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We study numerically the optical properties of the periodic in one dimension flat
gratings made of multiple thin silver nanostrips suspended in free space. Unlike other
publications, we consider the gratings that are finite however made of many strips that
are well thinner than the wavelength. Our analysis is based on the combined use of
two techniques earlier verified by us in the scattering by a single thin strip of conven-
tional dielectric: the generalized (effective) boundary conditions (GBCs) imposed on
the strip median lines and the Nystrom-type discretization of the associated singular
and hyper-singular integral equations (IEs). The first point means that in the case of
the metal strip thickness being only a small fraction of the free-space wavelength
(typically 5 nm to 50 nm versus 300 nm to 1 μm) we can neglect the internal field and
consider only the field limit values. In its turn, this enables reduction of the integration
contour in the associated IEs to the strip median lines. This brings significant simpli-
fication of the scattering analysis while preserving a reasonably adequate modeling.
The second point guarantees fast convergence and controlled accuracy of computa-
tions that enables us to compute the gratings consisting of hundreds of thin strips,
with total size in hundreds of wavelengths. Thanks to this, in the H-polarization case
we demonstrate the build-up of sharp grating resonances (a.k.a. as collective or lattice
resonances) in the scattering and absorption cross-sections of sparse multi-strip grat-
ings, in addition to better known localized surface-plasmon resonances on each strip.
The grating modes, which are responsible for these resonances, have characteristic
near-field patterns that are distinctively different from the plasmons as can be seen
if the strip number gets larger. In the E-polarization case, no such resonances are
detectable however the build-up of Rayleigh anomalies is observed, accompanied by
the reduced scattering and absorption. Copyright 2013 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution 3.0
Unported License. [http://dx.doi.org/10.1063/1.4802880]

I. INTRODUCTION

Localized surface-plasmon resonances (we will call them “plasmons” for brevity) on the stand-
alone and coupled noble-metal wires (in the H-polarization case) are an area of active research
in nanophotonics since the 2000s,1–4 although more recently the emphasis has been shifted to the
analysis of three-dimensional plasmonic particles.5–8 Periodic arrays or gratings made of noble-
metal nanosize elements are attracting even greater attention of research community. This is caused
by the effects of extraordinarily large reflection, transmission, emission, and near-field enhancement
that have been found in the scattering of light by periodic scatterers.9–12 More broadly, these
resonances display a variety of Fano shapes near so-called Rayleigh anomalies of associated infinite
grating.10, 13, 14 Much controversy still exists around these resonances. For example, in Ref. 10 their
effect was attributed to the presence of a wide dielectric substrate supporting the guided modes as
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it was not observed for a metal-strip grating on a thin substrate. In many publications they were
regarded as specific plasmons. For instance, they were called “horizontal particle plasmons” in
Ref. 12 and “radiatively coupled plasmons” elsewhere, although in Refs. 10 and 15 they were
reported on a metal-strip grating in the E-polarization case where no true localized surface plasmons
exist at all.

It has been discovered recently, in the study of infinite gratings made of sub-wavelength dielectric
or silver wires of circular cross-section suspended in free space, that these phenomena are explained
by the specific poles of the field as a function of the wavelength that exist in the vicinities of
Rayleigh anomalies.16–19 They produce the so-called grating resonances (a.k.a. collective), which
should be distinguished both from the mentioned anomalies and from the plasmon resonances, whose
wavelengths depend primarily on the shape and material of an individual element of the grating.
In Refs. 20–22, similar poles and corresponding to them resonances have been found for infinite
gratings made of thin dielectric, impedance, and silver strips, respectively.

An important question that appears in natural way is how these grating resonances develop in the
more realistic case of finite gratings made of N elements. For the gratings of circular silver nanowires
this has been addressed in Ref. 19 where it has been demonstrated that the grating resonances become
visible if the number of elements N ≥ 10. If it gets larger, then these resonances become sharper
and approach their limit forms valid for infinite gratings.

Continuing this research, our paper deals with finite flat gratings made of dozens and hundreds
of thin silver nanostrips. The strips are very attractive as components of optical nanoantennas
and sensors due to their features like planar geometry, conformability, simplicity, and low cost of
production. If manufactured with today’s technologies based on the etching and molecular-beam
epitaxy, the usually have thickness between 5 and 50 nm, i.e. are well thinner than the optical
wavelength. Although the first and higher-order plasmon resonances on thin strips and rods have
been analyzed (see Ref. 4 and also Refs. 23–26), periodicity-induced effects for truly multi-element
strip gratings have not been studied so far. Such analysis presents a challenging task, and our GBC-
Nystrom technique operating with the small-size matrix equations offers clear advantages over the
important but less economic previous methods provided that the strips are thin.

On the one hand, the finite-periodic gratings can be efficiently analyzed if the method applied
to the scattering by a single element yields equations with favorable features. However usually
computational cost grows up quickly and restricts the number of computable periods to a few ones
like in Ref. 27 where three-groove scattering was computed.

On the other hand, the methods developed for the analysis of infinite gratings, say Refs. 9 and
10 are more economic as they exploit the periodicity by reducing the analysis to single period.
However they can be inadequate if the number of strips is still in the dozens and hundreds. What
is also necessary to mention, is the lack of theoretically guaranteed convergence of the methods
used in many of the mentioned papers. Here we understand convergence in mathematical sense,
as the possibility to reduce the error in computations to machine precision by using higher-order
discretizations. Note that many non-convergent numerical techniques are still able to provide a couple
of correct digits (that may frequently satisfy a need for a quick “what if?” estimation) however they
fail to achieve better accuracy.

In the core of our approach lays the fact that nanostrip thickness usually makes a small fraction of
the optical wavelength while the width can be both comparable to and larger than the wavelength. The
small thickness suggests that the analysis can be simplified by neglecting the internal field of the strip
and considering only the external field limiting values.28–30 This enables reduction of the integration
contours in the associated IEs to the corresponding median lines at the expense of introduction of
certain “effective” or generalized boundary conditions. Such an approach leads to very economic
and rapidly convergent algorithms, whose results agree very well with full boundary2–4 and volume
IE results.1, 31, 32 It has been used earlier in the analysis of the wave scattering by the infinite gratings
of thin material strips20–22 using the method of analytical regularization, and more recently by a
dielectric strip using the Nystrom method.33

In this paper, we apply the Nystrom-type algorithm developed in33 to the efficient and reliable
analysis of optical effects on different objects - finite gratings of dozens and hundreds of thin silver
nanostrips located in free space. Besides, we include the study of the E-polarization case where true
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FIG. 1. Cross-sectional geometry of a finite periodic grating of N silver nanostrips infinitely long along the z-axis.

localized surface plasmon resonances are absent and the grating resonances do not contribute to the
scattering and absorption because of low quality-factors. Our approach opens possibility of reliable
analysis of truly multi-strip tunable optical antennas, biochemical sensors, and broadband solar-cell
absorbers.

For proper positioning of our paper we would like to stress that, on the one hand, in contrast to
Refs. 9–11 we consider the free-standing strip gratings. Thus the effect of the substrate is excluded
and we can see what physics is associated with the silver strip grating itself. On the other hand,
we consider the thin strips which do not display “vertical Fabry-Perot” (a.k.a. waveguide-mode)
resonances or “vertical plasmons” observable on the thick strip metal gratings.11, 33–36

In the reminder of this paper, Section II presents concise summary of the formulation and method
of treatment. Section III deals with numerical study of resonances in the case of H-polarization.
Section IV shows comparison between finite and infinite gratings. In Section V, the case of
E-polarization is presented. Conclusions are summarized in Section VI.

II. SCATTERING BY FINITE PERIODIC SILVER NANOSTRIP GRATINGS

A. Problem statement

Consider the two-dimensional scattering of the monochromatic (∼e−iωt ) H-polarized electro-
magnetic plane wave (vector �E is across the strips) by a finite grating consisting of N parallel silver
nanostrips of permittivity εr , width d, thickness h and period p (see Fig. 1). The incident wave is given
as Hinc

z (�r ) = exp[−ik(x cos β + y sin β)], where �r = (x, y), k = ω/c = 2π/λ, λ is the free-space
wavelength, and the incidence angle β is measured from the x-axis.

In the presence of strips, the total field is the sum of the plane wave field and the unknown
scattered field, H sc

z (�r ). The latter must satisfy the corresponding Helmholtz equation inside and
outside the strips and the tangential-components continuity across strips’ contours of cross-section.
Besides, it must satisfy Sommerfeld radiation condition and condition of the local energy finiteness.
Such a scattering problem is uniquely solvable for the function H sc

z (�r ).

B. Generalized boundary conditions

As it has been shown in Refs. 28–30, if the thickness h of a flat material slab is much smaller than
the free-space wavelength λ, one can neglect the internal field inside the slab, shrink its cross-section
to the median line, say S, and impose the following two-side GBCs for the external field limiting
values at this line:

∂ H+
z (�r )/∂ �n + ∂ H−

z (�r )/∂ �n = −i2k R[H+
z (�r ) − H−

z (�r)], (1)

H+
z (�r) + H−

z (�r ) = i2Qk−1[∂ H+
z (�r )/∂ �n − H−

z (�r )/∂ �n]. (2)

Here, �n is the unit vector normal to the slab top side, the indices ± correspond to the limit values
of the field at the top and bottom sides, respectively, and R and Q are the electric and magnetic
resistivities, which depend on the slab refractive index νr = ε

1/2
r , its thickness, and the frequency.

If the slab material is non-magnetic and high-contrast one, i.e. |εr | � 1, then they are derived as
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(see Ref. 30),

R j = i(ν−1
r /2) cot(khνr/2), Q = i(νr/2) cot(khνr/2). (3)

In a multi-strip configuration, we impose GBCs at S = UN
j=1Sj , where Sj = {(x, 0) : x ∈ [a j , b j ]},

and a j and b j are the strips endpoints. As certified by the data of Ref. 37, the mentioned assumption
is valid in the visible range from 400 nm to 900 nm for the nanostrips made of silver or gold. This
is not completely so between 300 nm and 400 nm and the results computed in that range may need
further validation that will be presented elsewhere. According to the earlier studies (see Ref. 32),
the strip thickness should be larger than 2 nm: if the strip is thinner, one has to replace the classical
bulk refractive index model with a quantum-chemistry or jellium model.

Substitution of the cross-section contour or domain with the median line simplifies considerably
the numerical analysis. This is because it leads to the IEs where the integration is done along a finite
open interval and the unknowns are effective electric and magnetic currents. Their edge behavior can
be taken into account analytically and hence there is no need for denser meshing the vicinities of the
contour corners. Note that previously developed algorithms based on the volume IEs,1, 31, 32 where
the integration domain is the area of the strip cross-section, have led to the numbers of unknowns
in thousands, even for a stand-alone strip and apparently “graphical” accuracy of 2-3 digits. The
boundary IEs2–4 are considered more efficient as they imply the discretization of the boundary
instead of the area; still typical number of unknowns is in hundreds. More essentially, boundary
IEs can be cast, unlike volume IEs, to the forms having non-singular and integrable kernels and
thus can be discretized more reliably. In contrast, proposed median-line IEs lead to the matrices that
are only slightly larger than the size of the median line in the delocalized surface-plasmon wave
lengths (i.e. in small dozens for one strip) for the guaranteed 4-digit accuracy in the surface-current
computations.33

C. Singular and hyper-singular integral equations

To find the scattered magnetic field, we use the potential theory and seek this function as a sum
of 2N terms satisfying both Helmholtz equation and the radiation condition,

H sc
z (�r) =

N∑
j=1

⎡
⎢⎣k

∫

Sj

v j (�r ′)G(�r , �r ′)d�r ′ +
∫

Sj

w j (�r ′)
∂G(�r , �r ′)
∂ �n(�r ′)

d�r ′

⎤
⎥⎦, (4)

where G(�r , �r ′) = (i/4)H (1)
0 (k|�r − �r ′|) is the free-space Green function, and the unknowns are ef-

fective electric v j (�r) = ik[H+
z (�r ) − H−

z (�r)] and magnetic w j (�r ) = ik−1[∂ H+
z (�r )/∂ �n − H−

z (�r)/∂ �n]
currents, respectively.

As it was discussed in Ref. 33, substitution of (4) into GBC reduces the formulated scatter-
ing problem to two independent sets of coupled IEs, each of the size N. One of them contains
logarithmically singular equations, and the other - hyper-singular equations,

4Qvi (x
i
0) + k

N∑
j=1

b j∫
a j

v j (x
j )H (1)

0 (k|x j − xi
0|)dx = 4ie−ikxi

0 cos β, xi
0 ∈ Si , i = 1, ..., N , (5)

4Rwi (x
i
0) +

N∑
j=1

b j∫
a j

w j (x
j )

H (1)
1 (k|x j − xi

0|)
|x j − xi

0|
dx = 4 sin βe−ikxi

0 cos β, xi
0 ∈ Si , i = 1, ..., N ,

(6)
where integral terms in (6) are understood in the sense of finite part of Hadamard.
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D. Nystrom-type numerical model

To solve IE (5), we use the Nystrom-type discretization based on the Gauss-Legendre quadra-
ture formulas (QF). In IE (6), we at first introduce new unknown regular function w̃ j (x j ): w j (x j )
= w̃ j (x j )(x j − a j )1/2(b j − x j )1/2, x j ∈ [a j , b j ] and then apply weighted QF (with Chebyshev
weight) of interpolation type with the nodes at zeros of the Chebyshev polynomials of the 2-nd
kind. The mathematical details can be found in Ref. 33). As discussed there, such a combination of
the material strip model based on the GBC (1) and the Nystrom-type algorithm of IE discretization
has mathematically guaranteed convergence (at least as 1/n where n is the order of interpolation
polynomial) and leads to efficient and economic numerical solution having easily controlled accuracy
of computations.

E. Optical response characteristics

Using the large-argument asymptotics for the Hankel functions in the kernels of (4), the scattered
magnetic field in the far zone can be represented as H sc

z ∼ (2/ iπkr )1/2eikr	(ϕ), where 	(ϕ) is the
far-field scattering pattern (or scattering diagram). It is found as

	(ϕ) = (ik/4)
∑N

j=1

∫
Sj

[v j (x) − i sin ϕw j (x)]e−ikx cos ϕdx . (7)

For a finite grating, the figures-of-merit are not the reflectance, transmittance and absorbance
introduced in the infinite-grating scattering but the total scattering cross section (TSCS) and the
absorption cross-section (ASC). These quantities are determined as follows:

σsc = (2/πk)
∫ 2π

0
|	(ϕ)|2dϕ, (8)

σabs =
∑N

j=1

∫
Sj

[
Re Q|v j (x)|2 + Re R |w j (x)|2]dx . (9)

The sum of (8) and (9) is the extinction cross-section, and the optical theorem tells that σsc + σabs

= −(4/k)Re	(β + π ). In our computations, this relation has been always fulfilled with accuracy
close to machine precision.

III. H-POLARIZATION: SURFACE PLASMON RESONANCES
AND GRATING RESONANCES

In our previous papers,33 we have computed the plasmon effects on the stand-alone silver and
gold nanostrips of small thickness (e.g., h = 5 or 10 nm), and their periodic ensembles consisting
of only several strips. As it is shown below, more massive finite nanostrip gratings, both in terms of
each strip size and their number, demonstrate new features induced by their periodicity. Note that
GBC (1)-(3) do not imply that the H-field is constant inside the strip as the arguments of the R and
Q functions can be arbitrary.30 To characterize the complex dielectric permittivity of silver we took
the experimental data of Ref. 37 and used an Akima spline interpolation.

For the sake of comparison, in Fig. 2 we present the wavelength scans of the normalized by 2d
values of TSCS and ACS for a stand-alone silver strip of the width d = 150 nm for three different
values of strip thickness, h = 10, 20 and 50 nm (dotted curves).

Here, an H-polarized plane wave is incident at the strip from the normal direction. The surface
plasmon resonances (marked with stars) are visible at λP

1 = 629 nm, 515 nm and 431 nm, respec-
tively, i.e. thinner strips have plasmon resonances red-shifted relatively to the thickest strip of h
= 50 nm. These are Fabry-Perot-like resonances of the order 1 corresponding to the strip width
equal approximately to half-wavelength of the short-range surface-plasmon wave of the correspond-
ing silver layer.4

In the violet range, thinner strips have additional resonances on the higher-order plasmon
resonances of the index 3 that are better visible on the ACS plots. Note that similar third-order
resonances on metal nanobelts have been observed in Ref. 13.
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FIG. 2. Normalized TSCS (a) and ACS (b) per one strip versus the wavelength for N = 1 (dotted curves) and N = 100 (solid
curves) silver strips of width d = 150 nm and p = 600 nm for three values of thickness h = 10, 20 and 50 nm at the normal
incidence (β = π /2) of the H-polarized plane wave.

Besides, in Fig. 2 presented are the normalized by 2Nd values of TSCS and ACS plotted as a
function of the wavelength for N = 100 silver strips of the same width and the same three thickness
values, assembled in the grating with period p = 600 nm (solid curves).

As one can observe, the surface-plasmon resonances on the gratings have almost the same
wavelengths of 630 nm, 528 nm and 432 nm, respectively, as on a stand-alone strip. However, the
periodicity of the grating of 100 strips leads to the other type of resonance phenomena, so-called
grating resonances.16–22 The thickest-strip grating (50 nm, black curves) demonstrates two grating-
type resonances in the visible range, at λG

1 = 603 nm (slightly larger than p) and λG
2 = 305 nm

(slightly larger than p/2). Note that the strip thickness plays important role: if strips are thin as 10
or even 20 nm, the grating resonances have almost no effect on TSCS and ACS (this effect appears
if N � 100). Therefore, to obtain complete picture of the periodicity-induced effects, our further
analysis will be concentrated on the study of the finite gratings made of silver strips of 50-nm
thickness.

Consider now finite gratings made of N = 10, 20, 50 and 200 silver strips with the width d
= 300 nm, thickness h = 50 nm and period p = 800 nm, illuminated by a normally incident plane
H-wave (see Fig. 3, solid curves). For comparison, the data for the single-strip scattering are also
shown.

As follows from the stand-alone silver strip TSCS and ACS behavior (black curves), there are
two plasmon resonances at λP

1 = 680.45 nm and λP
3 = 354.1 nm, of the first and third orders,

respectively. The corresponding near and far field patterns are presented in Fig. 4; they resemble
similar resonance patterns on metal nanobelts.13

If N similar strips are collected into a finite flat grating with period of 800 nm, they keep the
plasmon resonances almost intact however additionally demonstrate the build-up of two grating
resonances in the visible range: slightly above the wavelength value equal to period and slightly
above the twice smaller value (colored curves in Fig. 3). These resonances become more intensive
and narrower with increasing N. Here, the resonance at λG

1 = 802.6 nm has a classical lorentzian
shape, while the other resonance at λG

2 = 402 nm displays a more complicated Fano shape as shown
in the corresponding inset. This agrees well with observations of Fano resonances on other gratings
– see review14 for references.

It is interesting to visualize the near-field patterns emerging at the resonance wavelengths
because each of them, in the vicinity of the grating, is close to the field of the corresponding
natural mode of the grating as a periodic open resonator.18, 19, 22 In Figs. 5 and 6, presented are the
total magnetic near-field patterns for the 200-strip grating with period p = 800 nm at the plasmon
resonance wavelengths λP

1 = 680.45 nm (a), λP
3 = 354 nm (b) and the grating resonance wavelengths

λG
1 = 802.6 nm (a), λG

2 = 402 nm (b), respectively.
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FIG. 3. Normalized TSCS (a) and ACS (b) per one strip as a function of the wavelength for N = 1, 10, 20 and 50 silver
strips of the width d = 300 nm, thickness h = 50 nm and period p = 800 nm at the normal incidence of the H-wave (solid
curves) and E-wave (dotted curves). Panel (c) shows zoomed TSCS near the grating resonances λ = π /2 in H-case and
E-case, respectively.

FIG. 4. H-polarization: Scattered far-field and total near field patterns for a stand-alone silver strip (black curve) at the first
(a) and third (b) order surface plasmon resonances on λP

1 = 680.45 nm and λP
3 = 354.1 nm, respectively.

As visible in Figs. 5(a) and 5(b), in the plasmon resonances each strip supports characteristic
field pattern very similar to the stand-alone strip pattern of the corresponding panel in Fig. 4. These
patterns have the hot spots sticking to the strip surface and corresponding, in number, to the half-
waves of the delocalized surface-plasmon standing wave excited on each strip. Behind each strip,
there is a deep shadow.

From the analysis of wave scattering by infinite gratings of wires18, 19 and strips22 it is known
that in the grating resonance near the ±m-th Rayleigh anomaly the other standing wave appears in
the near field, built from two Floquet spatial harmonics of the orders ±m. The latter standing wave
occupies a band of space along the grating and has a characteristic pattern: its hot spots are 2m per
period independently of the strip dimensions and stretch to the distance of several periods, in the
normal direction. In the patterns of Figs. 6(a) and 6(b), one can observe such standing waves along
the x-axis which have m = 1, 2 and maximum magnitudes of 6.8 and 5.88, respectively. Note that
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these standing waves are not visible well in the case of smaller number of strips, e.g. N = 20 or 50,
or thinner strips, e.g. with h = 10 nm.

IV. COMPARISON BETWEEN FINITE AND INFINITE GRATINGS
FOR THE H-WAVE SCATTERING

It is interesting to compare the optical properties of finite and infinite silver strip gratings,
provided that a common figure-of-merit has been selected. This is not an obvious matter. However,
we have found that the reflectance of a plane wave by a finite grating can be introduced as the
part of TSCS associated with the power scattered into the upper half-space. The transmittance of
finite grating can be introduced in similar manner however with account of the optical theorem. In
addition, we normalize these values by the total electric width of the grating Nkp that yields,

R f in = 2/(π Nkp)
∫ π

0
|	(ϕ)|2dϕ, (10)

T f in = 1 + 2

π Nkp

∫ 2π

π

|	(ϕ)|2dϕ + 4

Nkp
Re	(ϕ + β), (11)
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FIG. 7. Reflectance (a), transmittance (b) and absorbance (c) per one strip for the normally incident plane H-wave scattered
by the infinite and N = 10, 20, 50, 200 strip gratings of d = 300 nm, h = 50 nm and p = 800 nm.

Then it is easy to see that, similarly to the infinite grating case, |T |, |R| ≤ 1 and the absorbance
can be found as A f in = 1 − (T f in + R f in) that follows from the conservation of power. Interestingly,
the first and the third terms in (11) cancel each other when N → ∞.

These quantities can be conveniently compared to the reflectance, transmittance and absorbance
of infinite grating, respectively. In Fig. 7, we present such comparison for the H-wave scattering by
finite (N = 10, 20, 50 and 200) and infinite strip gratings of d = 300 nm, h = 50 nm and p = 800 nm,
at the normal incidence. Note that a 200-strip grating presents, in this range, a scatterer whose total
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(solid curves) and E-wave (dotted curves) scattering by N = 50 silver strip grating of d = 300 nm and h = 50 nm in
dependence of the period.

size is from 180λ to 500λ. Computing such a scatterer by any of the earlier algorithms of Refs. 1–4
or any commercial software is completely out of question.

To compute the scattering by infinite strip grating, we have used the same Nystrom algorithm
with the Hankel function replaced, in the kernels of IEs, with the pseudo-periodic Green’s function
having the phase factor of exp(ikp cos β) as dictated by the incident wave.

As visible, even for 20 strips the introduced above reflectance, transmittance and absorbance
values are very close to the infinite-grating values at all wavelengths from 300 nm to 900 nm, except
for the narrow bands around the grating resonances just above λ ≈ p and λ ≈ p/2.

The shape of the grating resonance depends on the number of periods and the studied quantity.
If, the 50-nm thick strips demonstrate sharp resonances of Fano shape on the reflectance

and transmittance curves (Fig. 7(a) and 7(b)), and a Lorentz shape on the absorbance curve.
This difference is explained by the interference between the incident and the scattered field parts
that does not influence the absorption inside the strip. For the same geometry, the TSCS curves
(Fig. 3(a) and 3(b)) display only a Lorentzian-shape resonance above λ ≈ p however again a Fano-
shape above λ ≈ p/2 where more than one quasi-Floquet harmonic contributes to the scattering.

Another interesting question is the optimal grating parameters for observing the most pro-
nounced resonances. We have computed the normalized TSCS as a function of the wavelength for
the N = 50 silver-strip gratings with several different periods (Fig. 8).

Here, plasmon resonances are near their stand-alone strip values while the grating resonances
shift with period.

As one can see from this figure (from yellow to black curves), if the period of the grating is
smaller than the first-order strip-plasmon wavelength of 680 nm, the grating resonance demonstrates
a Fano-shape response in TSCS. If it is larger than that value, the grating resonance turns to more
conventional Lorentzian shape, apparently because of less intensive optical interactions between
the strips. For the considered here grating of 300 × 50 nm2 strips, the most pronounced grating
resonance has been found for the period p = 700 nm (blue curve) when it overlaps with the first
plasmon resonance of the strip. In-resonance strip apparently scatters as a larger obstacle and, as
a consequence, the build-up of the grating resonance is more efficient. Besides, in this case the
merging of the third-order plasmon and the second-order grating resonance occurs around 355 nm.

V. E-POLARIZATION: SCATTERING SUPPRESSION AT RAYLEIGH ANOMALIES

In the alternative case of the E-polarized plane wave scattering (vector �E is parallel to the strips),
we look for the unknown field function that is the only non-zero component of the electric field,
Esc

z (�r ). Here, the GBCs (1)-(2) are also valid provided that Hz is replaced with Ez and R and Q
exchange places.
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FIG. 10. Near E-field patterns around the strips ## 9 to 12 for the E-wave normally incident at the grating of N = 50 silver
strips of d = 300 nm, h = 50 nm and p = 800 nm at the Rayleigh anomalies wavelengths λR

1 = 806.8 nm (a) and λR
2

= 399.4 nm (b).

As a result of such duality, the E-polarization case reduces to two IEs like (5) and (6) however
with R and Q exchanging their places. Although this difference may seem small, it entails major
modifications in the behavior of the components of extinction cross sections.

This can be observed from the comparison of the curves in Fig. 9 and Fig. 2 where the scans of
TSCS and ASC are shown for the strips of three different values of thickness.

Additionally, the E-polarization spectra are shown in Figs. 3 and 8 as dotted curves. As one
can see, on the silver-strip grating the E-polarized wave does not produce any noticeable response
that can be interpreted as the grating resonances. This is because the associated Q-factors are much
smaller in the E-case than in the H-case (by a factor |εr |−2), as it has been found in the analytical
study of infinite strip grating.22

Instead, one can see a gradual build-up of the Rayleigh anomalies as the strip number gets larger;
this takes form of suppression of both the scattering and the absorption at the wavelengths that quickly
tend (at N > 20) to the exact values of the associated Rayleigh wavelengths, λR

m = p/m, m = 1, 2.
As can be found, this is because here the strips happen to be located in the deep minima of the
electric field. Indeed, investigation of the E-field in the dips of TSCS, namely at λR

1 = 806.8 nm and
λR

2 = 399.4 nm for an N = 50 strip grating with parameters d = 300 nm, h = 50 nm and p = 800 nm
(see Fig. 10) demonstrates the |Ez| minima at the strips and low-intensity maxima between them.
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In the case of inclined incidence, the revealed above features of the H and E-wave scattering
by finite strip gratings become more complicated as the Rayleigh anomalies split into pairs and
associated grating resonances take place near each of the corresponding wavelengths. Besides, at
the inclined incidence the plane H-wave excites the strip surface plasmon resonances of the even
orders in addition to odd orders, presented above.

VI. CONCLUSIONS

Summarizing, we have presented accurate numerical analysis of the resonance phenomena
caused by the periodicity in the scattering and absorption of the H- and E-polarized light by free-
standing sparse finite flat gratings of large number of thin silver nanostrips. Our modelling has been
based on the elimination of the internal fields inside strip grating with the aid of generalized boundary
conditions imposed on the strip median lines. Such a simplification leads to two independent sets of
N coupled integral equations, one log-singular and the other hyper-singular. For the building of the
discrete model we have used the developed earlier Nystrom-type method based on the quadrature
formulas of interpolation type. The resulting algorithm is efficient and reliable, with guaranteed
convergence and controlled accuracy of computations.

We have demonstrated two different types of resonances in the scattering and absorption of
the H-polarized light: the surface plasmon resonances on the strips and the grating resonances
induced by the periodicity. We have studied how they depend on the dimensions and the number
of silver nanostrips in the finite grating. The surface-plasmon resonances keep almost the same
wavelength and shape as for a stand-alone silver strip regardless the strip number. In contrast, if
this number grows and reaches several dozens or hundreds, quite sharp peaks associated with the
grating-type resonances appear at the wavelengths slightly larger than the Rayleigh anomalies of
associated infinite grating (that is λR

m = p/m, m = 1, 2, . . . at the normal incidence). Thus, the
grating resonances show little dispersion however are still sensitive to the silver strip dimensions in
the sense that the shorter gratings of more massive strips demonstrate more pronounced resonances.
In the case of the E-polarized light, the same gratings do not possess surface-plasmon resonances and
do not show any noticeable response at the grating resonances however demonstrate the formation
of the Rayleigh anomalies if the strip number gets larger. Note that, being restricted with paper
length, we have focused our numerical analysis on the sparse strip gratings having the slot width
comparable or larger than the strip width. The properties of dense gratings, i.e. those having narrow
slots, are also interesting because of enhanced transmission in the resonances however require a
separate publication.
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