
T his article reviews the nature and history of the discovery of high-quality natural modes existing 
on periodic arrays of many subwavelength scatterers; such arrays can be viewed as specific peri-
odically structured open resonators. These grating modes (GMs), like any other natural modes, give 
rise to the associated resonances in electromagnetic-wave scattering and absorption. Their com-

plex wavelengths are always located very close to (but not exactly at) the well-known Rayleigh anomalies 
(RAs), determined only by the period and the angle of incidence. This circumstance has long been a rea-
son for their misinterpretation as RAs, especially in the measurements and simulations using low-resolu-
tion methods. In the frequency scans of the reflectance or transmittance, GM resonances usually develop 
as asymmetric Fano-shape spikes. In the optical range, if a grating is made of subwavelength-size noble-
metal elements, then GMs exist together with better-known localized surface-plasmon (LSP) modes. 
Thanks to high tunability and considerably higher Q-factors, the GM resonances can potentially replace 
the LSP-mode resonances in the design of nanosensors, nanoantennas, and solar-cell nanoabsorbers.

IntroductIon
Although GMs can be found in various large or infinite arrays made of subwavelength metallic and dielectric 
elements, and in all wavelength ranges, we will concentrate our discussion around infinite arrays of circular 
silver wires and thin silver strips (Figure 1) in the optical range. As illustrative material, we will use the data 
from [1] and [2].

It should be noted that some remarkable circumstances appear in the analysis of time-harmonic ( )e i t+ ~-  
electromagnetic scattering in the optical range. This range stretches between the wavelengths of 300 and 900 
nm and presents specific features when it comes to full-wave modeling. These all relate to the description of 
material properties of scatterers and are absent in the microwave range. 

 ■ The concept of the perfect electric conductor (PEC) must be discarded because even good metals are 
sizably lossy, although good dielectrics can still be assumed lossless. 

 ■ Both real and imaginary parts of the dielectric permittivities of metals are the functions of the wave-
length, and only some dielectrics show almost constant permittivities. 
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 ■ The real parts of the dielectric functions of metals display plasma-like negative values in the optical range 
[3], thus the term negative dielectrics has been coined. 

 ■ The imaginary parts of the dielectric permittivities of semiconductors can be negative, i.e., correspond to 
the material gain (or negative loss), under the pumping.

These circumstances mean that the conventional microwave PEC boundary conditions are not valid for metals 
and either dielectric-interface or surface-impedance conditions must be used. Negative-dielectric or inductive-
impedance behaviors of metals in the optical range has important consequences in the appearance of optical 
LSP modes on subwavelength, e.g., nanosize particles. Noble-metal nanowires are also known to display inten-
sive optical LSP resonances in the visible range if illuminated with the H-polarized (i.e., polarized orthogonally 
to the wire axis) light [4]. 

Flat InFInIte thIn-StrIp GratInGS
The optical LSP resonance wavelengths depend primarily on the shape of the nanoscatterer or its cross section [4], 
[5]. For instance, a thin, flat metal nanostrip of the relative dielectric permittivity Re 0<metf  in a host medium 
with Re 0>hf  shows a broad peak in the scattering and absorption cross sections. The resonance wavelength Pm  
is determined by the standing-wave condition of the short-range guided surface-plasmon (SP) wave of the corre-
sponding infinite metal slab bouncing between the strip edges [6], [7]. This condition demands that the strip width 
w equals half of the SP wavelength. That value depends on the slab thickness and frequency, so that for a 150 #  
50 nm2 silver strip in free space nm410P .m  and for a 150 # 20 nm2 strip, it shifts to 550 nm (see [7, Fig. 12]). The 
higher-order LSP conditions correspond to , ,n 2 3 f=  half wavelengths of the SP wave on the strip width and, 
hence, are observed at smaller .m

A thin-circular metal nanowire has a single broad peak in the optical scattering and absorption cross 
sections slightly above the wavelength ,Pm  where ( ) .Re Remet

P
hf m f=-  For a silver wire in free space, 

nm338P .m  [4]. This follows from the analytical study of the plane-wave scattering by a wire using the 
separation of variables that can be further simplified using the small-argument asymptotics of cylindri-
cal functions. This study shows that the circular wire possesses an infinite number of closely spaced dou-
ble-degenerate LSP eigenmodes of the 
azimuth orders , , ....n 1 2=  They appear 
as complex poles of the field as a func-
tion of the wavelength with an accumu-
lation point at a complex location near 
to .Pm  They have slightly different n-
dependent real parts shifted to the larg-
er m  from 338 nm and imaginary parts 
that get smaller for larger n because of 
smaller losses. However, in the scattering, 
the corresponding resonance peaks over-
lap because the losses are considerable, 
although the largest contribution comes 
from the dipole terms with .n 1=  Noncir-
cular-wire scattering analysis needs more 
elaborated techniques such as volume or 
boundary integral equations [4]–[7]. They 
also reveal shape-dependent LSP modes 
of different types and symmetries.

FIGure 1. The cross-sectional geometries of the infinite 
gratings made of (a) flat strips and (b) circular wires 
illuminated by a plane wave.

-d
h

f(m)b

-w w d

(a)

2d

x

y

e-ik(xcosb + ysinb)

-d

a

f(m)b

d

(b)

2d

x

y

e-ik(xcosb + ysinb)

35IEEE AntEnnAs & ProPAgAtIon MAgAzInE  D e c e m b e r  2 0 1 5

Admin
Печатная машинка
INDIVIDUAL STRIPS AND WIRES IN OPTICAL RANGE

Admin
Печатная машинка

Admin
Зачеркнутый



36 IEEE AntEnnAs & ProPAgAtIon MAgAzInED e c e m b e r  2 0 1 5

In the scattering, optical LSP 
resonances are the signatures of the 
underlying LSP poles. If the shape 
of the wire cross section is fixed, 
their wavelengths are specific for 
every host medium that makes the 
sensing of the medium refractive 
index possible by means of measur-
ing the LSP peak wavelength [8]. 
The accurate reading of the pri-
mary (largest m) LSP resonances is 
spoiled by their comparatively low 
Q-factors, which are dominated by 
the value /Re Im2met metf f  that 
is only 40 at the infrared edge of the visible range.

Although the optical properties of the LSP modes of pairs 
(dimers) or small clusters of coupled metal wires or strips have 
already been well documented (see [9] and the references 
therein), large periodic ensembles of them (e.g., chains, arrays, 
and gratings) remain less studied. As mentioned in the “Intro-
duction” section, such ensembles display the existence of the 
other periodicity-caused GM resonances whose nature is still 
not always correctly understood. In the following, we present a 
brief narrative of related publications and discuss the remark-
able properties of these non-LSP optical resonances found in 
nanogratings of circular silver wires and thin strips (Figure 1). 
For simplicity, the gratings are assumed to be infinite and stand 
in free space.

It should be added that the optical GM resonances have 
mostly been studied, both theoretically and experimentally, on 
chains and gratings of three-dimensional (3-D) particles (see 
[10]–[23]). The intrigue surrounding the optical GM resonances 
on various nanogratings of metal scatterers consists in the fact 
that, in the early studies, they were frequently mixed up with 
more conventional optical LSP resonances, although mysteri-
ously coupled to RAs. The failure to recognize their differing 
natures can be seen in the use of plasmon-related terminology 
such as radiatively nondecaying plasmons, supernarrow plas-
mon resonances, subradiant lattice plasmons, and plasmon reso-
nances based on diffraction coupling of localized plasmons [10], 
[13]–[18]. This started changing recently and now the terms like 
collective resonance [19]–[21] and photonic resonance [22] seem 
to dominate, although GRs are sometimes still confused with 
RAs [23]. Note that when the GM resonances were found in the 
gratings of not metal but dielectric particles [11], [12], they did 
not obtain any specific name at all. This observation tells much 
about the embarrassment of early researchers about the nature 
of GMs. Still, the fact that the GMs and associated resonances 
exist on the gratings of both metallic and dielectric elements 
makes it clear that they are solely caused by the periodicity and 
are not exotic plasmons.

Flat InFInIte thIn-StrIp GratInGS
Flat gratings made of thin noble-metal strips [see Figure 1(a)] 
have always been attractive both at microwave frequencies 
and in optics as easily manufactured components that are able 

to provide polarization discrimina-
tion [24], [25] (the so-called Hertz 
effect). The theoretical study of 
the scattering by strip gratings was 
initially done assuming their flat 
layout, free-space location, infi-
nite extension, zero thickness, and 
PEC conditions [26]–[29]. Here, an 
important research instrument was 
introduced in [30]: Floquet expan-
sion of the field function in terms 
of spatial harmonics, also called dif-
fraction orders.

Under these assumptions, the 
reflection and transmittance spectra of flat infinite strip gratings 
show only the RAs at the passing-off wavelengths 

 ( / ) ( ), , , ... ,cosd m m1 1 2RA
m h "m f b= =!  (1)

so that in free space under the normal incidence / .d mRA
mm =!

If an infinite flat PEC-strip grating is supported by a thin-
dielectric substrate, then strong GM resonances appear [31] in 
its reflectance and transmittance. This point will be addressed 
in the “GM Resonances at Microwaves” section. Note that the 
LSP resonances are absent on PEC strips. However, a gold-strip 
grating lying on a dielectric substrate displays both LSP and 
GM resonances [32] in the optical range.

The GM resonances on the free-standing infinite non-
PEC strip gratings were found first for thin dielectric strips 
in [33], although, in the H-wave case, the corresponding 
narrow peaks were missed because the grid of computation 
points, in frequency, was too coarse. This was clarified in 
the subsequent studies of impedance-strip [34] and silver-
nanostrip [2] gratings. In [2], it was analytically shown that 
the complex wavelengths of GMs tend to RA

mm  if the metal 
strip width or thickness gets smaller. Numerical study of 
both optical LSP and GM resonances on finite gratings of 
many silver strips in the flat and comb-like configurations 
have been published in [35]–[37]. 

To highlight the differences between the conventional 
LSP and GM resonances in the visible-light scattering by 
periodic noble-metal scatterers, we present some numerical 
data for an infinite grating of thin silver strips illuminated 
by a normally incident H-polarized plane wave of the unit 
amplitude. The dispersion of the complex dielectric permit-
tivity of silver has been taken into account using the experi-
mental data for the real and imaginary parts from [3].

The plots of reflectance, absorbance, and transmittance 
as a function of the wavelength are presented in Figure 2. 
They were computed by the advanced meshless analytical 
regularization code of [2], in which convergence is guar-
anteed. The method is based on the use of generalized 
boundary conditions on each strip [7] and analytical inver-
sion, in the H-wave case, of hypertype singularity in associ-
ated equations. This leads to the final matrix equation of 
the Fredholm second-kind type. The silver-strip dimensions 

The optical GM 
resonances have 
mostly been studied, 
both theoretically and 
experimentally, on 
chains and gratings of 
3-D particles.
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were taken as 150 # 50 nm2, and the period varies from 350 
to 800 nm. The plots demonstrate one broad LSP resonance 
of enhanced reflection and absorption at 410 nm, associated 
with the first-order standing-wave mode built on the short-
range SP wave bouncing between the edges of each strip. 
In addition, one can see one or two much sharper GM reso-
nances at the wavelengths ,

G
1 2m  slightly larger than the peri-

od and half-period of the grating. These resonances, if well 
distanced from the LSP ones, display the asymmetric Fano 
shapes (double spikes). However, if the period p coincides 
with that of the LSP mode, then the symmetric narrowband 
optically induced transparency effect is observed (see the 
curves for d= 400 and 800 nm).

In Figure 3(a), we demonstrate this effect in detail for 
the grating made of 10-nm thin silver strips. Such a reduced 
thickness is usual for today’s nanotechnologies operating with 
electron-beam lithography and other techniques. Here, one 
can see two broad LSP resonances in the visible-light range 
at +630 and 380  nm, associated with the first- and third-
order optical LSP modes on each strip. One can also see an 
extremely sharp Fano-shape double spike at the wavelength 
slightly larger than the period [see the zoomed-in view in Fig-
ure 3(b)]. This is the effect of the GM resonance whose near-
field is shown in Figure 3(c) and (d).

According to [2], at the normal incidence, the normalized 
frequencies /dl m=  of the GM poles for a grating of non-
magnetic strips with thickness /h 1%m  and width w in the 
free space have the following asymptotic values: 

 ,m( , )
m

G E H
me el d= -! e e  (2)

 ( / ) ( ) ( ),m wh d O w h d1 2 , ,m E H E H
3 2 2 4 4 4 4 8e ed | r |= +e e

- -  (3)

where , ,1 1E H| f |= - =  and , , .m 1 2 f=  This means 
that, unlike the optical LSP modes, the GM Q-factors tend 
to infinity if /h d 0"  both for the lossy and lossless dielec-
tric strips and for the metal strips in either polarization. 
Note that the imaginary part of m

Gl!  is a small value that is 
asymptotically a square of the small deviation of its real part 
from the RA.

In fact, (2) has been symbolically presented in several earlier 
publications, e.g., see [11, eq. (19)]; however, the deviation md  of 
the pole from the RA branch point had never been derived for a 
strip grating before [2].

In the scattering problem, if the incident wave length 
approaches the real part of the thm  natural GM wave-
length, then the thm  Floquet harmonic amplitude am  takes 
a large value proportional to the GM Q-factor .Q ( , )G E H m  As 
visible from (2), ,Re m<m

Gl  and, hence, the thm  harmonic 
exponentially decays in the normal to the grating direction. 
As a result, the peak value of ame e in the GM resonance is 
not restricted by the power conservation law.

Under the normal incidence, the optical field near the grat-
ing is dominated by the intensive standing wave built of two 
identical Floquet harmonics with numbers m!  [2]. For the 
plots in Figure 3(c) and (d), m 1=  and, hence,
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FIGure 2. The wavelength dependences of (a) reflectance,  
(b) absorbance, and (c) transmittance powers of the different 
period gratings of thin silver strips with dimensions 150 # 
150 nm2, H-polarization, and normal incidence. (Figure reused 
with permission from [1].) 
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This is fully consistent with the near-field patterns 
observed in Figure 3(c) and (d). Note that in the GM reso-
nance, enhanced near-field stretches to approximately 50 
periods on each side of the silver-strip grating, and the 
peak value is .95+  This is around 25 times larger than in 
the optical LSP resonance whose near-field bright spots 
are small and stick to the strips [2]. At the inclined inci-
dence, the RAs split into pairs, m+  and ,m-  each accom-
panied by its GM pole.

In the case of finite silver-strip gratings, at least ten strips 
are needed to produce a GM-related peak [35], [36]. The 
GM near-field pattern is visible along the grating except a 
few periods near the ends. In addition, in-resonance far-
field scattering patterns demonstrate intensive sidelobes in 
the plane of grating, explained by the spill of the mentioned 

Floquet harmonics. Note that Q-factors of GMs on finite 
grating are lower than on infinite ones and depend on the 
number of strips.

InFInIte cIrcular-WIre GratInGS
The scattering of plane waves by free-standing infinite periodic 
gratings of circular cylinders or wires [see Figure 1(b)] made of 
metals and dielectrics has been extensively studied as a canoni-
cal scattering problem since the 1890s [26], [30], [38]–[46]. 
This was initiated by Hertz [47], who demonstrated that an  
E-polarized wave could be well reflected by a grating of metal 
wires while an H-polarization was passing through. His grat-
ing had approximately 70 copper wires with a radius of 0.5 cm, 
a period of 3 cm, and the wavelength was 66 cm. Other early 
experimental studies can be found in [24] and [48].

Ohtaka and Numata [40] reported, apparently for the first 
time, that the scattering of light by an infinite one-period 
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FIGure 3. (a) The reflectance, transmittance, and absorbance as a function of the wavelength for the scattering of the normally incident 
H-wave from the grating of silver strips. , nm, nm, and nm.w p h0 2 150 600 100{ = = = =  (b) A zoomed-in view of (a) in the vicinity 
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periods at . nm.600 136Gm =  (Figure reused with permission from [2].)
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grating of thin circular dielectric cylinders unusually showed 
narrow reflection resonances near the RA wavelengths (1). 
They correctly guessed that this was caused by the existence of 
some natural modes of the grating. However, this effect did not 
attract any serious attention of the community and remained 
unclaimed for the next 25 years. 

Although the GM resonances on circular-dielectric-wire 
gratings in the cases of both E- and H-polarizations could 
be noted in some earlier papers (e.g., see [43, Fig. 2], [44, 
Figs. 7–10], [45, Figs. 2 and 3], and [46, Fig. 3]), they became the 
object of focused investigation only in 2006 in [49]–[51]. In these 
papers, the authors used the dipole approximation to study the 
extinction spectra. Experimental verification of this effect was 
published later in [52]. In [46], a grating of circular dielectric 
rods was used as an example in a fine mathematical study of 
the Fano-shape transmission resonances on periodic slabs. As 
already mentioned, the scattering resonances of various types 
are caused by the presence of the parent complex-valued poles 
of the field as a function of the wavelength. However, RAs are 
associated with the branch points and exist only for the infinite 
gratings. One of the reasons of the misinterpretation of the GM 
resonances in the early studies related to infinite and finite 
dielectric and metal wire gratings was their extreme proximity 
to the RA wavelengths, especially for the gratings made of thin 
wires with a small dielectric contrast. 

Narrow resonances and high Q-  eigenmodes need fine 
computational tools that are able to provide the numerical 
results with many correct digits. Such accurate full-wave 
analysis of both wave-scattering and eignenvalue problems 
for the dielectric-wire gratings in free space was presented 
in [53] and [54] using the meshless series-expansion algo-
rithm, whose convergence is guaranteed. It is based on the 
Fourier expansions in the local polar coordinates and addi-
tion theorems for cylindrical functions. A crucial point that 
makes it convergent (unlike [38]–[44]) is the reduction of the 
final matrix equation to the Fredholm second-kind type. This 
enabled the authors to refine earlier approximate analysis of 
the GM resonances in [48]–[50]. In particular, in [54], it was 
found that in either polarization, two GM families with field 
functions that are even and odd functions of y with respect to 
the median plane of the grating exist. The former mode field 
is very similar to Figure 3(c) and (d), and the latter one differs 
by zero values at .y 0=

Using the same accurate algorithm, the effects of both optical 
LSP and GM resonances on infinite gratings of silver wires in free 
space (in the H-polarization case) were studied numerically in 
[55] and [56]. Here, the silver dielectric function was taken from 
[3]. Sample spectra of reflectance, transmittance, and absorbance 
of several different-period silver-wire gratings are shown in Fig-
ure 4 for the wires with radius . nm,a 48 85=  i.e., in the same 
cross-sectional area as strips corresponding to Figure 2.

As observed in Figure 4, the LSP resonance is present as a 
broad Lorentz peak near 350 nm for all gratings. In contrast, 
the GMs usually cause Fano-shape resonances in the reflec-
tance and transmittance and Lorentz shape in the absorbance. 
Similar to strip gratings (see Figure 2), if a grating has the 

period exactly matching the wavelength of low Q-  LSP reso-
nance, then a narrow band of GM-induced transparency cuts 
through the much wider band of intensive reflection associated 
with the LSP mode (see the curves for nm).andd 350 700=  
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FIGure 4. The wavelength dependences of (a) reflectance, 
(b) absorbance, and (c) transmittance powers of the different 
period gratings of silver circular cylinders with a radius of 

. nm.a 48 85=  (Figure reused with permission from [1].)
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In [54] and [55], asymptotic 
expressions for the complex-valued 
GM frequencies were derived. They 
showed that if the wire radius or 
its dielectric contrast goes to zero, 
then their wavelengths m

Gm!  tend to 
purely real RA values (1) similarly 
to (3) for the y-even-mode poles 
and even faster for the y-odd-mode 
poles. Hence, their Q-factors go to 
infinity both for lossless and lossy 
wires. This has an important con-
sequence for a grating of quantum 
wires made of a material with nega-
tive ,Imf  i.e., pumped to display 
material gain. The gain is able to 
compensate for the radiation losses 
and bring the mode to lasing [57]. 
As found in [53] and [56], the opti-
cal GMs demonstrate ultralaw thresholds of lasing that can be 
much lower than the thresholds of the optical LSP modes.

It is interesting to check how these optical effects manifest 
themselves on finite gratings that possess no RA branch points. 
Finite gratings of many thin wires remain a relatively unclaimed 
area of research, although early theoretical [38] and experimen-
tal papers [47] paid special attention to the wavelengths close to 
RAs. The accurate results of the numerical study obtained by 
the previously mentioned convergent algorithm have been pub-
lished in [55] and [56] for finite silver nanowire gratings where 
optical LSP and GM modes exist together. The resonances on 
GM modes become visible in the spectra of reflectance and 
transmittance (see [55] for the definition of these quantities 
for finite gratings) provided that the number of wires is at least 

.N 10=  They tend to the limit values observed for infinite grat-
ings if N  gets larger. 

Furthermore, optical properties of discrete wire structures, 
such as corners and crosses and also in-line and two-layer finite 
gratings with two different periods, all made of silver nanowires, 
were studied in [58] where the authors revealed interplay of the 
LSP and GM resonances. In [59], it was shown that the GM reso-
nances can be viewed as a signature of the presence of periodicity 
in a cloud of random metal nanoscatterers provided that a periodic 
chain has 50 or more silver nanowires. 

comparISon BetWeen tWo ShapeS and tWo 
polarIzatIonS In optIcal ranGe
The LSP-mode optical resonances are always observed on 
the deep subwavelength metal scatterers with .Re 0<metf  
This is because the underlying physical phenomena essen-
tially have electrostatic nature. Indeed, as it was shown in 
[5], the associated two-dimensional (2-D) static problem of 
a nonmagnetic cylinder in the uniform electric field pos-
sesses a set of discrete eigenvalues fr  in terms of the dielec-
tric constant. They depend on the shape of the cylinder’s 
cross section and are negative real values. For a circular 
cylinder in free space, the single eigenvalue (of infinite 

multiplicity) is ,1f=-r  while for 
a rectangle they are multiple and 
depend on the side lengths ratio. 
These eigenvalues have their 
projections to the H-polarized 
wave-scattering characteristics 
of the same 2-D metal scatterers 
whose dielectric permittivity is 
a function of the wavelength. As 
expected, the resonances on the 
optical LSP modes on a circular 
metal nanowire are found at the 
wavelengths near those where 

( ) .Re metf m f= r

Note that in the E-polariza-
tion case, duality of magnetic and 
electric fields suggests that similar 
properties could take place if the 
magnetic permeability function 

had ( ) .Re 0<n m  However, as all nonmagnetic objects have 
,1n=  there are no E-polarized LSP modes and associated 

with them optical scattering resonances on both metal and 
dielectric elements.

Keeping manufacturing issues and applications in mind, 
it is interesting to compare the characteristics of the gratings 
made of comparable silver wires and silver strips. To verify 
the polarization selectivity of considered gratings, it is also 
necessary to compare the scattering and absorption by each 
type of grating in two alternative polarization regimes. This 
comparison is presented in Figure 5 in the optical range. Here, 
the elementary wire and strip have the same area of cross sec-
tion, and the period is fixed at nm.d 800=  As one can see, in 
the case of H-polarization [Figure 5(a)], each grating displays 
a broad Lorentz-shaped LSP resonance at the corresponding 
wavelength. Furthermore, each grating produces two super-
narrow Fano-shaped GM resonances at the wavelengths slightly 
upshifted from the st and nd1 2! !  RAs in accordance to (2). 
Note that the LSP-mode wavelengths are considerably different; 
however, the GM ones agree well. 

In the case of the E-polarization depicted in Figure 5(b), 
no resonances are visible at all. As mentioned earlier, no  
E-polarized optical LSP-mode poles exist for any metal grat-
ing. The GM poles, in contrast, exist for both dielectric and 
metal gratings in both polarizations (see [33], [40], [43], [45], 
[48], [49], [52], and [53]). The reason that they are not observed 
in Figure 5(b) can be found by examining (2): the Q-factors of 
GM poles in the E case are 2e ef  times lower than in the H case 
that is a factor varying from 25 at 400 nm to 1,100 at 800 nm. 

This invisibility of the optical GM poles on the metal 
nanogratings in the E-polarization scattering regime has 
apparently hindered correct identification of their nature 
because it had suggested that they might have something com-
mon to optical LSP modes, which do not exist in this regime. 
If a metal nanograting is placed on a dielectric substrate, the 
optical GM resonances become visible in the E-polarization 
spectra as well [32].

Optical properties 
of discrete wire 
structures, such as 
corners and crosses 
and also in-line and 
two-layer finite gratings 
with two different 
periods, all made of 
silver nanowires,  
were studied.
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Thus, the best visible feature in the optical response of either 
type of grating in the E-polarization regime is the transmittance 
maxima exactly at the RAs (1). Note that the curves computed 
for equal-area gratings are very close to each other in the whole 
visible range. The largest difference in the optical spectra for 
two alternative polarizations is found close to the H-polarization 
LSP and GM resonances.

chaInS and GratInGS oF partIcleS In optIcS
In 1986, Carron et al. [10] published their pioneering study 
into the scattering of light by large two-periodic arrays of silver 
nanoparticles on a substrate that produced narrow resonances 
near the RA wavelengths. This article nicely combined the sim-
ulations with measurements. However, at that time, this effect 
did not attract any reasonable attention of the research com-
munity. Ten years later, in 1996, extremely high Q-  complex poles 
near the RAs were computed in the analysis of the two-periodic 
gratings made of 3-D dielectric bricks (see the remarkable plot 
in [11, Fig. 9]). Still, these findings had not been properly under-
stood and explained. 

The next round of research into GM resonances related to 
one-periodic chains of spherical particles done in the group 
headed by Schatz. In the 2000s, they had been developing plas-
monic biosensors with substrates made as two-periodic arrays of 
metal particles with periods usually in the range of 100–200 nm. 
They had been primarily concerned with painful optimization 
of the manufacturing and regular positioning of silver and gold 
particles of 10–50-nm diameters. In 2004, after several years of 
research, they unexpectedly noticed, in a purely theoretical anal-
ysis based on the substitution of a chain of small metal spheres 
with point dipoles, that if the chain period became much larger 
and got into the visible band, approximately 500–600 nm, then 
a narrow spike appeared in the simulated extinction cross sec-
tion spectrum on the slope of conventional wide LSP resonance 
[13]. This time, the researchers were better prepared to verify 

their findings experimentally, and very soon they reported about 
catching this effect in the measurements [10]. Soon, several 
other groups started pursuing the topic, quickly supporting the 
research into GM resonances (also known as geometric, lat-
tice, and collective resonances) with finer experimentation and 
advanced modeling [15]–[23] while looking for novel applications. 
All of these papers dealt with finite nanochains and nanogratings 
of metal spheres or short rods, and so far none of them has stud-
ied the natural modes of such chains as open resonators. 

Gm applIcatIonS In nanooptIcS
One of the main applications of conventional optical LSP res-
onances is the sensing of small changes in the refractive index 
of the medium, which hosts a plasmonic scatterer [8]. This is 
performed by measuring the position of the peak scattering 
or extinction and is considered as key enabling technology in 
the area of biological and chemical nanosensors. Therefore, 
it is not a surprise that remarkable properties of the recently 
verified GM resonances have immediately attracted the atten-
tion of scientists and engineers designing the sensors based 
on metallic nanogratings. In this community, such devices 
are (erroneously) called RA sensors apparently because of 
the nearness of the GM resonances to the RA wavelengths 
[23], [60]–[62]. The paper [60] is remarkable for the expressed 
confidence that these resonances and RAs are different phe-
nomena (although, here, GM resonances are still interpreted 
as some specific plasmons). Such sensors can be based on 
concentric gold-ring nanograting placed on the facet of opti-
cal fiber [61]. Higher Q-factors make GM resonances more 
attractive for sensing than their LSP-mode relatives [37], [62]. 
As the GM-resonance wavelength is given, in the main term, 
just by the RA value of (1), one can expect very attractive 
linear dependence of the scattering peak wavelength on the 
refractive index. This is true provided that the analyte mate-
rial is infinitely thick, while, in practice, it is usually a liquid 
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making a finite overlay. Hence, the location of the GM peak 
strongly depends on the overlay thickness, so that overlays 
that are thinner than the wavelength are impractical. Only for 
thicker overlays, the refractive-index sensitivity approaches 
the ultimate bulk-index sensitivity value of such a sensor [23]. 
Other important applications are efficient nanoantennas and 
ultrathin absorbers for novel solar cells [63]–[68], nonlinear 
optics [50], and surface-enhanced Raman scattering (SERS).

Gm reSonanceS at mIcroWaVe FreQuencIeS
It is known that, at microwave frequencies, the conductivities 
of good metals can be considered perfect (i.e., infinite) that 
does not lead to gross inaccuracies. In the case of thin metal 
strips, it is also common to assume that they have zero thick-
ness. As explained in the “Flat Infinite Thin-Strip Gratings” 
section, in such a case, the complex-valued GM poles of a 
flat PEC-strip grating hide in the RA branch points and no 
associated resonances are found in the transmittance and 
absorbance. However, as soon as the conductivity is assumed 
not to be perfect (i.e., finite) and surface-impedance conditions 
are used, the GM poles depart from the RAs and associated 
resonances become visible (see [34, Figs. 2 and 3]). Other than 
making the conductivity imperfect, there are many other ways 
to drag out these GM poles from the branch points. One of 
them is to tilt the zero-thickness PEC strips [69], [70], so that 
the grating domain obtains finite thickness. Another method is 
to arrange PEC strips into a comb-like configuration [71], [72] 
with or without a dielectric filling. The presence of GM reso-
nances is easily detected at frequency dependences of sparse 
gratings’ reflectance and transmittance.

Another option is to consider a flat grating made of finite-
thickness PEC strips or bars [73]–[75]. Still another option is to 
introduce periodic perturbations along the strip edge, e.g., mak-
ing it wavy [76]. Note that in some of the previously mentioned 
papers, GM resonances were called trapped-mode resonances. 
This term was surely borrowed from the PEC waveguide theory 
in connection to the resonances in wide cavities in below-cutoff 
waveguides.

One more option was found long ago, however, not under-
stood properly and left without attention until recently. Indeed, 
in many papers published in the 1980s–1990s, the authors stud-
ied the scattering of waves by the single- and double-periodic 
gratings made either of PEC zero-thickness patches placed on 
the surface of a dielectric substrate or the periodic holes in a 
PEC plane supported with a substrate. Sometimes, if the fre-
quency scans of reflection and transmission were computed 
with small step in frequency and using an accurate algorithm, 
they showed narrow resonances just below the RA values in fre-
quency. A recent example of this effect can be seen in [77, Fig. 8]. 

Eventually, it was studied in detail in [78], where the exis-
tence of specific complex poles was fully acknowledged and 
analog of (2) can be seen in the inline equation above (3). It 
was also revealed in [78] that in the presence of a dielectric 
substrate of finite thickness, the GM frequencies shift from 
the free-space RAs to the values determined by the length of 
the principal-guided surface wave of the substrate. This type 

of behavior was also visualized in [79] for the GM resonances 
on a dielectric slab with embedded grating of circular dielec-
tric wires. 

The latter observation enables us to make an interest-
ing prediction related to the scattering of waves of terahertz 
range by the gratings of graphene strips. Graphene is an 
electrically conducting and lossy one-atom carbon layer that 
can be naturally simulated as a zero-thickness resistive layer 
with complex-valued frequency-dependent electrical resistiv-
ity or surface impedance [80]. Suspended in the free space, a 
grating of graphene strips displays only the surface-plasmon 
resonances in the reflectance and absorbance [81], due to the 
inductive character of the surface impedance. This is because, 
similar to the PEC-strip gratings, a flat resistive-strip grating 
supports no magnetic surface current, and the GM poles hide 
in the branch points of RAs. If, however, a graphene-strip 
grating is placed on a thin-dielectric substrate, then powerful 
GM resonances must become visible in both polarizations, 
similar to the PEC-strip grating response studied in [31] and 
[75]. This prediction remains to be verified.

concluSIonS
We have demonstrated and discussed the main features of the 
grating or lattice resonances on the periodic arrays of circular 
silver wires and strips in the optical and microwave ranges. As 
it became clear rather recently, these resonances are caused by 
specific poles of the field function that should be distinguished 
from both conventional optical LSP poles and from the RA 
branch points. The associated modes have much higher Q-
factors than those of the optical LSP modes. Therefore, their 
accurate analysis needs finer than usual numerical tools that are 
able to provide many correct digits in the unknown currents or 
field harmonics. Thanks to their unique properties, in the opti-
cal range, GM resonances can serve as a superior alternative to 
optical LSP resonances in various applications in chemical and 
biological sensing, photovoltaics, light harvesting, and the SERS 
effect. The interplay between two types of resonances depends 
on the angle of incidence, the grating period, and, to a lesser 
extent, on the cross-sectional size of each wire or strip. Choos-
ing these parameters in an optimal manner may help design 
nanosensors, absorbers, and SERS substrates with substantially 
improved features.

We have also brought attention to the fact that the GMs and 
associated resonances (but not LSP ones) exist at microwave fre-
quencies where the PEC model is valid for metal elements. These 
resonances have been found in a number of papers starting with 
[82], although their potential applications are still being studied. 

Finally, we relay story that could be considered one of the 
most remarkable manifestations of the GM resonance effect. In 
the 1980s, an extremely important USSR early warning radar 
station somewhere in the Arctic was severely damaged by fire. 
Numerous capitalistic enemies could strike the defenseless 
country at any moment. The commander of the station was to 
face the military tribunal and a special government commission 
was examining the case. It was found that the plastic radome 
caught fire first. The radar was very powerful, however, it was 
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still not able to burn the plastic. The commission came to a 
conclusion that the fire was caused by a metal wire mesh placed 
inside the radome to reinforce it. When the radar was scanning 
at a certain elevation angle, a mysterious resonance was excited 
and the wires overheated and started burning the plastic. 
Although the officer was found not guilty, the mystery of the 
resonance was not fully resolved. Now, looking at Figure 3(c), we 
can imagine that, in the GM resonance, a wire-mesh reinforced 
radome could be compared with a huge open microwave oven 
equipped with a megawatt source.
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