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Abstract-The purpose of this paper is to give solid ground to rigorous studies of open- 
waveguide-related scattering problems. In the core of the difficulties associated with them 
there lies the presence of infinite but penetrable boundaries. This calls for a revision 
of the condition of radiation, and to the necessity of justifying the limiting absorption 
principle. The analysis is based on the Fourier-transform approach and study of the 
analytic properties of transform functions with respect to a parameter. Except for simple 
2-D geometries, regularized integral equations and operator theory theorems are used. 
The result differs from the free-space expression and involves the guided natural modes 
spectrum. It reveals also that the direction of power flow associated with each particular 
mode is to be taken into account. The obtained expressions validate the intuitively 
clear equations of power conservation and reciprocity. A numerical example is given and 
extension to more complicated open waveguides is discussed. 

1. INTRODUCTION 

The funds for military-oriented studies like RCS simulation via free-space scatter- 

ing of waves are clearly shrinking now. This adds to the motivation for intensive 

study of electromagnetic problems associated with more complicated media, par- 
ticularly open waveguides. More reason can be seen in the widening applications 
of such waveguides in millimeter waves and optoelectronics. Although the prop- 

agation on regular guides is of obvious interest, the principle of operation of any 
device as filter, mixer, or coupler is based on the modification of a surface mode 
field by means of irregularities. Therefore, the scattering and mode conversion in 

open waveguides is of great practical importance. 
The design and optimization of such devices calls for rigorous treatment of 

corresponding boundary-value problems. But, it should be noted that open- 

waveguide scattering is a somewhat nonclassical branch of wave diffraction theory, 
due to the combination of two 'infinitives' in any relevant geometry. These are 
the infinite albeit regular boundaries of the waveguide's elements, and the infinite 
domain of the cross-section. Although not always clearly realized, this fact causes 

quite a number of more or less formal modifications with respect to free-space and 

closed-waveguide scattering of time-harmonic waves. 

Indeed, assume that the wave field depends on time as e-"t where Lo = kc 
with k = Rek > 0, and c is the free-space propagation velocity. Such a field is 
known to satisfy a certain partial differential equation having a variety of solutions. 
In the open domain, a frequently used basis to single out the unique solution is 
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The Principle of Radiation. It eliminates any form of the scattered field which 

implies sources at infinity. Formally this principle is realized by introducing a 
certain restriction on the far field behaviour, i.e., a condition at infinity [1]. 

In the free-space scattering from finite obstacles, the well known Sommerfeld 
radiation condition [2, p. 188] is used. It may be expressed in several equivalent 
forms. One of them is an asymptotic request for the scattered field to represent 
an outgoing space wave sufficiently far from the obstacle. For example, in the 
scalar case it is 

where Stv is a point on a unit sphere, v is the space dimension number. 

However, (1) obviously fails in waveguide problems containing infinite bound- 
aries. Instead of decaying uniformly far from the obstacle, the scattered field here 
can be guided along the boundary. 

For the scattering in closed waveguides., another condition is valid (known as 
the Sveshnikov condition in Soviet literature after [3]). It requires the field to be 

expandable in terms of outgoing or decaying normal modes far from the obstacle, 

where hq = (k2 - and gq, Vq(r), q = 1, 2,... are the (real) eigenvalues 
and eigenfunctions of cross-sectional problem. So, at fixed frequency, the first 

Q terms in (2) correspond to outgoing guided modes, and the rest to cutoff, i.e. 

decaying, ones of the waveguide. 
However, for open waveguides (2) is clearly not appropriate because it neglects 

the scattering to surrounding space through the infinite penetrable boundaries. 

So, a modified expression serving as adequate condition of radiation is to be 
used. In deriving it we follow [4,5]. The result differs from both (1) and (2), 
and leads to an important conclusion: the usual and seemingly obvious concept 
of the scattered field as a superposition of waves propagating to infinity can be 
erroneous for open waveguides, and must be replaced by the concept of waves 

carrying power to infinity. Besides giving solid ground to studying the relevant 

problems, this expression plays an important role in deducing general relations 
for the far-field characteristics. 

It should be noted that there exists another way of extracting out the unique 
physical solution of lossless open-domain problems. It is The Principle of Limiting 
Absorption, according to which the solution is taken as 

where k + ik) is the vanishing at infinity solution of a lossy problem, i.e., 
the one with losses assumed in unbounded domain. The latter problem is a self- 

adjoint one, and hence always has an exponentially decaying solution. The limit 
in (3) is understood in L2(D) sense, for an arbitrary bounded region D. Unfor- 

tunately, in spite of obvious simplicity, there are no general theorems ensuring a 
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universal validity of this principle. Existence of a limit like (3) must be proved in- 

dependently for different classes of boundary-value problems. For free-space and 

closed-waveguide scattering this was done in [6] and [3], respectively. For open 

waveguides it needs a separate treatment. 

The remainder of this paper is organized as follows. In Section 2, a modi- 

fied radiation condition is derived for impedance plane as the simplest 2-D open 

waveguide. The analysis utilizes Fourier transform in space domain and complex 

plane integration. In Section 3, the treatment is extended to multimode 2-D open 

waveguides such as dielectric slabs. Based on the modified expression and Green's 

formula, two general relations known as power conservation (leading to the so- 

called 'Optical Theorem'), and reciprocity equations are obtained. Derivation 
for the 3-D case is discussed in Section 4. It is not so straightforward as could 
be expected. The reason is that the solution of the key problem of point-source 
radiation is not available explicitly in Fourier-transform domain. Nevertheless 
the Fredholm theory for operator equations enables us to arrive at the expres- 
sion sought. Power conservation and reciprocity relations are further obtained 

using the Lorentz Lemma for Maxwell equations. Section 5 deals with justifying 
the Limiting Absorption Principle. In Section 6, a review of relevant literature 
is given, and an illustrative numerical example is presented. Section 7 gives an 

insight to extending the results to more complicated and realistic geometries, and 
to some modifications needed when analyzing the junctions of open waveguides. 

In the following treatment, time dependence is suppressed throughout the anal- 

ysis. 

2. THE CASE OF IMPEDANCE PLANE AS A SINGLE-MODE 2-D OPEN WAVE- 
GUIDE 

Any element of the obstacle in a waveguide can be viewed as a secondary radiating 
source induced by the incident field. Thus, it is evident that when analyzing far- 
field behaviour, the key problem is that of point-source radiation in a regular 
guide. Let us start from a 2-D case and consider the simplest open-waveguide 
model available. Assume that a magnetic line-source is positioned at = (0, y') 
in lossless halfspace D+ = {y > 0) (see Fig. 1) bounded by the plane y = 0 at 
which an impedance type boundary condition is imposed: 

Thus the field function G(r) - Hx must solve the Helmholtz equation with Dirac- 
delta in the right-hand part, and (4). The condition at infinity, however, remains 

unspecified. 
Let us decompose the total field as a sum of a primary one GO, singular at 
= r*, and a secondary one G". To ensure approaching the correct limit when 

the boundary plane vanishes, we have to take the first term as the free-space 2-D 
Green's function 

Being independent of z , (4) offers a way to use integral Fourier transformation 
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in the z -domain, thus arriving at the representations 

where 9 = (k2 - h2)/2 , and similarly, 

Integral (6) is known as the Sommerfeld one, with the integrand being a two- 
valued function of h. The branch of g(h) is chosen so as to ensure the integration 
convergence, which implies Im > 0 , and is known as "proper" sheet, Chl . So, the 

branch cut from h = k goes up, while from h = -k down in Chl . The integration 
path C is composed of real h -axis sections and infinitesimal semicircles around 
the branchpoints, i.e., below h = k but above h = -k . 

Substituting (6) and (7) into the Helmholtz equation leads to a 1-D problem 
for Fourier-transform being subject to (4) and satisfying 

The general solution of (8) is known to be a linear combination of e+'gy and 
As both h and k are real, g can be either purely real or imaginary 

on C. However note that for Fourier-transform as a function of y we have 
no infinite boundary (i.e., one of the initial 'infinitives' is eliminated). So, to 

single out F(y, h), the conventional condition of radiation (1) for I h or the 
condition of decay for k, can be applied..That means we can request 

Then, from condition (4) at y = 0 we obtain an explicit solution for the 
transform function _ 

where 

Note that unlike the Fourier-transform of GO, that of G5c is a meromorphic 
function of h having a pair of symmetrical poles at h = fhp , where 

Provided that a is purely real (no losses), these poles lie on the path of integration 
C and must be bypassed. Actually this means that the Fourier transformation 
must be understood in a generalized way, and to the integrand must be added 
a Dirac-delta term at the pole. Bypassing is arranged along infinitesimal semi- 
circles again, however its direction may be arbitrary. Let us introduce a number 

y = such that y = 1 corresponds to bypassing the pole at h = hp from 

below, and 1= -1 from above (see Fig. 2). From the symmetry considerations 
it is clear that the pole at h = -hp is to be bypassed in the opposite direction. 
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Figure 1. Two-dimensional geometry of localized scatterers near an 

impedance plane. 

Figure 2. Complex h -plane and the contour of integration. 
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Another important observation reveals that the function (10) decays expo- 
nentially as I h oo in the "proper" sheet Ch . This offers a way of evaluating 
the integral (7) asymptotically through a contour-deformation technique provided 
that kr = k(z2+y2)1/2 is large enough. Introduce the observation angle 0 Such as 

y/z = tan 0. Deforming the path of integration to pass through the saddle-point 
h = k cos 0[=- hs] yields 

where IgD stands for the integral along the steepest-descent path. Here U( 0) = 1 
if 0 < Ocr or 0 otherwise, Ocr defined by = (1 + a2/k2)-l being the 

angle of pole interception. 
Note that the pole contribution depends on which pole is intercepted when 

deforming the path. This depends, obviously, on both the position of observation 

point with respect to the source, and on the direction of original bypassing the pole 
by C. Further derivation involves expanding the integrand in a power series at 
h = hs, and term-by-term integration in ISD. However the radius of convergence 
of this expansion is determined by the distance from hs to the nearest pole. That 
is why, strictly speaking, this procedure brings a result which is less accurate 
and even discontinuous within a certain angular sector of 0 variation. Rigorous 
analysis should be carried out by using the modified saddle-point technique [7]. 
However at infinity (r oo) this sector tends to zero [7], so asymptotically the 

ordinary saddle-point method is correct. Besides, the factor U(B) in (13) may be 

omitted, as at 0 > Ocr the pole contribution is exponentially small for r oo , 
and asymptotically it does not make any difference whether one takes account of 
it or not. 

Bearing this in mind, we collect the leading terms of asymptotics from both 
field terms to arrive at 

Note that the first term in (14) meets the Sommerfeld condition (1), while the 
second one violates it since it does not decay at z ::1:00, i.e., at r -+ oo , 0 = 0 
or 7r. Note also that R( 0) -+ -1 as 0 or 7r, so the first term vanishes at 

grazing directions. 

Strictly speaking, the above treatment is not valid at 0 = 0 or 7r where the 
saddle point hs = fk . Here another way of contour deformation is to be applied 

[8]. However the main terms of far field are contributed by the pole and the 

integrand expansion at the branch point h = fk . That is why the result is 

exactly the same as the limit of (14) at 0 0 or 

One can easily see that the function 

satisfies the homogeneous Helmholtz equation in D+ and (4). So, we conclude 
that the residue of F(y, y', h)eih' at h = fhp represents a natural guided mode 
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(eigenmode) of the impedance plane open waveguide. There is only one such a 

mode. Its field has surface character, decaying away from the boundary. Thus, 

along the waveguide, it is the guided mode which solely carries the power. 
Note that y has not been specified so far. Physical intuition gives a hint that 

one should take y = 1, to obtain surface-wave terms in (14) travelling from source 

to infinity. However, this conclusion may be arrived at quite formally. To show 

this let us apply Green's formula 

to the difference u = Gi - G2 [T SG] between any two solutions of the scattering 
problem, and its complex conjugate, i.e. v = u* , in a bounded domain D*. In 

the left-hand part we obtain identically zero. Now the trick is to take D* of 

appropriate shape, constructed of circular and straight parts as shown in Fig. 1. 

We expand D* to the whole D+ by letting z*, y* - oo but y*/z* - 0 (for 
example, take z* = y* 2 ), and make use of asymptotic expression (14). When 

integrating along the circular arc, it is only the first term in (14) that gives 
nonvanishing contribution, while at the straight parts of 8D* only the second, 
and cross-product terms vanish at 8D* - oo. Thus, the result is the expression 

which obviously leads to the conclusion that only for 'y = sign(hola) -- 1 do we 
have 0 and 8(30 = 0, i.e. a unique solution. 

Now, assume the scattered wave field to be produced by a collection of 
active or/and induced sources contained in a finite domain Do in D+ with a 

density p(r) (Fig. 1). Apply (17) to the functions H and G in oo to 
obtain 

If we subject now the field to the same condition at infinity as the Green's 
function G , the second term vanishes. Due to linear character of integration, the 
far field must behave asymptotically as 

3. EXTENSION TO MULTIMODE 2-D OPEN WAVEGUIDES 

Let us extend the treatment to multimode open waveguides of greater practical 
interest. Assume that there is a lossless layered dielectric slab D? of thickness 
2d and permittivity e(y) sandwiched between two lossless halfspaces D* with 

permittivities c± as in Fig. 3. Function E(y) is assumed to be of a step-constant 
type. 

Suppose there is a finite number of cylindrical inhomogeneities and sources 

placed in parallel to the z -axis. With respect to this axis, any electromagnetic 
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field can be decomposed into E and H-polarized ones. They may be completely 
characterized by either Ex or Hz components, and are treatable separately. 

We start from the problem of seeking the E and H-type Green's functions of 
the slab. Using Fourier-transform in z -domain, we can reduce it to 1-D problem 
for ordinary differential equation like (8) but with a step-constant coefficient. 

Subjecting its general solution to boundary conditions and condition like (9) off 

De we can obtain the Fourier-transform explicitly, as a meromorphic function of 
h on the four-sheet Riemann surface of g+(h) + g- (h), where 9l = 

F(v, v', h) 
1 

(21) 

Here, expression D(h) = 0 stands for eigenvalue (dispersion) equation, the 
residues of (21) solving a source-free problem. All the poles of F(h) are known to 
be simple and have no accumulation points. The "proper" sheet Chl is defined 

by assuming Img+ > 0, lmg- > 0, transform (21) being a decaying function of 

lhl - oo in I < 

Figure 3. Two-dimensional geometry for a dielectric slab open-waveguide 
scattering. 
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At any fixed frequency the slab is known to support a finite number Q > 1 of 
natural modes of TE and TM type, nondecaying along the z -axis, namely 

where hp : k in f < hp < k supe and Vp(y) are the proper real eigenvalues (simple 
real zeros of D(h) in Ch ) and eigenfunctions of the cross-sectional problem. 
These functions decay away from the slab according to (9), and are known to 

satisfy the orthogonality relation 

where NP is the norm of the mode, and the weight function w(y) is 1 for TE 

modes and E-l(y) for TM modes. To prove this relation, it is enough to use 
the Green's formula (17) with weight zv(y) for functions Vp, Vq in a rectangular 
domain, and pass to a limit y* - oo. 

Assume that there is no pole at a branch point, i.e. hp # for any p. Re- 

tracing all the derivations from the impedance-plane case and taking into account 

(23), we come to a generalized 2-D condition of radiation 

Here, Iq = One can see from (23) that at least while e(y) > 0 (which 
covers true dielectrics and some models of plasma media), > 0, so qq = 1 
for all modes of both types. In other words (24) has the same meaning as the 
Sommerfeld condition: `In the scattered field, only outgoing waves exist'. However 
the field may now contain nonuniform plane waves, i.e. proper natural (guided) 
modes besides a cylindrical wave. One should note that unlike the case of the 

impedance plane, the slab waveguide Green function transform has also complex 
poles hm (zeros of D(h) ). Actually, there exists an infinite number of poles in the 

"improper" sheets travelling towards ±k± as the frequency is increasing. 
However, they give either exponentially small contribution at large r (as for a 

leaky-wave pole trapped within a certain angular sector of 0), or even (as for a 
so-called open-mode pole in the real axis of the "improper" sheet, never trapped 
by contour deformation) negligible at r > 10/?kcosB - independently of 0 

(see [1,7]). 
It can be shown that is formed by a product of sin 6 , and a function 

nonvanishing at B 0 or 7r. So, the far field pattern always has nulls at grazing 
directions, the power being carried by the guided field. 

Now assume that the p-th guided natural mode is incident from x = ±00 
on a localized irregularity inside or near the slab. Let us obtain the relation for 

power conservation. To this end use (17) again, with weight w(y), apply it to 
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the functions U = Up + Use and U* within appropriate domain 00 (see 
Fig. 3), and take account of far-field behaviour (24) and orthogonality (23). For 

convenience, we replace here f3t by Tqp - bqp , and #j by Rqp, as they stand 
now for mode conversion coefficients. After integrating we obtain 

where 

stands for the scattering cross-section of the obstacle. Index p attached to mode 

amplitudes and far-field patterns recalls that these quantities depend on the type 
of the incident mode. 

The other relation of interest is reciprocity which couples mode conversion co- 
efficients for two mirror-opposite positions of the obstacle. Let us use the Green's 
formula once more, for the functions U+ = Up + Usc+ and U- = U-q + Usc- . 

Following a procedure similar to the previous one, we arrive at the expression 

Note that setting p = q we conclude that the transmission, i.e., the amplitude 
and phase of the incident mode in forward direction, does not depend at which 
end of the inhomogeneous section is the input. 

4. SCATTERING IN 3-D OPEN WAVEGUIDES OF FINITE CROSS-SECTION 

In 3-D electromagnetic scattering from finite objects, the vector analog of Som- 
merfeld's radiation condition (1) is known as Silver-Muller condition after [9]. 
Although being referred to in a number of papers on open waveguides, it obvi- 

ously fails here because guided field (even the longitudinal components) does not 

decay along the guide axis. 
Consider now a model of 3-D open waveguide formed by a finite number of 

infinite but regular dielectric rods D x z placed in lossless free space, as shown in 

Fig. 4. An observation point is characterized by the vector R = (F, z). Permit- 

tivity e(F) is again assumed to be a step-constant function of cross-section (but 
not z ), equal to 1 outside the guiding region D. Cross-sectional contour 8D is 

supposed to be a simple smooth curve. 
As before, the key problem is associated with time-harmonic point-source ex- 

citation. Depending on the type of source (electric or magnetic) we introduce two 

6-component Green's functions On 

determining these vector-functions, one can obtain the dyadic Green's function of 

the open waveguide. Functions fl',' are singular at R = (r', 0) , and 

satisfy Maxwell's equations with continuity conditions at the surface of a guiding 
region. Our aim is to obtain a 3-D counterpart of expression (24). 

However, an attempt to follow the 2-D case faces the problem that Green's 
functions are not available explicitly. Indeed, we may still use Fourier-transform 
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in z-domain. More accurately, it is enough to assume that GQ(R),(a = e, m) 
exists and increases with Izl oo no more rapidly than some power of Izl, to 

be sure that the Fourier-transform 

exists as a function of h, at least in the sense of distributions. The latter remark 

means that it may have pole singularities at the integration path of the inverse 

transform, i.e., on the real h -axis. Thus the integration in 

is actually to be performed in a generalized sense, along contour C bypassing the 

poles. 
To analyze far-field behaviour, we need certain properties of the integrand of 

(29) to hold, namely, it must be at most a meromorphic function decaying at 

Ihl oo in a "proper" sheet of the domain of analytic continuation. Before, in 

the 2-D case, these properties were evident, now we must prove them. 

Figure 4. Three-dimensional geometry for a dielectric core open-waveguide 
scattering. 
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The functions (ja, Va satisfy a boundary-value problem for reduced harmonic 
Maxwell equations in the plane of cross-section. These equations can be combined 
in known ways to produce 2-D Helmholtz ones, with the operator V2 + k2f(r) - 
h2. The most important point for us is that the cross-sectional problem is of 
conventional diffraction-theory type, as it does not involve any infinite boundary. 
Thus the unique solution may be extracted by the 2-D Sommerfeld condition of 
radiation if lhl < k, or the condition of decay if Ihl > k. Combining these two 

cases, we can follow Reichardt [10] and request 

to be valid uniformly for all 0, where cylindrical coordinates (r, have the 

origin on the axis of circular cylinder of radius a containing all the elements of 
the guide, and g2 = k2 - h2 . 

Expression 
(30) 

is based, of course, on the fact that the 2-D Green's function 
is given by G° (5), and the addition theorems for cylindrical functions. What 
is remarkable, is that it serves as analytic continuation of (1) at v = 2 to all 

complex g [10]. It also reveals that the domain of analytic continuation of the 
Fourier-transform is more complicated than in the case of 2-D open waveguides. 
Now it is a set in the Riemann surface of the function Ln(k - h)(k - h). The 
latter has two branch points h = tk of logarithmic type, and an infinite number 
of complex sheets. The "proper" one is specified by conditions < 

arg -y(h) < Img(h) > 0, while the "conjugate improper" sheet C02 differs 

by a request that Im g(h) < 0, and other "improper" ones 0 by 
adding 2?rn to arg g(h). 

Further treatment is based on two fundamental results. 

First, Green's functions' Fourier-transforms h), (a = e, m) do exist 
as unique functions of h at Ihl < k, argg(h) = 0, 7r. Moreover, they may be 
continued analytically onto the whole "proper" sheet Col and onto all the other 

"improper" sheets of the Ln(k - h)(k + h), except for a discrete set of poles. 
The latters are of finite multiplicity and have the only point of accumulation at 

infinity. Besides, < Ce-Imgr as lhl - oo in Col. 
Second, the residues at these complex poles do solve a source-free problem, and 

hence represent generalized natural guided modes of the open waveguide, i.e., 

for a simple pole. In the case of an m th-order pole, the residue extracting pro- 
cedure, besides of a natural mode, results in a finite chain of associated guided 
modes (see a remark before (28)) 

The proof involves reducing the 2-D problem for Fourier transforms to a set 
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of the Fredholm 2-nd kind integral equations over the contour aD, with smooth 

enough kernels. The latters are of Muller's type [9], i.e., depend on combinations 

of two free-space Green's functions: G°(g) and = k2e - h2. We do 

not write this set here to save the space but note that in operator notation, it 

can be written as a regularized equation [I + T(h)] X = XO, in the Hilbert space 
of L2(8D) . Here X stands for a vector of four boundary values of transformed 

tangential field components, I is identity operator, and T(h) is a compact oper- 
ator. 

Studying the analytic properties of operator T(h) and taking account its in- 

vertibility for Ihl <  k in the real h -axis of Chl, we arrive at the final result, 

guided by the operator Fredholm theorems of Steinberg [11]. 
Further investigation reveals that real poles on CR1 can exist (actually, do 

exist) only if all the guide's elements are lossless, i.e. Ine = 0, and Re e > 1. Due 

to the discreteness, corresponding wavenumbers hp form a finite set at the interval 

k < lhl < ksupe. Such poles represent proper natural (guided) modes with fields 

decaying exponentially outside the guide, as it is clear from (30). Guided modes 

are known to be orthogonal in the cross-section, that is 

where the number N,2 is the norm of the mode. For other (complex) modes with 

hm E CR1 this number is identically zero. The proof is based on Green's vector 
formula (known also as the Lorentz Lemma in the theory of Maxwell equations), 

applied to functions Wq, WP in a circular cylinder of radius r* - oo , terminated 

by two planes normal to the z -axis. 
These properties of Green's functions' Fourier transforms, and of guided modes, 

enable one to arrive at a final expression very similar to (14) but in 3-D space. 
Further, it is due to this expression that for any two fields the far-zone integration 
gives a vanishing result: 

So, provided that all guided-mode poles are simple and lie off the branch points, 
the 3-D condition of radiation for a scattered field is obtained 
as 

where again yq = 
sign(N2 P)' 

' ' 

To prove uniqueness, one should apply formula (34) to the difference between 

any two solutions, in a finite domain V* - oo bounded by a closed spherical- 
terminated surface S* as shown in Fig.4. Again the passing to the limit is ar- 

ranged so that R*, r* - oo but r* /R* - 0 . 
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Note, however, that now the numbers Nq are not always positive, even if 
e > 0, hence Îq are not necessarily equal to 1. As a matter of fact, there exist 

examples of backward-power-carrying modes on 3-D dielectric waveguides. Any 
such a mode can be only a hybrid one (neither TE nor TM). So, the condition 
of radiation (36) has a more general meaning than (1), namely, `In the scattered 

field, only waves carrying power to infinity exiqt'. 

Suppose now there is a localized irregularity in an open 3-D waveguide, and a 

guided natural mode of p-th number is incident from z = +00. In this case we 

replace in (36) coefficients of mode excitation by mode conversion coefficients 

Tqp-6qp, Rqp. Now we use again the Lorentz Lemma in Tr* - oo , for the function 

W = Wp+ WSC and its complex conjugate, or for the functions = 

and W- = W + wsc- , to arrive at the following expressions, respectively 

where the scattering cross-section is given by 

and 

These expressions serve as 3-D counterparts of equations (25)-(27). However, 
they need certain alterations if an associated guided mode (due to a multiple pole) 
exists. 

5. ON THE PRINCIPLE OF LIMITING ABSORPTION 

As it was pointed out before, the Limiting Absorption Principle (3) must be 

separately justified for open waveguide scattering. Its validity follows neither 
from free-space nor from closed-waveguide scattering treatments. 

The clue lies in studying the analytic properties of poles hq(k, e) of the Green's 
function transform as functions of wavenumber k or permittivity e. Again, in 
2-D case the transforms are available explicitly, therefore below we consider the 
more difficult case of the 3-D arbitrary dielectric rod of Section 4. 

Assume that = k + ik, k > 0 . Integral equations identical to the lossless case 
can be obtained again, but now with a complex k'. However, using formula (34), 
it can be verified that now all the poles of the transform functions in Chl are 

complex. The theory developed above gets simpler as no guided-mode residues 

appear. Further, Steinberg's theorems [11] enable us to conclude that the poles 

hp(k') are analytic functions of k', except the values where the poles coalesce. 

It means that the limit of Ah/Ak' at Ak' = ik 0 exists at any point of 

analyticity, and does not depend on In other words there exists a real 
number vp - known as group velocity. Formula (34) applied to a 

particular mode Wp having hp E reveals that, for poles approaching the 
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real h -axis at k - 0, 

otherwise vp - 0 . 

Expression (40) shows that if k +0 the poles forming the set of guided 
modes in the lossless limit, they deform the inverse Fourier-transform integration 
contour C in exactly the same manner as required by the condition of radiation 

(36). Further, Green's formula offers a way to show that no real value of k can 

be an eigenvalue of Maxwell's equations. This is enough to validate the Limiting 
Absorption Principle and its equivalence to the Principle of Radiation realized in 

terms of power flow. 
A similar treatment can be developed for the parameter e instead of k. It is 

worth to note that based on (40) and its counterpart for dhp/de, one comes to 

the conclusion that 

This observation removes the problem of interpretation of the radiation condition 

(36), for a linear problem, in terms of nonlinear quantities Np2. 

6. DISCUSSION AND NUMERICAL EXAMPLE 

From a practical viewpoint, the relations obtained serve as convenient tools for 

checking the correctness of the approach and the accuracy of computations. What 
is important is that they are valid for an arbitrary open waveguide containing 
arbitrary discontinuity of a compact nature. Indeed, our derivations involved 

only those equations which specify field behaviour far from the irregular part of 
the guide. 

In addition, they can help to reduce the volume of computations in certain 
situations. For example, if the problem of finding the transmission coefficients for 
all Q modes propagating in -f-z direction has been solved, then similar quan- 
tities for propagation in -z direction are also known automatically from (39). 
Furthermore, (37) can be used to determine the scattering losses characterized 

by without integrating the far-field pattern, provided that mode conversion 
coefficients have been calculated. 

The power conservation equation may also be transformed into the so-called 

Optical Theorem. The latter was first discovered in free-space scattering of plane 
waves from localized obstacles (for a simple derivation based on the condition (1) 
see [12], p.98). For the scattering from an obstacle in a closed conducting-wall 
waveguide the power conservation relation differs from (37) by the absence of the 
last term, i.e., the radiation term. One can easily extract from it the value of 
"extinction" due to the presence of the scatterer 

As for open waveguides, although the modified condition like (36) was first 
discussed in [4], the power conservation equation had been in use before, based of 
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physical intuition. Thus, for impedance plane and slab scattering it was treated in 

[13,14], and for a circular fiber in [15], respectively. For grounded-slab geometry 
and under TE mode incidence this relation was derived also in [16] in a more 

regular way based on the discrete+continuous -spectrum representation. However, 
the approach of [16] fails in the general 3-D case because it lacks a rigorous 
procedure of obtaining continuous spectrum eigenmodes. Morita [17] was the 
first to transform the power conservation relation into the Optical Theorem, that 
is the same as (42) but with replaced by After (37) it is clear that 
this result is true under the assumption that all the guided modes are forward- 

power-carrying ones. 
The reciprocity relation for 2-D open waveguides was used by Tanaka, et al., in 

[18], based on physical intuition. Probably, the correct proof was first reported in 

[5] (see also [19]). Again, it has a well-known analogue in free-space diffraction: the 
forward scattering amplitude is the same for two mirror directions of plane wave 
incidence (see [12], p.102). In closed-waveguide scattering, a similar property is 
even more obvious, but a correct proof needs the condition (2) plus orthogonality 
of modes. 

The reciprocity has a remarkable consequence for scatterers having a plane 
of symmetry. Assume a to be the angle between the plane of symmetry and 
the cross-sectional plane of the waveguide. Then obviously Tj 

= and 

from (39) it follows that one must have T¡;t( 0:) 
= unlike the rest mode 

conversion coefficients at +a and -a. 
A note should be made on the comparison between open and closed waveguides. 

In the latter case one can easily combine power conservation and reciprocity rela- 
tions and conclude that in a closed single-mode waveguide not only the transmis- 
sion but also the absolute value of reflection is the same for two opposite directions 
of mode incidence. In an open waveguide this is not the case. 

As an example, let us consider the scattering of a TMp (p = 0,1,...) guided 
mode of a dielectric slab waveguide caused by a circularly curved perfectly con- 

ducting screen (Fig. 5). The corresponding problem is obviously H-polarized. The 
accurate approach to solving such problems was reviewed in [19]. It is based on us- 

ing the Green's function of the slab, reducing the problem to dual series equations, 
and applying the partial inversion procedure. The resulting matrix equation is of 
the Fredholm 2-nd kind, and can be solved numerically to any desired accuracy. 

Fig. 6 shows the dependences of mode conversion coefficients on the relative 
radius a/d of the screen placed at the center of the two-mode slab. The reso- 
nant phenomena observed are due to excitation of the screen's damped natural 
oscillations. The resonance at a/d m 0.16 corresponds to 0.36 and is as- 
sociated with so-called low-frequency, or the Helmholtz, mode Hpp (see [19]), for 
which k2a2e m _1/21n-1 cos(8/2) . As the screen is positioned symmetrically 
with respect to the slab's interfaces, the even and odd guided modes excite sep- 
arate splitted families of the screen's resonances. They are Hoo, H i, H2+1 ..., or 

depending on the even/odd nature of the incident mode. 
Note that unlike the transmission, the reflection coefficient exhibits quite a 

different behaviour for two mirror-opposite positions of the screen. More numer- 
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ical results on this problem and similar ones concerning finite periodic gratings 
of screens in a slab may be found in [20,21]. Actual agreement between [ 

and 
[2£ I (i.e., the reciprocity) was within 7 and more digits in that analysis. Of 

course, this was achieved due to analytical inversion of a part of the dual series op- 
erator. Another example can be found in [18], where the domain integral equation 
with extracted guided-mode contribution was applied to study a slab waveguide 

branching. The power conservation relation was satisfied within 3 digits while 

reciprocity was satisfied within only 1 digit. This forced the authors to conclude 

about the necessity of improving the MoM-based numerical algorithm. So, the 

check of reciprocity seems to be more fine than that of power conservation. That 

is why 3-4 digits for the latter achieved in [17] may be not quite enough for vali- 

dating the results. However, the reciprocity test cannot be used for symmetrical 
discontinuities. 

Another important note should be made about the fact that both power con- 

servation and reciprocity are necessary but not sufficient, as they have far-field 

nature. Sufficiency test can be performed only by checking the accuracy of satis- 

fying the near-field boundary conditions. 

Figure 5. A particular 2-D geometry for a circular screen inside a dielectric 
slab. One of the natural guided modes is incident. 
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Figure 6. Amplitudes of the scattered field coefficients for a cavity shaped 
screen inside the two-mode slab. Incident mode is travelling 
either in the positive or negative z -direction. kd = 2.3, e = 

2.25, b = 0,0 = 
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7. ON THE EXTENSION TO MORE COMPLICATED OPEN WAVEGUIDES 

1) Cross-sectionally nonhomogeneous dielectric waveguides. As it has been demon- 

strated in Section 4 for 3-D dielectric guides of step-constant e , a rigorous far-field 

analysis is ensured by reducing the key problem to a M311er-type contour integral 
equation, i.e., a regularized operator equation. A similar technique involving do- 

main integral equations was developed in [22] for treating 2-D and 3-D waveguides 
with parameters being functions of the cross-section (Fig. 7a). 

Provided that the function e(r) is continuously differentiable, = 1 
F-aD 

(i.e., there is no sharp boundary), and strictly positive, a Muller-type integral 
equation within D, with a weakly-singular kernel is obtained. Thus, it forms a 

Fredholm 2-nd kind operator equation in the Hilbert space L2(D) . As the kernel 

is an analytic function of wavenumber h in the Riemann surface of same function 

Ln g(h) as before, the whole theory developed above is valid here as well, resulting 
in identical expressions for the far field behaviour. 

The prerequisite of the absence of sharp boundary seems to not be critical, due 

to a recent analysis of Viola and Nyquist [23]. 

2 ) Combined metal-dielectric waveguides. The next step is to treat open waveg- 
uides composed of both dielectric and metal rods and/or zero-thickness surfaces 

(strips) of finite cross-section (see Fig. 7b). The corresponding analysis done 

in [22] reveals that regularized integral equations in L2(aD) or L2(D) may be 
obtained in a similar way. However, the kernels of these equations are now de- 

termined not by free-space Green's function but by certain Dirichlet 

and Neumann-type Green's functions G E(F, r', g), g). The latter corre- 

spond to free-space 2-D problems of a line-source excitation of a metal structure 
obtained by setting 1. 

After Muller [9] and Reichardt [10], for smooth bodies, GE(g), G H(g) are 
known to exist in the Riemann surface of Ln g , like Gp(g) . What is different, is 
that they are no more holomorphic functions but meromorphic ones, i.e. they have 

a discrete set of poles, of finite multiplicity. However, this is quite enough to use 

operator Fredholm theorems of [11] and arrive at the previous principal results. 

Moreover, after Muravei [24] the same properties are justified for the Green's 
function of 2-D problem of the 3-rd kind. It means that impedance boundary 
condition does not change anything essential. Finally, Sukhinin [25] had proved 
that the functions GE(g), G H(g) have the same features on the sheets of Ln g 
in the 2-D problem associated with a finite number of smooth open curves (zero- 
thickness scatterers). 

So, expressions (36)-(39) obtained above are valid for all open waveguides of fi- 
nite cross-section shown in Fig. 6b. In [22], this gave a ground for a study of modal 

propagation and excitation in microstrip/slot lines on circular and circularly- 
wrapped substrates. 

3) 3-D waveguides of infinite cross-section. Such waveguides as open mi- 

crostrip/slot lines on infinite substrates (Fig. 7c) can be treated by using the 
double Fourier transformation in space domain [23]. In this case the structure 
of guided field is more complicated as the substrate itself may support a number 
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of guided modes, nondecaying in any lateral direction. Then, under a localized 

excitation, these latter contribute to plane-cylindrical waves, so 

Corresponding modifications should be made in the power conservation and 

reciprocity relations, due to the presence of the last term in (43). The domain 

D* involved in the derivations is of more complicated shape than in the previous 
case, being bounded by a spherical surface terminated by two planes normal to 
the z -axis and also by a circular cylindrical one normal to the substrate plane. 

Junctions of open waveguides. Bends, or more generally, branchings of 

open waveguides constitute a practically important class of models of irregular 
waveguides. They may be considered as compositions of a finite number of semi- 
infinite guides, so the result is obviously the superposition of expressions like (36) 
for each particular guide. For example, in case of 2-D bend or M-branching (see 
Fig. 7d), excited by the p-th guided mode from the j -th branch, the far field 
behaviour is given by 

Domain D* involved in the proof of uniqueness and derivations of power con- 
servation and reciprocity relations, must be tailored to suit the branching geom- 
etry. So, it is to be bounded by a circular curve terminated by M straight lines 
normal to each branch. Note that due to the Green's function behaviour, far-field 

scattering have nulls in grazing directions along every branch PJ 
of the junction. 

Power conservation and reciprocity relations now take account of several chan- 
nels carrying power to infinity. 

5) 2-D periodic open waveguides. Let us now discuss a relative class of problems 
associated with not regular but regularly-periodic (with period I along z -axis) 
open waveguides. Such a guide can be formed by any periodic grating, such as 

grooves in a substrate, parallel bars, periodic material interfaces, etc. (Fig. 7e). 
Of course, whether or not such a guide can support any nondecaying mode of 

propagation across the grooves or bars, depends on the parameters of the par- 
ticular problem. However, in principle, they can [26]. As it was pointed out in 
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[19], this fact must be taken into account when studying the problems of wave 

scattering from localized objects near a grating. Of course, the analysis can be 

partially simplified by assuming that the medium housing the scatterer, or the 

grating itself, is lossy and therefore no nondecaying guided mode can exist. This 

assumption was used, e.g., in [27] to treat a circular cylinder over a lossy sinu- 

soidal halfspace. Besides, certain types of gratings, like a flat perfectly-conducting 
strip grating in free space, do not support guided waves at all. Such kind of struc- 

ture was considered in the papers [28-30] on modeling open resonators formed by 
curved screens and strip gratings. In both cases this is enough to validate the 

use of the Sommerfeld radiation condition. However, if it is a guided mode itself 

which is incident from infinity along the grating, one must modify this condition 

to ensure uniqueness. 
The treatment is similar to that used for regular open waveguides. The needed 

modifications include the generalized integral transformation of the Fourier type, 
but with transform function F(h) periodically dependent on z, z'. This function 
is not available explicitly, like for regular dielectric-layered structure of Section 

3. However, due to the validity of the Floquet expansions, for many particular 

gratings it may be reduced to the Fredholm matrix equations of the 2-nd kind. 
For example, this is true for gratings of plane strips on stratified substrates, of 
circular and polygonal bars, of echelette type, and others. Then, once more, the 

operator theory may be applied (see [31] ) resulting in far field behaviour similar 
to (24). One important difference appears in the nature of analytic continuation 
of transform functions: the complex domain is here more complicated. It is the 

00 

Riemann surface of the function L gn(h), with g2 = k2 - (h + 
n=-oo 

having infinite number of square-root branching points. 

6)3-D periodic open waveguides. Example of such kind of a waveguide is given 
by a periodic structure of metallic circular rings, a helical metal strip on a di- 
electric core, etc. (see Fig. 7f). Excitation of these waveguides by point sources 
was treated in a mathematically rigorous manner by Sologub [32], assuming a 

lossy surrounding medium. However, if considering the problems of guided mode 
conversion and scattering from localized obstacles, one should again modify the 
radiation condition at infinity. A thorough investigation reveals that transform 
functions are to be studied in the even more complicated Riemann surface of 

00 

Ln gn(h) . However, in this surface their analytic properties are essentially 
n=-oo 
the same as for regular guides, so the corresponding expressions (36)-(39) are still 
valid. 
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Figure 7. Examples of more complicated open waveguides containing lo- 
calized inhomogeneities 
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