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considering the cavity as fully active; however, a focused 
beam or the injection pumping from electrodes results in 
shaped active regions. Effects related to partial pumping 
have been studied experimentally in [13–17] where shaped 
electrodes and focused pump spots were used. Still such 
effects remain poorly studied from the side of the mode-
ling, apparently because of the lack of adequate theoreti-
cal model. To bridge this gap, we use the lasing eigenvalue 
problem (LEP) [2, 18].

Determining the electromagnetic field in the presence 
of finite-thickness dielectric disk is a difficult 3-D prob-
lem. Still if the disk is optically thin, this problem can be 
reduced to 2-D analysis in the disk plane, at the expense 
of replacing its bulk refractive index with effective value 
[1–3]. Our preceding research into the modes of 2-D mod-
els of microdisks with ring-like active regions showed 
interesting effects related to the behavior of mode thresh-
olds in dependence of the ring width [19, 20]. In this paper, 
we clarify the behavior of mode thresholds in dependence 
of the ring position in comparison to previously obtained 
solutions for fully active resonators [18] and use optical 
theorem [21] to explain the results.

2  Formulation and basic equations

Following [13, 14] we consider the LEP formulation for 
a 2-D circular microcavity with a ring-like active region, 
which is concentric with the cavity (see Fig. 1 where active 
ring is highlighted with yellow filling).

To model the lasing, we assume that the active region 
material has negative imaginary part corresponding to 
gain and the electromagnetic field is time harmonic 
∼ exp(−ikct), k > 0 and hence non-attenuating in time (c 
stands for the free-space velocity of light). Each point in 

Abstract We study the lasing modes of microdisk lasers 
with ring-like electrodes or active regions, in two-dimen-
sional (2-D) formulation. The considered eigenvalue prob-
lem is adapted to the extraction of both modal spectra and 
thresholds from the Maxwell equations with exact bound-
ary conditions. We reduce it to a transcendental equation 
and solve it numerically. The obtained lasing frequencies 
and the associated values of threshold material gain of the 
ring-pumped laser are compared with similar quantities 
of the fully active microdisk. This comparison shows that 
the optimal position of the active ring is shifted inward 
from the disk rim. Its location and width can be used as an 
engineering instrument to manipulate the thresholds. This 
effect is explained using the optical theorem and overlap 
coefficients.

1 Introduction

Microdisk and other thin semiconductor, dye-doped poly-
mer, and erbium-doped crystalline microcavity lasers are 
now the objects of intensive research [1–12] as promising 
miniature sources of light for new generation of optical 
networks. As known, they can have very low lasing thresh-
olds and their working modes (whispering-gallery modes, 
WGM) emit light mostly in the disk plane. Frequently the 
pumping is done using a wide optical beam that allows 
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the plane of cavity is specified by the radial and the azi-
muth coordinates: r and φ. In 2-D case, the field can be 
characterized by means of a scalar function u, which is the  
Ez or  Hz component depending on the polarization. This 
function must satisfy the Helmholtz equation

off the boundaries, the transmission conditions

at the boundaries, and Sommerfeld radiation condition 
at infinity. Here kj = kνj, ηj = ν−2

j  in the H-polarization 
case and ηj = 1 in the E-polarization case, j = 1, 2, 3, e , 
ν1,3 = αi, ν2 = αi − iγ (γ > 0), ν4 = νe = αe, and 
u± = u(r ± 0,φ), r = r1, r2, r3.

We look for the LEP eigenvalues as discrete pairs of the 
real-valued parameters (κN , γN ). Here κN = kNr3 is the nor-
malized frequency of lasing, γN > 0 is the threshold mate-
rial gain, and N is the generalized mode index. Note that 
the threshold gain per unit length, common in the analysis 
of Fabry–Perot lasers, can be easily calculated as g = kγ.

The LEP problem (1)–(2) is treated with the method 
of separation of variables. All modes split into independ-
ent families according to the azimuth index m. For every 
m, the eigenvalues (κ , γ ) satisfy the following characteristic 
equation:

Here we denote,

(1)�u+ k2j u = 0, x ∈ Ωj, j = 1, 2, 3, e,

(2)u− = u+, ηj
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where Jm(z) is the Bessel function and H(1)

m (z) is the Han-
kel function of the first kind and index m = 0, 1, 2, . . ..

We use another index, n = 0, 1, 2, . . ., to number the 
eigenvalues within each m-th family. The index n charac-
terizes the modal field variations along the radius of the 
microcavity. Note that in the uniformly active (e.g., flood 
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Fig. 1  Geometry of a circular microcavity with a ring-like active 
region Fig. 2  Dependences of the threshold material gains for the circular 

microcavity with a ring-like active region on the middle radius of the 
ring ρmid. The minimum values of threshold gains are marked with 
crosses. The threshold gains of the corresponding modes for the fully 
active circular microcavity are marked with dots

Fig. 3  Same as in Fig. 2 for the lasing frequencies. The values of 
ρmid corresponding to the minima of the threshold gains are marked 
with crosses. The normalized frequencies of lasing of the same modes 
of the fully active circular microcavity are marked with circles
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pumped) circular cavity [18] the eigenvalues with n = 1 
correspond to WGMs and show the lowest thresholds, 
which get exponentially lower with greater m >> 1.

3  Results and discussion

In the numerical analysis, we looked for the roots of (3) on 
a selected part of the plane (κ , γ ) with the aid of in-house 
iterative algorithm based on the two-parametric Newton 
technique. We studied the H-polarized modes because in 
this case the effective refractive index of a thinner-than-
wavelength disk is much larger than in the E-polarization 
case (e.g., see Appendix in [18]). As it was demonstrated in 
[18], this entails correspondingly higher threshold values of 
material gain of the WGMs.

In Figs. 2 and 3, we present the dependences of the 
mode threshold gains and the lasing frequencies on the 
relative position of the middle radius ρmid = rmid/r3 of 
the active ring (a model of a ring electrode) of the width 
d = r2 − r1 = 0.1r3. In computations, we assumed that the 
cavity material had refractive index αi = 2.63 and the envi-
ronment was air with αe = 1. As one can see, the frequen-
cies of WGMs are not sensitive to the ring placement.

In contrast, the thresholds show that the electrode must 
be placed at a certain distance from the rim of the cavity 
and, if ρmid gets smaller, then the WGM thresholds grow up 
exponentially.

This behavior of mode thresholds can be under-
stood using the optical theorem for lasers [21]. Here, the 
most important role is played by the overlap coefficient, 
Γ

(a)
N = W̃

(a)
N /W̃N, i.e., the fraction of the E-field power 

contained in the active region Ω2 relatively to the power in 
the whole cavity volume, Ω = Ω1 +Ω2 +Ω3. This is a 
discrete quantity linked to specific modes. According to the 
results of [21], if γN << 1 then γN = αiQN/Γ

(a)
N + O(γ 2

N ) , 
where QN is the quality factor of the N-th mode of passive 
cavity, i.e., the same cavity without pumping (note that QN 
does not depend, by definition, on the active region size 
and location). For the considered here circular microcavity 
with a ring-like active region, the values of W̃ (a)

N  and W̃N 
take the form as

where Z0 = (µ0/ε0)
1/2 is the free-space impedance.

Figure 4 shows the dependences of the threshold 
gains (top panels) and the overlap coefficients (middle 

(5)
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W̃N (kN , γN ) = (1/2Z0)

∫
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Re(ν2)|u(r,φ; kN , γN )|
2rdrdφ,

panels) on ρmid for the H-polarized WGMs with m = 20 
and n = 1,2,3, respectively, of the circular microcavity 
with a ring-like active region of the width d = 0.1r3. The 
minimum values of the threshold gains and the maximum 
values of the overlap coefficients are marked with crosses. 
The threshold gains of the same modes for the fully active 
circular microcavity are marked with the circles in the top 
panel. We see that the ρmid values providing the minima of 
the threshold material gains graphically coincide with those 
corresponding to the maxima of the overlap coefficients, as 
predicted by the optical theorem for LEP, since for these 
modes γs < 10−3.

The gain profiles and the modal fields corresponding to 
the minima of threshold gains in Fig. 4 of the same three 
WGMs in the same circular microcavity are presented in 
Fig. 5. As one can see, the threshold minima and the over-
lap coefficients maxima are obtained when the maximal 
fractions of the E-field power are contained in the active 
region.

Here, we emphasize that new finding is that the opti-
mal placement of the active ring (i.e., the electrode) is not 
along the rim but at a certain distance inward from it. This 

Fig. 4  Dependences of the threshold material gains (top panel) and 
the overlap coefficients (bottom panel) on ρmid for WGMs (20,1), 
(20,2) and (20,3) of the circular microcavity with the ring-like active 
region of the width d = 0.1r3. The maxima of the overlap coefficients 
and the minima of the threshold gain are marked with crosses. The 
threshold gains of the same modes for the fully active circular cavity 
are indicated with the dots in the top panel



A. S. Zolotukhina et al.

1 3

 32  Page 4 of 6

distance corresponds to the inward shift of the most inten-
sive E-field maximum and hence is dictated by the type of 
the working mode.

Consider now the circular microcavity with the ring-like 
active region of the width d = 0.1r3 and the middle radius 
rmid = 0.9r3 (hence, r1 = 0.85r3 and r2 = 0.95r3). Figure 6 
demonstrates, on the plane (κ , γ ) where γ is presented in 
logarithmic scale, the normalized frequencies of lasing and 
the corresponding values of threshold material gain for all 
H-polarized WGMs with m from 1 to 30 and n = 1,2,3. 
They are shown, for comparison, together with the LEP 

eigenvalues of the same WGMs of the fully active circular 
microcavity.

From Fig. 6, we see that, by using a ring-like active 
region to pump such a microcavity, one can consider-
ably modify the localization of the LEP eigenvalues. For 
instance, in the interval of frequencies 5.9 < κ = kr3 < 6.9 , 
the solutions with radial index n = 2 having the material 
thresholds γ < 0.01 exist in the fully active circular micro-
cavity and do not exist in the microcavity with the ring-like 
active region of d = 0.1r3 and rmid = 0.9r3. Note that nor-
mally this has been achieved by replacing the solid circular 

Fig. 5  From top to bottom: the 
gain profiles (yellow boxes) and 
the modal field profiles (color 
curves) for WGMs (20,1), 
(20,2) and (20,3) of the micro-
cavity with the same parameters 
as in Fig. 4, in the minima of 
threshold material gain depend-
ences
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microdisk with a microring [20]. However, from the pre-
sented above analysis it follows that the same effect can be 
obtained by manipulating the electrode width and radial 
location only.

For clarity, we show, also in Fig. 6, the effect of losses 
present in the passive parts of the microcavity. Such 
losses remain, for instance, due to the inter-band transi-
tions in the material of un-pumped active region. As one 
can see, the presence of absorption in the passive regions 
characterized with Imν1,3 > 0 spoils the thresholds of all 
WGMs, which had γ < Imν1,3 in the lossless cavities. 
This is understandable because in that case, to achieve 
the lasing, the total gain in the cavity must balance not 
only the radiation losses, decreasing with mode’s azimuth 
index m, but also the absorption losses, which have the 
order of Imν1,3 independently of the mode indices (see 
Eq. (36) in [21]).

For the sake of completeness, we would like to add that 
there are a few other LEP-like formulations extracting the 
thresholds of lasing—see [22–27]. Here, the authors of 
[27] followed the LEP as above, and works [22] and [23] 
used only a different (within a factor) definition of the 
material threshold. Still we would like to stress that the 
LEP is based entirely on Maxwell equations with exact 
boundary conditions and radiation condition at infinity. 
It is equally rigorous in the analysis of low-threshold and 
high-threshold lasing modes. We believe that the dem-
onstrated power of LEP to predict the dynamics of mode 
thresholds based on the mode-active-region overlap coef-
ficients and the optical theorem makes it an important 
instrument in electromagnetic analysis and computer-
aided optimization of various lasers.

4  Conclusions

We have studied the behavior of spectra and thresholds of 
WGMs of circular microcavity lasers with ring-like active 
regions (e.g., ring electrodes) under variation of ring location 
and width, in 2-D formulation. We have demonstrated that 
the dynamics of the lasing mode thresholds in the cavities 
can be excellently explained with the aid of overlap coeffi-
cients between the modal E-field and the active region. Here, 
we have found that, for each mode, the optimal position of 
the active ring must be shifted inward from the rim to overlap 
with the strongest E-field maximum. Our analysis has also 
shown that a judicious choice of the combination of active 
ring width and location can efficiently remove the higher 
radial-index modes from the working interval of frequencies.
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