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Abstract

Background: The scattering of H- and E-polarized plane waves by a two-dimensional (2-D) parabolic reflector
made of graphene and placed in the free space is studied numerically.

Methods: To obtain accurate results we use the Method of Analytical Regularization.

Results: The total scattering cross-section and the absorption cross-section are computed, together with the field
magnitude in the geometrical focus of reflector. The surface plasmon resonances are observed in the H-case. The focusing
ability of the reflector is studied in dependence of graphene’s chemical potential, frequency, and reflector’s depth.

Conclusions: It is found that there exists an optimal range of frequencies where the focusing ability reaches maximum
values. The reason is the quick degradation of graphene’s surface conductivity with frequency.
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Background
Graphene, which is a monolayer (1 nm) or a very thin
(2-3 nm) stack of a few layers of graphite ([1–3], see
Fig. 1-c in [3]), is a non-conventional material famous
for being electrically conductive, mechanically strong
and optically transparent. Due to the inductive nature of
the associated complex-valued surface impedance, it can
support the Surface Plasmon (SP) wave [1]. This wave
can be strongly reflected back from the edges of pat-
terned graphene so that natural SP modes (standing
waves) can occur, in the Fabry-Perot type manner. This
phenomenon has been observed at the frequencies vary-
ing from the infrared for the nano-size flat graphene
samples [3] to the THz range for the micro-size ones [2].
It is already exploited in the nanosensor devices [3, 4].
Important feature of graphene is that its conductivity can

be controlled by applying an external electrostatic biasing
field which modifies graphene’s chemical potential. Usually
this requires a dielectric substrate although suspended gra-
phene is also realizable [5]. Therefore in the modeling, one
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can consider a curved graphene strip located in the free
space, and assume that the d-c bias is still present. Note also
that the edge effects become important only if a graphene
strip width is smaller than 100 nm. For wider strips one can
disregard the edge effects and use the electron conductivity
model developed for infinite graphene layer. In the THz
range this requirement is well satisfied for micro-size strips.
One of the interesting questions in this area is how well

the THz wave can be focused with a curved reflector made
of graphene. The goal of this paper is to answer this question
for a 2-D parabolic reflector as depicted in Fig. 1. We per-
form such a study using the electromagnetic boundary value
problem (BVP), which includes the resistive-sheet boundary
condition originally derived for thinner-than-skindepth
imperfect (partially transparent) metal layers [6, 7].
We consider both the H- and the E-polarization cases

where electric field is in the plane of reflector’s cross-
section and in parallel to reflector, respectively. It should
be noted that, similarly to the full-wave modeling of
perfectly electrically conducting (PEC) reflectors, finite-
difference time-domain method can be considered as one
of possible computational instruments. However it leads
to huge number of unknowns due to the discretization of
large physical domain and also has a disadvantage in the
is distributed under the terms of the Creative Commons Attribution 4.0
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e appropriate credit to the original author(s) and the source, provide a link to
changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s41476-017-0041-0&domain=pdf
mailto:anosich@yahoo.com
http://creativecommons.org/licenses/by/4.0/


Fig. 1 Cross-sectional geometry of a parabolic graphene reflector in the free space, illuminated with a plane wave
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inability to satisfy the far field radiation condition. The
method of moments (MoM) procedure can be also ap-
plied to treat singular integral equations (SIE) derived for
arbitrary reflectors. However conventional MoM with
local basis and testing functions has overall accuracy at
the level of 2-3 digits even when treating the medium size
reflectors (10 wavelengths). If better accuracy is needed or
larger reflectors are interested in, one hits non-realistic
computation times or complete failure of the code be-
cause of the quick growth of the matrix condition number.
Another alternative is the high frequency techniques like
geometrical and physical optics, which work much faster
however do not produce accurate full-wave results.
All mentioned above is especially important in the case of

H-polarization where the associated SIE has hyper-type sin-
gularity. Attractive way out of that pitfall is offered by the
method of analytical regularization (MAR) [8]. With MAR,
the kernel of the associated SIE for the current on the re-
flector is presented as a sum of two parts, a more singular
part (usually static) and a remainder. Then the more singu-
lar part is analytically inverted by using some special tech-
nique like the Riemann-Hilbert Problem (RHP) method [7,
9, 10]. The remainder leads to the Fredholm second-kind
matrix equation that provides a convergent numerical solu-
tion. The same can be achieved by choosing the global ex-
pansion functions that are orthogonal eigenfunctions of the
hyper-singular part of SIE operator and using them in a
MoM-like Galerkin projection algorithm [11]. In either case
the SIE-MAR technique enables accurate and economic
full-wave analysis of electromagnetic scattering problems for
both PEC and imperfect reflectors. For instance, in [9], the
H-wave scattering and the focusing were studied for the re-
sistive 2-D reflectors having elliptical contours.
In the E-polarization case, the associated SIE has a

logarithmically singular kernel [12] and hence is already
a Fredholm second kind equation. This guarantees
convergence of discretization schemes. Still projecting it
on the set of entire-domain expansion functions brings
additional advantages and makes the resulting numerical
algorithm more economic. The E-polarized beam scat-
tering and collimation by parabolic resistive reflectors
was analyzed in this manner in [12].
Note that the scattering and absorption of THz waves by

a single flat graphene strip and finite graphene-strip grat-
ings was reduced to SIE and its Nystrom type solution was
built in [13, 14]. Infinite graphene-strip grating in the free
space was also studied by the MAR-RHP technique in [10].
In these works, the field characteristics were investigated
as a function of graphene and grating parameters showing
the presence of SP resonances. In more recent works [4,
15], the bulk refractive index sensitivities of the THz range
SP resonances were studied for a micro-size graphene strip
and a dielectric tube covered with graphene, respectively.
Following the mentioned and other works, we simulate

graphene with the aid of the resistive-sheet boundary con-
dition together with the Kubo formula for the graphene
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electron conductivity. We derive a corresponding SIE
from the electromagnetic BVP and solve it using the
RHP-based MAR solution. This type of algorithm
provides us accurate data for the quantifications of the
scattering, absorption and focusing characteristics. As a
result, we obtain the frequency scans of the total scatter-
ing and absorption cross sections (TSCS and ACS) of a
2-D parabolic graphene reflector and in the H-case iden-
tify the SP resonances. Then we perform a study of the
focusing ability of such a curved strip as a 2-D reflector
for various graphene parameters.
Preliminary results of such analysis were reported at a

conference [16]; here we present new and more
complete numerical study and obtain better insight into
the studied effects.

Methods
The problem geometry of a 2-D parabolic graphene re-
flector frontally illuminated by a plane wave is presented
in Fig. 1. Reflector’s contour M is defined as a finite
parabolic profile. An auxiliary closed contour denoted as
C is the contour M completed with the circular arc S,
which must have the same curvature as the reflector at
the latter’s edge points. Such a smooth contour C is
necessary for obtaining the regularized (i.e. Fredholm
second kind) matrix equation - see [9, 12].
The rigorous formulation of the considered BVP

involves the Helmholtz equation, the Sommerfeld radi-
ation condition far from the reflector, the resistive
boundary condition on M, and an edge condition such
that the field power is limited in any finite domain
around the reflector edge. Collectively, these conditions
guarantee the uniqueness of the problem solution.
The resistive boundary condition on a zero-thickness

sheet is a well-established model of a thin penetrable sheet,
e.g. a metal thinner than skin depth or a very thin dielectric
layer. In view of “atomic” thickness of graphene, the same
boundary condition can also be used for a flat or curved
graphene surface, avoiding introduction the thickness of
graphene of 2-3 nm that generates meshing troubles in the
use of purely numerical codes like COMSOL. It can be
written as the following two equations valid at r!∈M:

E
!þ

tan þ E
!−

tan

� �
=2 ¼ Z n!� H

!þ
tan−H

!−

tan

� �
; E
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tan ¼ E
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where the subscript “tan” indicates the tangential field, the
superscripts “- “ and “+” relate to the front and back faces
of reflector, respectively, and n! is understood as the unit
vector normal to the concave side of reflector. The jump in
the tangential magnetic field, J

!¼ H
!þ

tan−H
!−

tan, is unknown
function of the electric surface-current density, and the co-
efficient Z is graphene’s surface impedance [1–5].
Note also that the surface impedance is related to the
graphene surface electron conductivity σ as Z = 1/σ, and
the conductivity can be found as the Kubo sum of intra-
band and interband contributions [1–6]. As condition
(1) was derived for infinite planar layer, in the modeling
of the wave-scattering by finite surfaces it must be com-
bined with the edge condition to provide the uniqueness
of the BVP solution.
In the H-wave case, on using the boundary condition

(1) we obtain a hyper-singular SIE for the surface
current Jt on the reflector. On integrating by parts, it
can be cast to the following form:
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where the 2-D Green’s function G is a Hankel function
of zero order and first kind satisfying the radiation con-

dition, i.e. G r!; r!0� �
¼ i=4ð ÞH0 1ð Þ koRð Þ , R ¼ r!− r!0���

��� ,
and the angle ξ(φ) is between the normal on M and the
x-direction.
Now, we assume that the curve M can be character-

ized with the aid of the parametric equations x = x(φ), y
= y(φ), where 0 ≤ |φ| ≤ θ, in terms of the polar angle, φ.
Besides, we denote the differential length in the tangen-
tial direction at any point on M as ∂l = aβ(φ)∂φ. We
introduce also a function β(φ) = r(φ)/[a cos γ(φ)], where
γ(φ) is the angle between the normal on M and the
radial direction. Then we extend the surface-current
density Jt with zero value to arc S and cast IE (2) to a
dual equation on the arcs S and M [9].
To continue with the MAR, we add and subtract, from

the integral kernels in (2), similar functions at a full
circular contour of the same radius as S. The latter oper-
ators can be inverted analytically while the remaining
ones have smooth kernels,

A φ;φ0ð Þ ¼ H 1ð Þ
0 kRð Þ−H 1ð Þ

0 2ka sin φ−φ0j j=2ð Þ½ �; ð3Þ

B φ;φ0ð Þ ¼ cos ξ φð Þ−ξ φ0ð Þ½ �β φð Þβ φ0ð ÞH0
1ð Þ k r! φð Þ− r!0

φ0ð Þ
���

���
h i

−β2 φð ÞH 1ð Þ
0 2ka sin φ−φ0j j=2ð Þ½ �

ð4Þ
For the inversion of the singular operators, all func-

tions including the incident field should be expanded in
terms of the Fourier series in φ. Note that the functions



Fig. 2 H-case: Wave scattering and absorption by parabolic graphene
reflectors versus the frequency in the THz range, for small-size reflector,
d = 200 μm (a) and medium-size reflector, d = 1000 μm (b) Solid lines
(black) and dashed lines (blue): ACS and TSCS for μc =1 eV. Dash-dotted
lines (red): TSCS for the PEC reflector. The other parameters are the
relative focal distance f/d = 0.3, the temperature T = 300 K, and the
electron relaxation time τ = 1 ps
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A and B are continuous and have also continuous first
derivatives, while their second derivatives with respect to
φ and φ’ have only logarithmic singularities and hence
belong to L2. Therefore on the curve C their Fourier co-
efficients in φ decay fast enough with larger indices and
hence can be efficiently computed by the Fast Fourier
Transform algorithm. Then the discretized version of
the SIE and the zero current condition on the aperture S
give us a dual series equation. Its semi-inversion, based
on the MAR approach using the RHP technique [7, 10],
finally produces an algebraic equation set [9]. This infin-
ite matrix equation is of the Fredholm second kind
hence the Fredholm theorems guarantee the existence of
the unique solution and also the convergence of the
approximate numerical solutions when truncating the
set with progressively larger orders.
In the E-wave case, on using the boundary condition

(1) we obtain the following log-singular IE for the
surface current Jz on the reflector:

Z Jz−ikZ0

Z

M
Jz r!0� �

G r!; r!0� �
dl0 ¼ Ein

z ; ð5Þ

As mentioned, convergence of usual discretizations of
this equation is guaranteed by its Fredholm second-kind
nature. Therefore we apply the projection to the set of
entire-domain angular exponents [12]. In either
polarization case we adapt the matrix truncation number
to provide the 4-digit or better accuracy of computations.
The scattered electromagnetic field in the far zone of

reflector is a cylindrical wave with functions Hzsc or Ezsc

(depending on the polarization) reduced to (2/iπkr)1/2 eikr

ϕ(φ), where ϕ(φ) is the angular scattering pattern. Then
TSCS can be obtained by using the following expression:

σ tsc ¼ 2
πk

Z

0

2π

ϕ φð Þj j2 dφ; ð6Þ

and ACS of a lossy graphene reflector can be found from
the optical theorem,

σabs ¼ −
4
k
Reϕ 0ð Þ−σ tsc ð7Þ

Results and discussion
The numerical accuracy and convergence of the
explained above in-house algorithms have already been
verified in [9, 12]. In the current work, we apply it to the
analysis of both the plane-wave scattering and absorp-
tion and the effect of focusing by the graphene reflector.
Therefore, besides of TSCS and ACS defined above,

we also calculate another parameter, which serves as a
simple figure of merit of the focusing ability (FA), in the
plane-wave focusing by a parabolic graphene reflector.
In view of the unite-amplitude plane wave incidence, FA
can be reasonably defined as the total field magnitude at
the geometrical-focus point of parabola.
In Fig. 2, the values of ACS and TSCS are plotted as a

function of frequency for two graphene reflectors with
the fixed size of d = 200 μm (small-size reflector) and d
= 1000 μm (medium-size reflector), respectively, the
both having the same fixed focal ratio f/d.
The oscillations observed on the plots are due to the

SP resonances, especially well visible in ACS behavior.
Note also that the absorption is by an order of magni-
tude smaller than the scattering, and the both drop with
frequency because of the growth of surface impedance.



Oguzer et al. Journal of the European Optical Society-Rapid Publications  (2017) 13:16 Page 5 of 8
The frequency scans of FA are plotted in Fig. 3 for the
same two reflectors as in Fig. 2. It can be seen that the
growth in μc increases FA at all frequencies. This
happens because higher values of chemical potential μc
lead to the lower values of the surface impedance of
graphene that makes it less transparent. Then the curves
get closer to the PEC case however still depart from it if
the frequency becomes higher.
Periodic ripples on the plots of FA are explained by the

free-space interference of the waves scattered by the edges
of reflector: this explanation is becomes evident if one takes
into account that their period is the same for the PEC and
the graphene cases and is determined by reflector’s size.
To obtain a fuller vision of the focusing ability of

graphene reflector, we present a color map of this
Fig. 3 H-case: Focusing ability of graphene reflectors versus the
frequency in the THz range for small-size reflector, d = 200 μm (a) and
medium-size reflector, d = 1000 μm (b) Solid line (green): μc = 0.3 eV,
solid line (red): μc = 0.5 eV, solid line (blue): μc = 1 eV. Dashed line (black):
PEC reflector result. The other parameters are the same as in Fig. 2

Fig. 4 H-case: Color map of the focusing ability as a function of f/d
and frequency. Here, d = 1000 μm, μc = 1 eV, T =300 K, τ = 1 ps
quantity as a function of two parameters: the focal ratio
f/d and the frequency in the THz range – see Fig. 4. One
can see that the optimal value of f/d, which provides
maximum FA, is slightly below the value of 0.25 known
to be optimal for PEC reflectors. New feature, as visible
both from Figs. 3 and 4, is existence of an optimal
frequency range where the focusing ability reaches max-
imum. This is apparently explained by the fact that, if
the frequency grows, then the initial positive effect of
increasing the electrical size of reflector becomes grad-
ually overweighed by the negative effect of increasing
the absolute value of graphene’s impedance. Location
and width of the optimal frequency band depends on
the chemical potential, i.e. on graphene’s doping.
Finally, in Fig. 5 we present the total near-field pattern

for the graphene reflector with the aperture of d = 450 μm
Fig. 5 H-case: Color map of the near-zone total field. Here, f/d = 0.3,
d = 450 μm, μc = 1 eV, T = 300 K, τ = 1 ps and the frequency is 5 THz
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(this is 7.5λ). Note the splitting of the focal domain to two
bright spots along the axis of symmetry – this is a side ef-
fect, at the given frequency, of the finite size of reflector.
Besides, one can see clearly observable interference of the
waves scattered by the edges of the parabolic reflector in
front of it and the presence of shadow behind it. Still this
shadow is not very dark because the graphene reflector is
partially transparent.
The further Figs. 6, 7, 8, and 9 present the numerical

data analogous to in Figs. 2, 3, 4, and 5 however computed
for the E-polarized wave incidence. Note the absence of
the surface-plasmon resonances on the plots of ACS and
FA as a function of frequency in Fig. 6a (compare to
Fig. 2a) and Fig. 7a (compare to Fig. 3a), i.e. for a
small-size reflector.
Fig. 6 E-case: Wave scattering and absorption by parabolic
graphene reflectors versus the frequency in the THz range, for
small-size reflector, d = 200 μm (a) and medium-size reflector, d =
1000 μm (b) Solid lines (black) and dashed lines (blue): ACS and TSCS
for μc =1 eV. Dash-dotted lines (red): TSCS for the PEC reflector. The
other parameters are f/d = 0.3, T = 300 K, τ = 1 ps

Fig. 7 E-case: Focusing ability of graphene reflectors versus the
frequency in the THz range for small-size reflector, d = 200 μm (a) and
medium-size reflector, d = 1000 μm (b) Solid line (green): μc = 0.3 eV,
solid line (red): μc = 0.5 eV, solid line (blue): μc = 1 eV. Dashed line (black):
PEC result. The other parameters are the same as in Fig. 2
One can notice obvious similarities between plots and
patterns for the H-case and the E-case if a graphene
reflector is at least medium-size and the frequency is
above 3 THz. This is apparently because the focusing of
waves by a finite parabolic reflector, even a semi-
transparent one, is essentially a high-frequency or quasi-
optical effect. The main parameter in this case is just the
electric size of reflector in terms of the free-space
wavelength. The effect of the surface plasmon reso-
nances is almost negligible at high frequencies, as well
as dependence on the polarization in general. Note that
in the E-polarization case the near-field portrait (Fig. 9)
shows only one bright spot close to he geometrical focus
of parabola.



Fig. 8 E-case: Color map of the focusing ability as a function of f/d
and frequency. Here, d = 1000 μm, μc = 1 eV, T =300 K, τ = 1 ps
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Conclusion
To summarize, a micro-size 2-D graphene reflector with
parabolic profile, symmetrically illuminated by the H-
polarized and E-polarized plane waves has been analyzed
numerically using the MAR approach. The results show
that the focusing ability of such a reflector is on par with
a PEC reflector in the range of the frequency and the
graphene parameters where the surface impedance of
the latter is small. As follows from the Kubo formalism,
this entails a necessity of working with higher values of
chemical potential and electron relaxation time. This
also means that for every fixed size of reflector there ex-
ists a band of optimal THz frequencies and the focusing
ability is severely degraded at higher frequencies because
of degradation of graphene’s surface conductivity. The
Fig. 9 E-case: Color map of the near-zone total field. Here, f/d = 0.3,
d = 450 μm, μc = 1 eV, T = 300 K, τ = 1 ps and the frequency is 5 THz
surface-plasmon resonances are present at lower THz
frequencies in the H-wave case however their effect on
the performance of micro-size graphene reflectors is
small.
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