. Our focus has
been on the study of associated surface plasmon resonances
of finite-size graphene scatterers. We have shown how
the resonance frequencies shift for different values of the
chemical potential of graphene material and visualized the
near-zone and far-zone field patterns in the resonances of
various types.
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