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Abstract
z

We consider the problem of diffraction of an arbitrary
electromagnetic wave by a thin disk made from different
materials and located in free space. Here we imply a zero-
thickness perfectly electrically conducting (PEC) disk, and
also thin electrically resistive (ER) and dielectric disks whose
thickness is much smaller than the disk radius and the free
space wavelength, and also much smaller than the skin-layer
depth in the ER disk case. The method used for the modeling
is based on the integral equation (IE) technique and analytical
regularization. Starting with Maxwell's equations, boundary
conditions and the radiation condition at infinity we obtain a
set of coupled dual lEs (DIEs) for the unknowns and then
reduce this set of equations to the coupled IEs of the
Fredholm second kind. To verify our results we calculate the
far field characteristics in the case of the PEC disk with the
incident field being the field of horizontal electrical dipole
located on the disk axis.

Figure 1. Disk geometry

The disk of the radius a is located in free space at the plane
(z=0). We introduce the cylindrical coordinates (r, P,z)
with the origin on the axis of symmetry of the disk and
denote total field as a sum of the fields scattered by the disk
and the incident one:

E = ESC + Ein, H = Hsc + Hin (1)

1 Introduction

The problem of electromagnetic field scattering by a thin disk
has been interested in since long ago. This is explained by
many different applications of this canonical shape. Besides
of traditional applications in the printed disk antennas with
PEC or ER disks, thin dielectric disk is used as a simplified
model of the tree leave [1]. Still besides, thin few-micron-
radius disks are met as resonators of semiconductor lasers
with ultralow thresholds [2]. Many methods of computational
electromagnetics have been used in their analysis, starting
from empirical methods and finishing with the method of
moments (MoM) and finite difference time domain method
(FDTD). However, the use of these methods leads to
difficulties such as prohibitively large matrices and
impossibility of estimation of the error of calculations. In
contrast, by using the method of lEs with analytical
regularization it is possible to escape these difficulties.

2 Problem statement

We consider the problem of diffraction of a given time-
harmonic electromagnetic field by a zero-thickness dielectric
disk. The geometry of this problem is illustrated in Figure 1.

The components of the scattered field must satisfy the set of
homogeneous Maxwell equations outside the disk, the 3-D
radiation condition, the condition of local integrability of
power (edge condition), and the generalized boundary
conditions (see [3]) on the disk surface, at (z = 0, r < a):

-[E; + Etg = ZoR * n x [H - Htg ],
(<L)

-S.nx E+ - Et-g .

Here, Z0 is the free-space impedance, and R and S are the
electric and magnetic resistivities. For a thin dielectric disk
they are given by

R =iZ cot 8rirkT '
2 22/ )'

S =-cot - 1

2Z 2 )'

Ir/'rI >> 1, T << 4 . (3)

8r/brI >> 1, 'T << 4 . (4)

ZO Ht+g + Ht-g :
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Here, Z is the relative impedance of the disk material,
k = co c is the wavenumber, Er is the relative permittivity,

P'r is the relative conductivity, 20 is the wavelength in free
space, and r is the thickness of the disk.
For a thin electrically resistive (ER) disk they are given by

R= 1
Zoo-r

S =o0. (5)

For a zero-thickness PEC disk they are given by Esc r

R =0, S =°o (6)
ZOHs+c- r

On the rest part of the plane (z = 0) the components of the iZoHJcv
field are continuous. Here

Z OxinHC= -o

e e0 ;mZ()llK)d (8)

where e+, (K) and h1+z(K) are the images of the normal to
the disk field components in the spectral domain. They are
the unknown functions to be found. Then the tangential to the
disk components can be written as follows:

°°m9 °°lYK (KP)-/(K)r+ (K))
K 9

Z e'm9* |e±' (K)4Hm(KP) z( dlc (10)
~~c ~~~~kae+, (K)

3 Basic equations

We express the scattered field components normal to the disk
in terms of the azimuth-angle Fourier series and the radial
inverse integral Hankel transform:

E- = E elm" e±lY()e±m z(IC)Jml(icp)icdlc, (7)
m=-oc 0

Hm(KvP) =

mJIm (IKp) /(,p) IJl (IKo)
(1 1)

is the kernel matrix function of the vector Hankel transform,

p = r I a,; = z I a and y(K) = C(ka)2 K2.
On substituting (9) and (10) to (2) and continuity conditions
outside the disk, we, in general case, obtain the set of coupled
DIEs for the four unknown functions in the spectral domain:

(O)~Ko
K p)(i/(C)(l(rIc) + e';'( o

*')0,° (K))+2Rikaum(K)d

o -ka(v, (K) + e ( IV0' (K))-2R y(K)v (K))

(Kp)ikaju jKK= ( )

JHm(Kp) dlK =

0 K y-)(K)vZ (K)) yO

i0 V,i,j(K)(V, (K) +ePV4'0 ' (K))+ 2S i kav, (K)
fHm (Kp) ka (u (K)+ e ( ) ° IUrn' (K)) +2S I(K)u+

dl

Ic( ikavm(K) (°
JHm(K) dl I
oYY(K)0uZ+(K)) O

Here u
+ (K) X v-m(K) are linear combination of original

unknown image function:

um~(K) =(emZ (K)+_ em,z (K)) 12(14
(14)

vm (K)= ( hm1z (K) hm7z (K)) 1 2

The obtained set of DIEs can be written in the following
abstract form:

JHm (Kp) * SI (ka, K, p) * X(K) dK

0

= |Hm (Kp) * S2 (ka, Kc, p) * Xo (Kc) dlK
0

(15)

where S1 2 (ka, K, p) are singular diagonal matrix-functions

of two variables with the singular point at infinity (K = o0),
X(K) is the unknown vector-function, XO(K) is the given

vector-function. Note that the singularity of S2 (ka, K, p)
leads to the limitation of X0 (K) in terms of the allowed class

p<l,

(12)

p >1,

p<l,

(13)

p >1,

c/co>> I



of functions. To solve (15), we use the method of analytical
regularization [4]. It consists of the following two parts:
First, we split the function SI (ka, K,p) into the singular and
regular parts:

(16)S1 (ka, K, p) = Z (ka, K, p) + P1 (ka, K, p)

Then (15) can be rewritten as follows:

0

|Hm (Kvp) * -1 (ka, Kn, p) * X(Kc) dlc = F(p, X(. ..))
0

where the right-hand part is

F(p, X(.)) fHm (Kp). (-PI (ka, K, p) * X(K) +
0

+S2 (ka, Kc, p)* X0 (Kc)) dlK

The solution of "canonical" IE is sought in the following
form:

X(2) = Km (2, p) * F(p, X(...)) dp (19)
0

Now we substitute expression (18) into (19) and reduce the
coupled DIEs (15) to the following Fredholm IE of the
second kind:

Xm (2)-JiW(K)Xm (K)Kl) (K, A)dK + i ka2m AmIi)A-m

00 00

X(i) + fKm(, p) fHm (Kp). P1(ka, K, p)* X(K) dK dp
0 0

00 00

= Km (i, p) fHm (Kp) * S2 (ka, K, p) * Xo (K) dlK dp
0 0

(20)

Extraction of the singular part of integral operators in (12),
(13) leads to two different-type DIEs in the case of PEC
(R= 0 and S =ox) and dielectric or ER disks. Finding the

(17) solutions in both cases with (m .0) is based on decupling
(17) the DIEs by the integration in p and introduction of four (in

general case) constants of integration. This procedure leads to
the DIEs, which can be cast to the following short form:

(p < 1),
(18)

(21)

(p > 1),

{KU U(-(K)-f(K)} Jm (Kp)dK 0=
O

|um (K)Jm (Kcp)dl = O

0

Such DIEs can be solved analytically by using the Abel
integral transform and inverse Hankel integral transform in
the case of 8 = +1 or just inverse Hankel integral transform
in the case of 8 =0 . Additional equations for finding the
constants of integration follow from the conditions of local
integrability of power near the disk edge.

As an example, we show the final integral equation of the
Fredholm second kind (m . 0) in case when the diffraction
by the PEC disk is considered.

-1/2(A+1)-' m+3 (2)+

+i2m!Bm 1 (2+1) Jm 1 /2(2) J)iK l(K)(K + 1)2 elY(K)|;° Ix' (K)K()(,A)dK
0

Ym(2) JW(2)Ym(K)2Y '()Kim (K,2)dK+2mAJA2 2)7-(2)(2++1) J (2)+
0

00+2mfkaIBW..(i)(K)d +1kamAIi) 2mB_I

0~~~~~~~~~~~~~~~~~~-JiW(K)Ym (K)G(l)'(K)dK+ ika2m AmIij )-i2m BmI(

0

- W(/C)ym (1c)G( 1) (1c)d1c + 2m AmI,3)-ka2m BmIm(4

Here Xm (A), Ym (2) are the unknown functions, Am, Bm are

the unknown constants of integration, Kj-l) (K, A), Gmcj) (K)
are the kernel functions, w(K) is the weight function, x5, (A)

(22)

i(Kc + I)
2
e

i Ymc)4' (, (2A)dK

(2) =iK )'y(K)(K + 1)2 elr(K)I0 Ix (K)G(1) (K)dK
0

') =-|i(K + 1)2 eiY(K)0I4 0y (K)Gm 1) (K)dK
0

and yo (2) are the given functions determined by the

incident field, and I.1 2,3,4) are known coefficients.



4 Numerical results

The Fredholm second kind nature of the derived equations
guarantees the existence of solutions of (22) and the
convergence of numerical algorithm based on any reasonable
discretization scheme. For example, it can be a simple
projection scheme with the basis functions taken as the so-

called step functions:

(>I) Ee[s(n- 1),sn)

To verify the obtained equations we calculate the main
characteristics in the case of the PEC disk with the incident
field being the field of a horizontal electrical dipole located
on the disk axis and oriented along the line (p = 0) . They are

the far-field radiation patterns and the total radiated power.

Besides, we calculate truncation and discretization errors in
the computation of the total radiated power.
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Figure 2a. Normalized radiation power vs. the normalized
disk radius.
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Figure 2b. Normalized radiation power vs. the normalized
disk radius.

Figures 2a-2b show the normalized radiation power vs. the
frequency normalized by the disk radius. Here; is the
normalized distance from the dipole to the disk center, trunc
is the truncation value of the domain of integration in (22)
that is adapted to the frequency as ka+5. Figures 3a-3b
show the relative computation errors given by:

Errcurr = Pcurr -Pprev / Pprev (24)

where Pprev is the normalized total power at the previous
computation point, Pcurr is the normalized total power at the
current point. Figure 4 shows the dependence of P vs. ;,
which is the normalized distance between disk and dipole.
Figure 5 shows the far field radiation patterns for some
characteristic values of parameters.
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of the integration domain.
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