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A mathematically accurate and numerically efficient method of analysis of a spherical reflector, fed
by a scalar beam produced by a complex source-point feed, is presented. Two cases, soft and hard
reflector surface, are considered. In each case the solution of the full-wave integral equation is
reduced to dual series equations and then further to a regularized infinite-matrix equation. The latter
procedure is based on the analytical inversion of the static part of the problem. Sample numerical
results for 50n reflectors demonstrate features that escape a high-frequency asymptotic analysis.
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INTRODUCTION beam scattering from a circular aperture. This concept is fur-
ther developed in Refs. 9, 10, which contain practical and
Most frequently, performance of a reflector antenna isyseful results.
predicted by using asymptotic high-frequency techniques |n a recent study?® it was demonstrated, for a 2D prob-
such as Physical Optic0), combined with Geometrical |em, that a very accurate and computationally efficient analy-
Theory of Diffraction(GTD),"? for the off-beam radiation. sjs of reflector antennas can be achieved by using a combi-
The Method-of-Moment$MoM) is also used in the integral- nation of the CSP method to simulate a beam-like feed field,
equation(IE) analysis of reflectors of small to moderate sizeand an analytical regularization based technique to solve the
in terms of wavelengtfi* The merits and limitations of both yeflector scattering. In Ref. 11, a circular-cylindrical reflector
approaches are well known. In spite of their flexibility, PO or faq py the CSP-type line sources was considered. First, the
GTD alone is not uniformly accurate with respect to the di-|g \vas discretized into the dual series equatiénse) in
rection in space, and both fail to characterize smaller refleceo;ms of the entire-period angular exponents. Then, the static
tors. MoM algorithms for the full-wave IE become compu- 4t of DSE was analytically inverted, using the Riemann—
tationally expensive for larger reflectors, due to either largq et proplem solution, resulting in an infinite matrix Fred-

matrices or a large time for filling the matrix. Besides, noty, 1 equation of the second kind. A remarkable feature of

that the computation error cannot be progressively mini- Our present study is similar to Ref. 11, but deals with a

mized. quasi-3D problem of a spherical reflector. Acoustic reflectors

The feed f|e!d is normally sw_nulated.w'a a .Gauss'anof this type have been analyzed in Refs. 12, 13 assuming
beam or a spherical-wave expansion multiplied with an an;

ular window function. Commonly it is nealected b thesefinite transparency of reflector material and tapered spherical
g ' y 9 y wave illumination. Unlike Refs. 12, 13, we characterize the

Helmholtz equation exactly, although the radiated or sca (feed by a scalar CSP beam, assume the reflector to be per-

tered field is found as a solution of the full-wave integral fectly hard or soft, and develop a numerically exact solution.

equation. It has been proposed therefore to use the compkl,*t Is obtained from the DSE in terms of Legendre polynomi-

source-poin{CSP beam, or combination of such beams asiS with the static part inversion based on the Abel integral
a feed field®® Then, thé latter is an exact solution to ihe equation techniqué’™®This solution is equivalent to a judi-

Helmholtz equation at every point in the physical observa£'ous chou.:e of the expansion funct|on§ in-an M,OM proce-
tion space. In Refs. 7, 8, this concept was combined with P ure, forming a set of the orthogonal eigenfunctions of the

and GTD for a characterization of a spherical-wave scalaﬁtaﬁc limit of the' IE kernel. The usage of a diregtive Csp
field as a feed brings new features, hence we believe that an
in-depth physical analysis of two scalar problems of soft and

*Visiting Scientist from Kharkov Academy of Civil Engineering, nharq reflectors is reasonable. To obtain the results which are
Kharkov 310002, Ukraine.

byvisiting Scientist from Institute of Radiophysics and Electronics NAS, appllcable to parabolmda_l reflectors as Well, we restrict the
Kharkov 310085, Ukraine. computed examples to “dish” reflectors with a large to mod-
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USC(Y)Z——jf js(0",¢") ds’, ()
ar) Ju's Ir—r’|
where Ir—r'|={r?+a?-2ra[cos# cos#+siné’ sing

xcose—¢')}¥2 is the distance between the observation
point and a point at the reflector surface. Note that the un-

ol known density function is related to the jump of the scattered
0=x field normal derivative across the reflector as
] , ) Sc é,Us
FIG. 1. Geometry of a spherical reflector fed by a CSP feed. Js(0",¢0")= ar T . (4)
r=a+0 r=a—0

The soft-surface boundary condition Eg) then yields

eratef/d ratio[f andd being the Geometrical Optid§&O) a Fredholm first kind IE as

focal distance and the dish diameter, respectively
The remainder of the paper is organized as follows. Ina (6o (2= = g2kasnw2l ==
Sec. |, we formulate the boundary-value problem for soft anc‘gjo fo 150", )WS'”H do'de
hard reflectors, and derive a rigorous IE for each case. Fur-
ther we discretize and convert it to the DSE. In Sec. Il, we ~ =U%a, 6,¢), (5)

present basic points of the partial inversion of the DSE an%vherezp: arcco§cosd’ cos-+siné’ sin #coste—¢')]
reduction to the regularized matrix equation. Section IIl con- Instead of approximating IE Eq5) by MoM with sub-

tains the formulas for far field characteristics. Section IV . . . : ) o
. . . . domain orM-domain basis functions, we further discretize it

presents the results of numerical analysis concerning radia- ) .
in terms of a complete set of orthogonal functions in the

tion patterns and the directivity of the soft and hard spherical lobal domain G<f<. In our case of ap-independent

reflectors. Conclusions of the presented work are summag-Olution such a set is formed by the Legendre polvnomials
rized in Sec. V. Focal shifts in parabolic reflectors. A note ' Y 9 poly

should be made that the time dependence is assumed Pg(cosa) (n=0,1,2...). Byextending the density function
e %t and is omitted & be identically by zero on the complementary surface (

=a,fy<6#<), as is natural due to E¢4), we assume that

for all 6’
I. FORMULATION AND BASIC EQUATIONS 1
A. Problem formulation js(0")=— P 20 Xp(2n+1)P(cosd’), (6)
n=
Consider a zero-thickness, perfectly soft or perfectly ) o s
hard, spherical reflector of radiasand angular width 8,, ~ With the expansion coefficientx,, n=0,1,2... to be
symmetrically excited by the field of a CSP beam. That isfound. - , _
the feed is located at the pointy(0,0) with the radial source Besides, it is known that the free-space Green’s function
coordinate being a complex valug;=r,+ib. The geom- Can be expanded as:
etry of the problem is shown in Fig. 1. The incident scalar oiklr—r'| %
wave field is: Py =ika:0 (2~ Som)cOSM(@— @)
uo(r,0)=e*RIR, D
where R=(r?—2rr scosd+r2)Y2 and k=w/c is the real- (n—m)!
s : X > (2n+1)——no
valued free-space wave numberl{eing the sound propaga- n=m (n+m)!
tion velocity). The scattered fielt)*{(r, 6) is the solution of i
: hM(ka)j,(kr), r<a
a boundary-value problem for the 3D Helmholtz equation, el In ;
with the boundary condition of either soft or hard type at the jn(ka)h(M(kr), r>a
reflector surfaceM: (r =a,0< < 6,,0< o<2)
U0+ U X P{(cos®)Pp\(cosh’), )
0 _ _
UP+Uu=0, ar " =0. 2 whereP]' are the associated Legendre functions. This yields

the following series representation of the kernel function of
The formulation must also include) the edge condition  the |E Eq.(5):

US~0(p*?, gUsYar~0O(p~*?), wherep—0 is the dis-

tance from the dish rim, ani) the outgoing radiation con- gl 2kalsinia)] i ,
dition atr—, to ensure the solution uniquenéss. [sin(y/2)] —|2kam:0 (2= dom)cosm(e—¢")
. - (n_ m)' . (1)
B. Acoustically soft reflector X 2 (2n+1) ———jn(ka)hy”’(ka)
n=m (n+m)!
Consider first the case of a perfectly soft reflector. We . . ,
seek the scattered field function as a single-layer potential: X Py(cosd)Py(cosd’). ®
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Now the integration in Eq(5) over §’ can be extended function in terms of the same complete set of Legendre poly-
from O to 7. This enables us to use orthogonality of the nomials as were used in the “soft case:
spherical harmonics 1
27 . . jn(0")=—= > XaPn(cost’). (15
cosm(e—¢') | Pg(cosh')P,(cosh’)sinf’'do’ de’ k-a n=0
0 0
We substitute this series into the IE Hd4) and inte-
_ Am(s+m)! 5.5 ) grate, making use of the orthogonality properties E.
~(2n+1))(s—m)! “nsTmo Moreover, we explicitly enforce the vanishing pf( ') off

when discretizing the IE. Together with the specification thatthe reflector surface, and so arrive at the DSE as

the density function Eq(6) is zero off the reflector, this

o

brings us to the dual series equatidRSE): go xhir(ka)h(Y' (ka)Py(cos6) = —nZO bhP,(coso),
> x$(2n+1)j,(ka)h(ka)P,(cosh) 0=<60<0,,
n=0 - (16)

* 2 n(cosf)=0, 6H<O<mw

=nZO bSP,(cos), 0= 6< 6, n=0

- (10 where
S x3(2n+1)P,(cosd) =0, <<, bh=jn(kroh{ (ka). (17)
n=0

Note that the DSE so obtained are of the same type as in
where the right-hand side coefficients are determined by thghe case of the soft reflector.

CSP feed field as

bS=(2n+1)j,(krgh{P(ka). (11)
. Il. PARTIAL INVERSION OF DSE
Once again, the DSE E@10) can be attacked by a "brute
force” numerical solution with a direct MoM scheme. Al- We shall regularize Eq$10) and(16) by performing an

though the results are generally meaningful, only a few coranalytical inversion of the static part of the DSE. To extract
rect digits can be obtained, and there is no possibility ofthe static parts, use the power series for the spherical Bessel
increasing accuracy by taking a greater number of collocafunctions?’ from which it follows that:

tion points. That is our motivation for regularizing the DSE

| n 2,2
Eq. (10), to obtain an algorithm convergent to the exact so-  j (ka)= m (k_a ]
lution in a pointwise manner. (2n+1)!
L (2n)! k?a? (18
hV(ka)=—i ————{1+0| —]| | .
C. Acoustically hard reflector n!(2ka)"*?! n
For a perfectly hard spherical reflector fed by a CSPThis enables us to show thatntka, then
feed, \{ve. seek the scattered field function as a double-layer (2n+1)j (ka)h®(ka) ~ —i/(ka),
potential: (19
aiklr—r'| (2n+1)" 1! (ka)h (ka) ~i/(4k3a3).
S _ _ ! . /
U= f f In(0".¢ ) lr—r’| ds, Based on these estimates, we introduce two coefficient sets
(12) as
where theg-independent density function is now related to  e5=1—ika(2n+1)j,(ka)h{V(ka),
the jump of the field across the reflector surface: (20)

=1+i4(ka)®(2n+1)"%j/ (ka)h(M (ka).

in@)=Ua+0,0")-Ua—-0,6"). 13
In(67)=U )—UA ) 13 Note that alle] behave asO(k?a’n~?) for larger n, or,

The hard-surface boundary condition EB) now yields equivalently, for smallerka, while 82 behave as (&

a hypersingular IE for this function: +1)72. The DSE may be written as
a ) 2 Iklf r | ) 0 0
4 arf f in(0.¢ )_ r—r'| sing"do’ de nz,o xﬁPn(cosa):nZO (epx—ikab};)P,(cosh),
d 0<6<40
=—U%r,0). 14 0
--U%r.0) (14) (21)
In order to discretize the IE E¢l4), we assume that the ZO (2n+1)x;Py(cosf)=0, 6Gy<O=<r,

density function is extended, so that it is identically zero on
the rest of the sphere of radiws we expand the density and
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with the upper and lower sign for the soft and hard case,
respectively.

Taking account of the large-index behaviorsgfor !,
it is easy to verify that the absolute squared noNﬁ
=37 —olen"(ka)Syn(Bo)|><constS;_o2"? is finite.
This is enough to conclude that the matrix operator of Eq.
(27) is of Fredholm second kind type in the space of the
square summable sequen¢ésBesides, the right-hand side
of Eq. (27) belongs tol?, provided that|r|<a, or, more
precisely, if the real-space branch-cut associated with the
CSP feedsee Refs. 598does not touch or cross the reflec-

Analytical inversion of the left-hand side the DSE is tor. Under such a condition, the Fredholm theorems are
performed by transforming it to a single function, defined ()nVc’:l"le6 due to uniqueness, the exact solution of the infinite-
the complete interval0,] of @ variation. This is done by Matrix equation27) exists inl?. Moreover, it can be shown
reducing each of the functional equations of the DSE to arihat the solution satisfies the edge condition: without going
Abel IE (see Refs. 12, 13 which has a known inversion into details we point out the connection with the square-root
formula. Here we use the Mehler—Dirichlet formulas for thedenominators in the integrands of E@3). For computa-

> (2n+1)x"P,(cosh)
n=0

= 20 (2n+1)(x"e+i4k3a%b") P, (cos6),
=

0=6<46y,
(22

> x"P,(cosh)=0, 6G<b=<m.
n=0

Legendre polynomials:

0 cogn+1/2)y
)1/2 Y

P,(cosé)= f

0 (cosy—cosé

(23

fﬂ sin(n+1/2)y

T g,
0 (cosf—cosy)*?

tional purposes the most important consequence of the regu-
larization procedure is that, the greater the truncation order
of Eq. (27), the closer the numerical solution will be to the
exact one. The convergence here is of pointwise-type, not of
mean-type, or of some other “weak” form. Note that the
matrix elements are remarkably simple, and need no numeri-
cal integrations. Ik=0, all the coefficientg;, vanish, show-

ing that in the static case E(R7) delivers an exact analytical

This enables us to integrate the second equation of Eqsolution. In the case of the hard boundary conditief),
(21) and the first of Eqs(22), and reduce each of the DSE to =(2n+1)~ 2 in the limit k— 0. This means that by introduc-
the same function of9, given by its piecewise Fourier- ing new coefficients:"=&"—(2n+1)~2, one can also ob-

expansion o 0,7]:

> xScogn+1/2)6
n=0

20 (xSe3+BS)cogn+1/2)6,
n:

0$9<00
O, 00<0$7T
> xsinn+1/2)6
n=0
h h, phye
xe.+Br)sin(n+1/2)0, 0<6<6,
_| &, OentBRsinn 112 ° (9
O, 00<0$7T
Here we have denoted
BS=—ikab®, BN=i4(ka)®h]. (26)

tain an exact analytical solution of the static-counterpart of
the hard-surface problem. However, as spherical reflectors
are normally used witlika>1, such a procedure is not nec-
essary in our analysis.

lll. FAR FIELD CHARACTERISTICS

After determining the coefficientsS" from Eq. (27),
one can easily find, with the same guaranteed accuracy, the
density function, the far field pattern, the total radiated
power, and the directivitywhich, in our lossless analysis, is
the same as gainAll of these functions and parameters are
expressed in terms of series depending®h. For example,
the far field pattern is found as

q,s,h( 0)= gk(b—irg)cose n§=:0 (—i)nWﬁhyﬁ’th(COS@),
(29)

Using orthogonality and completeness of the functionSyhere we denoteyS=j,(ka)x3, yh=j/(ka)x", and wS

cosfi+1/2)6 or sinf+1/2), n=(0),1,2 . ..
(0,7), produces a regularized infinite-matrix equation:

©

1
xm'= 2 (4 en HBROS(fo), m=0,12...,
(27)
where
sinn—m)6, sin(n+m+1)4,
Stn(00) = * (28)

n—m n+m+1

3002 J. Acoust. Soc. Am., Vol. 107, No. 6, June 2000

at theinterval

=2n+1,wh=1.

Due to completeness and orthogonality of the expansion
functions on the unit sphere, integration of the time-average
far-zone power flux is performed analytically, yielding

. 2kb
P Pot Poginh b

[

x 3 (2n+1){lysl*+ 2 Reyiintkrg T}, (30)

Vinogradov et al.: Acoustic beam illumination of a spherical reflector 3002



8000

7000

Wyat ¥

WYLV R

' LA LTI A Y TE T
1 1 iy

i .J:'.':'l‘" LI l:l::"f”””

6000

5000

40001 -

Directivity

Truncation error, e

3000

HETL 2000

e e S 10005 et

0 i i i i
Nu 0.46 0.48 05 0.52 0.54
q=r,/a
FIG. 2. Normalized computation error as a function of the matrix truncation
number, for a hard-surface reflectég=30°. FIG. 3. Directivity of a hard-surface “shallow” reflector as a function of
the normalized feed position. Solid curve is for the edge illuminatidr®
- dB, dashed curve is for nondirective souréed0). Reflector parameters
2kb are:d=50\, f/d=0.97 ka=606.90,=15°).

Ph=Pot+Po=amr 2n+1) " Yyh|?

tot 0 OSlnh %b nZO {( ) |yn|

time needed for solving a 50+eflector of angular halfwidth

+2 R y"j(krg) T} (32) 0o=15°, that iska= 620, with a P_entium 133 computer apd
) o Fortran 77 source-code under Windows 3.11 was 2.5 min.
The directivity is We present some further results on the dependence of
anr | % 2 overall directivity on the feed location in real space. We
Dot =5 —p | €5+ 2 inyRwe) (32  examine twod=50\ hard-surface reflectors: a “shallow
k“Piot n=0 dish” (6,=15°, or f/d=0.97) and a “deep” one €,

Note that the free-space radiated power and the free= 300, or f/d:05) The Spherical r:eﬂeCtOl’ is believed tO
tively, by the expressions: deviation between the two surfaces does not exaeg#€ (or

even\/8).! Despite the paper titles, this is why spherical
2 sinh Xb 2kbe?P reflectors were considered in Refs. 12, 13. According to Fig.

PO:F Kb ' Do= sinh b 33 2 of Ref. 11, this limits the aperture size of our “shallow

dish” to the valued=53.5.. Of course, even deeper or

Overall directivity Dy, should be compared witD,. larger reflectors can still be considerétiere is no compu-
tational difficulty), but spherical aberrations are known to
IV. NUMERICAL RESULTS degrade the main beam. This happens in the case of our

In principle, the accuracy in solving E7) is limited deep” reflector. However, such spherical reflectors remain

only by the digital precision of the computer used, in contraspf interest, due to easier manufacturing and mechanical beam

to the conventional MoM-type numerical approximationsStee”ng' . . .
(e.g., Refs. 3, # For an accuracy in the far field of three Only an infinite paraboloid generates a plane wave, if

digits, and in the near field of two digits, the number of ;E_he_ poi_nt feed is placefd atlth;:_f(tSO focm§1a=d(_).5.dlrl13an§yo
equations to be taken id,=ka+ 20 independently of the Inite-size geometry a focal shift occurs, predicted by '

angular width 2, and of the feed parameters. This estimate]f_m_d s(';udr:eddln Reg 19 byﬁ;Jsmg P(_)' I-}om;}ever in reality, for a

is illustrated by the plots of normalized error of computed Inite I,t € depen_”ence tot anTrOF.a gs.an even mc()jreh

density function versus truncation number, presented in Fi £omp sx an ?SC' atory nature. In Fig. 3 is presented the
ard “shallow” reflector under two edge illuminations:

2 (for the hard-surf Th i ted in th
(for the hard-surface caseThe error is computed in the —10 dB (the same for alfy, solid curve and 0 dB(omnidi-

maximum-norm sense: .
rectional source, dashed cujvén the former case, the pa-

max,<n|xh 1= x]| rameterkb was slightly varied around the value 8.2 to pro-

= (34 vide a constant illumination level. One may clearly see that
there is not a single, but several positions of the feed provid-

However, the error computed in tHé sense shows very ing almost equally good directivity. The broad maximum
similar behavior. It should be recalled that the Fredholm nacorresponds to the focal shift predicted by &Gt is be-
ture of Eg.(26) guarantees that(N)—0 asN—w. CPU tweenry/a=0.5 andry/a=sechy/2, that isry/a= 0.518

e(N)

ma, ;|
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FIG. 4. Normalized far field radiation patterns of the same “shallow” re- £ g Normalized far field radiation patterns of the same “deep” reflector
flector as in Fig. 3, for the feed positiany /a=0.507. Edge illuminations 54 in Fig. 5, for the feed position,/a=0.526. Edge illuminations are:
are: —10 dB(solid curve, —5 dB (dashed curve and non-directive source —10 dB (solid curve, —5 dB (dashed curve and nondirective source
(dotted curve (dotted curve

here. The period of the smaller oscillations is equaktd. ) i
0of GO-predicted interval, betwean/a=0.5 and 0.578, but

This feature of the near field is clearly not of GO nature, an M= ; e
)po oscillations. Note that the maximum directivity for the

does not appear to be predicted by high-frequenc
asymptotic aggroximations. |E Fig. 4 Weypresgent t(;qtal faromnidirectional feed is double that of the “shallow” reflec-

field radiation patterns, computed for three different edgéo;l case(compare Wi;h I;i.g. B due to r(}j.oubling.the arﬁa of
illuminations. Note that reduction of the edge illumination reflector. However, the directivity in this case Is much more

levels from—5 dB to — 10 dB (that is, increasing the beam- critically dependent on the feed position, the GO focus being
width parameteikb, from 4 to 8.4 mainly affects the far completely unacceptable. Far field patterns presented in Fig.

sidelobes, between 30° and 90°. The feed position here cof. are more sensitive to the decrease of edge illumination
responds’to the optimum ' levels from —5 dB to —10 dB (by increasing the beam-

The next series of results illustrates features of theVidth parametekb, from 0.8 to 2., and show the effect of

“deep” reflector. In this case, the spherical shape of thespherical abtlaqrrations, not visible in Fig. 4. h |
latter has a greater effect. The directivity dependence on the Most of t ese features are.ot.)served for the soft reflectors
feed position(Fig. 5 shows a broad maximum in the middle as well: see Figs. 7 and 8. Similarly for the hard reflector,

‘ — -10dB — -10dB
: 1400+ IEEREEEEE R RE R IR B
6000. ...................... - — _sdB .......
12001
4000f
= =
© ©
600
4001
1000 200F - ‘ e e s , o
0 v | | 8 i i i
0.45 0.5 0.55 0.6 4 0.45 0.5 0.55 0.6
a=tr, /a a=r, /a
FIG. 5. Directivity of a hard-surface “deep” reflector as a function of the FIG. 7. Directivity of a soft-surface “shallow” reflector as a function of the
normalized feed position. Edge illuminations are10 dB (solid curve, normalized feed position. Edge illuminations arel0 dB(solid curve, and
—5 dB (dashed curve and nondirective sourcalotted curve Reflector nondirective sourcédotted curve Reflector parameters ard=20\, f/d
parameters arel=50\, f/d=0.5 (ka=314.20,=30°). =0.97 ka=242.80,=15°).
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directivity is a possible choice of cost functional, but mini-
mum sidelobe level is another, or a combination of both is
also reasonable. Potential applications of the analysis pre-
sented are in the area of hydro-acoustic antenna design.
One possible extension of this analysis is to parabolic or

2 other nonspherical reflectors. Here, an IE, similar to &4.
é or (14), will require a modified domain of integration. How-
& : : : ‘ ever, analytical regularization of this IE can be based upon
S ool MY NmAS o E apthid VR the extraction and inversion of the singular static part of the
&-50 ] WA LA \"‘,‘,|(.||"|H ' : : . . .
3 ; WA Aty : spherical dish IE operator. Hence, the technique presented
02_60_ ,,,,,,, .......... iell}:i' ......... ........... above W|” be at the core Of the modlfled anaIySIS
: : : ' ‘ : :
_70_“.| ..... .......... ........ E ........... ACKNOWLEDGMENTS
| : : : : :
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FIG. 8. Normalized far field radiation patterns of the same reflector as inOf Dundee, for its support for this work.

Fig. 7, for the feed positiony/a=0.504. Edge illuminations are: 10 dB
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