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Abstract.  We consider spontaneous radiation of atomic or molecular dipole in the presence of a thin dielectric micro-
disk as a boundary-value problem for 3D Maxwell’s equations, local energy finiteness, and a radiation condition at infin-
ity. The problem is reduced first to dual integral equations (IEs) and then to regularized IEs and the latter are solved with 
a meshless Nystrom algorithm. Results show that the radiative and non-radiative decay rates display resonance maxima 
associated with the disk natural frequencies explained through the effective-refractive-index approximation.  
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INTRODUCTION

Enhancement or, generally speaking, modification 
of the spontaneous emission of an atomic or molecular 
dipole due to resonant environment is usually called 
the Purcell effect [1-5]. Such enhancement is impor-
tant for better understanding of limiting performance 
of microlasers and in cavity quantum electrodynamics. 
In the past, this effect was usually explained via so-
called “Purcell factor,” proportional to the ratio of the 
mode quality factor Q to the mode volume V. How-
ever, it has been recently convincingly argued that this 
factor, originally derived for closed cavities with im-
perfectly conducting walls, cannot be used in the case 
of open ones. To study this effect from the viewpoint 
of Maxwell equations, one has to calculate the radia-
tive and non-radiative decay rates in the presence of an 
open resonator [3-5]. This can be done using various 
computational methods, however the use of the full-
wave and convergent computational techniques is 
mandatory if high-Q modes are present. 

PROBLEM STATEMENT 

We consider the scattering of electromagnetic field 
emitted by an elementary electric or magnetic dipole 
(EED or EMD) located at the height h above a thin 
magneto-dielectric disk of radius a  and thickness �  
(Fig. 1, where the on-axis horizontal electrical dipole 
is shown as a source of the incident field). We denote 
total electromagnetic field as a sum, 

in scE E E� � , in scH H H� � , where the incident field 
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FIGURE 1. Geometry of a dipole above a dielectric microdisk. 
 

corresponds to the EED or EMD in the free space and 
introduce dimensionless cylindrical coordinates 
( / , , / )r a z a� � �� �  with the origin in the disk 
center. To be uniquely determined, the scattered field 
has to satisfy the homogeneous Maxwell equations out 
of the sources and the disk, continuity of tangential 
components at the disk boundary, 3-D radiation condi-
tion at infinity, and the condition of local integrability 
of power. 

This boundary-value problem can be reduced to the 
volume and boundary IEs and attacked numerically. 
Still this is a challenge for researcher that is proved by 
the absence of published analysis of the 3-D modes of 
a disk of realistic size. However, inspection of photon-
ics applications shows that frequently dielectric or 
semiconductor disks are thin flat cavities produced by 
the etching and epitaxy techniques. If the disk thick-
ness is smaller than the emission wavelength, it can be 
shrunk to the median section where the following two-
side generalized boundary conditions (GBC) can be 
imposed [6]:  
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Here, 
0
Z  is the free-space impedance, and  Z  is 

the relative impedance of the disk material, /k c��  
is the wavenumber, R  and Q  are so-called electric 
and magnetic resistivities given by 

/2cot( /2)r rR iZ k� � �� , 2/Q R Z�  in the case 

of  1k� �  and | | 1r r� � � , 
r
�  and 

r
�  are the rela-

tive permittivity and permeability, respectively. On the 
rest part of the disk plane the components of the total 
field must be continuous. 

Further we introduce the normal to the disk field 
components in terms of Fourier-Bessel transform, 
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and present the tangential to the disk field components 
via the vector Hankel transform (3) and (4), where  
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Similar expressions can be written for the incident 
field. Note that thus presented fields satisfy the radia-
tion condition of Silver-Muller automatically. 

Substituting tangential to the disk field components 
to GBC, we obtain a set of coupled dual IEs (5) and 
(6), where  
  � �, , ,

, ,( ) ( ) ( ) / 2sc sc sc
m m z m zu e e	 	 	� � 
� � ,   

 � �, , ,
, ,( ) ( ) ( ) / 2sc sc sc

m m z m zv h h	 	 	� � 
� �    

are four unknown functions of the set of coupled dual 
IEs and , ( )in

mu 	� , , ( )in
mv 	�  are determined by the inci-

dent field functions. 
To find the solutions of obtained IEs (5) and (6) we 

firstly reduced them to the Fredholm second kind IEs 
(FIE-2) following the scheme outlined in [7]: 

 Integrate each of the dual IEs with respect to radius 

variable and obtain four other coupled IEs, 

 Split the integral operators of each coupled IEs into 

regular and singular parts and invert the latter parts 
using the method of analytical regularization [7]. 
Favorable features of FIE-2 guarantee the unique-

ness and existence of their solutions and convergence 
of any numerical algorithm based on a reasonable dis-
cretization scheme. In our case we do the following: 

 Introduce the truncation number N � ka + 1 and trun-

cate of the interval integration to (0,N). 

 Apply the Nystrom method with the Gauss-type 

higher-order quadratures to discretize FIE-2 on the 
(0,N) interval, and find the unknowns at the grid 
points by inverting the matrix analog of IEs. 


 Find the unknown functions on the (0,�) interval by 
substitution of the set of found values into FIE-2. 
Note that such developed meshless numerical tech-

nique leads to the accurate well convergent and fast algo-
rithm. We have found that only 5 /ka � �  unknowns 
are needed to compute the near (far) fields with a uni-
form relative accuracy of not less than 4 (5) correct 
digits. This is supported by the plots in [8], where the 
dependences of the relative computational errors on 
the order of discretization scheme N have been pre-
sented. As one can see, an exponential convergence 
takes place. 
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NUMERICAL RESULTS 

Some results of computations are shown in this 
section. Figs. 3 and 4 present, respectively, the de-
pendences of the radiative ( radP ) and non-radiative, 
i.e. absorptive ( absP ) decay rates on the normalized 
frequency ka for the dielectric disks with thickness 

0.0058a� �  and permittivity 512(1 10 )r i� 
� � !  il-
luminated by the EED and EMD which are located 
above the disk on distance 0.005 , 0.02h a a� . Decay 
rates are normalized by the free-space rate 0P . One 
can see the resonances in both the radiative and ab-
sorptive decay rates at certain frequencies. The nature 
of thin-disk resonances can be explained using the 
effective index theory. According to this theory, the 
thin-disk characteristic equation for the modes of arbi-
trary azimuth order m (i.e. varying as cos m� ) is ap-
proximately given as ( ) 0H

m effJ ka" # , where mJ  is the 

Bessel function of the order m  and H
eff r" ��  is the 

effective refractive index. In our case the azimuth field 
dependence corresponds to 1m �  and the effective 
refractive index is found from GBC to be 

2 1/2[1 1/ (4 )]H
eff R" � 
 . 
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FIGURE 3. Normalized radiative decay rate vs. the  
dimensionless frequency parameter, ka.

 
In summary, we have accurately computed the 

modification of spontaneous emission rates (both ra-
diative and absorptive) of elementary horizontal elec-
tric and magnetic dipoles in the presence of a mi-
crosize dielectric disk resonator of nanoscale thick-
ness. This has been done over a wide range of the 
wavelengths to disk-radius ratio values: e.g. if the disk 
diameter is several microns then the range of associ-
ated wavelength covers the whole visible range. 
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FIGURE 4. Normalized non-radiative decay rate vs. ka. 

The resonances found in Figs. 3 and 4 show that 
the spontaneous emission rates can be enhanced by 
orders of magnitude depending on the disk thickness 
and material. They are explained via the effective re-
fractive index model of the disk. These resonances are 
caused by the standing waves formed due to the reflec-
tion of the fundamental guided wave of the dielectric 
slab by the disk rim. This behaviour is very far from a 
simplified pattern suggested by the use of Purcell fac-
tor as a universal figure-of-merit. 
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