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1. INTRODUCTION

Graphene is known to be a two�dimensional allot�
ropic form of carbon, the crystal lattice of which is
similar to the structure of honeycomb [1]. The unit cell
of this lattice is represented by a regular hexagon with
carbon atoms at its vertices. Graphene can be consid�
ered as the main structural unit of other allotropic
forms of carbon, namely, fullerenes (zero�dimensional
objects) [2], quantum nanotubes (one�dimensional
objects) [3], and three�dimensional graphite forms
(which are represented by graphene stacks bounded by
weak van der Waals forces). The structure of the energy
bands of graphene and its semimetal conducting prop�
erties were theoretically described in 1947 [4]. How�
ever, the first graphene films were prepared only 60
years later via multiple mechanical splitting of highly
oriented pyrolitic graphite [5]. The uniqueness of work
[5] also consists in the fact that it proved the possibility
of existence of regular thermodynamically stable 2D
crystals, which had been denied for a long time (see,
e.g., [6] and Refs. therein).

The main difference of the electronic properties of
graphene from those of a conventional 2D electron gas
(2DEG; e.g., a thin metallic or semiconductor film) is
that graphene is a semimetal with a zero band overlap.
The valence band and the conduction band of
graphene touch each other at two points in the Bril�
louin zone (so�called Dirac points). Near these points,
the dependence of the carrier energy on the carrier
momentum is linear, and charge carriers are massless

chiral Dirac fermions [7–9]. The fermion velocity in
graphene is lower than the velocity of light in vacuum
by a factor of 300. The Dirac character of charge car�
riers in graphene, e.g., makes it possible to observe a
number of unique effects, such as the anomalous
quantum Hall effect (at room temperature) [8], the
Klein paradox [10–12], the Aharonov–Bohm effect
[13], the Anderson localization [14], and the Coulomb
blockage [15]. In strong magnetic fields, exciton gaps
[16] and Wigner crystals [17] can form in graphene.
Binary graphene layers can exhibit both ferromagnetic
and antiferromagnetic properties [18].

These unusual physical properties of graphene are
caused by the internal quantum�mechanical features
of graphene and, hence, manifest themselves at the
quantum level. The quantum�mechanical peculiari�
ties of the transport properties of graphene are also
reflected on its “classical” electrodynamic character�
istics. For example, Rana [19] proposed a conceptual
model for coherent terahertz radiation source, which
is based on the inversion electron population of levels
in the valence band of graphene due to the interband
transitions caused by the interaction of electrons in the
valence band with surface plasmons of graphene. The
authors of [20] revealed a giant Purcell effect for an
elementary dipole located on the surface of a metama�
terial consisting of alternating graphene and dielectric
layers. It was noted that this effect can be used to sig�
nificantly increase the terahertz radiation source
intensity. The high electron mobility in graphene
(up to 106 cm2/(V s) [21]) makes it possible to create
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graphene�based active plasmon interferometers and
photodetectors that can operate in the frequency
range from terahertz to visible radiation and have an
extremely high operation speed, a low control voltage,
low power consumption, and very small sizes [22].

Mikhailov and Ziegler [23] predicted the ability of
graphene to maintain the propagation of TE�polarized
surface electromagnetic waves. The physical cause of
this ability is a linear law of dispersion of conduction
electrons near a Dirac point, and a necessary condi�
tion of this ability is a negative imaginary part of the
resulting conductivity of graphene.

The purpose of this work is to theoretically study
the properties of surface electromagnetic states
(SEMSs) localized near graphene and their difference
from the properties of SEMSs near 2DEG with a qua�
dratic law of electron dispersion. Recall that SEMSs
are electromagnetic oscillations that are uniform
along the surface and have a zero tangential wavenum�
ber. The field amplitudes of such oscillations decrease
exponentially with the distance from an interface. The
possibility of existence of such states was first noted in
[24, 25]. The authors of those works were also the first
to draw an analogy between SEMSs and the Tamm
electron states [26] and to perform experiments on
SEMS excitation. Practical interest in SEMSs is
related to the possibility to use such the states and
structures in which they are present to create reso�
nance optical filters [27], polariton lasers [28], and
optical logic devices [29]. Many theoretical and exper�
imental works dealt with the properties of SEMS at the
interfaces of a plasmalike medium (PM) and a photo�
nic crystal (PC) [27, 30, 32–37] and at the interface of
two PCs [30–32, 38].

The SEMS at the interface between artificial PM
and PC in the gigahertz frequency range was experi�
mentally studied for the first time in [34]. The effect of
a dc magnetic field on the properties of SEMS at the
interface between PM and dielectric PC was theoreti�
cally studied in [36]. The properties of SEMS at the
interface of magnetic and dielectric PCs and in the
PM–ferrite–dielectric PC in a dc magnetic field were
comprehensively investigated in [37, 38]. The disper�
sion properties of SEMS in the structure consisting of
a finite number of periodic alternating graphene and
dielectric layers were analyzed in [39]. In particular, it
was found that these properties depend substantially
on the thicknesses of the boundary dielectric layers of
the structure.

In [40], we theoretically studied the dispersion
characteristics of the TM and TE electromagnetic
waves localized near graphene embedded into dielec�
tric PC. It was shown that these waves can coexist in
the same frequency range, in contrast to the case
where graphene is in a homogeneous dielectric envi�
ronment (e.g., in vacuum [23]). It was found that a
localized TE mode appears in the first bandgap of PC
beginning from the IR spectral region, where the
imaginary part of the resulting conductivity of

graphene becomes negative, despite the asymmetric
dielectric environment of graphene. The depths of
localization of the electromagnetic fields of TM and
TE modes near graphene were compared in the centi�
meter, terahertz, and IR regions, and the excitation of
the corresponding modes by an external electromag�
netic wave in a finite PC–graphene–PC structure was
investigated.

In contrast to [40], in this work we theoretically
study the spectral properties of SEMS on graphene
placed in antiferromagnetic PC in an external dc mag�
netic field. Prominence was given to an analysis of the
magnetic field dependences of the transmission spec�
trum of an antiferromagnetic PC–2DEG–antiferro�
magnetic PC structure, which differ qualitatively for
2DEGs with linear and quadratic dispersion laws. In
particular, we showed that the behavior of the depen�
dences of the position of the transmission coefficient
peaks that correspond to SEMS excitation in the
bandgap of PC on the carrier concentration in 2DEG
is qualitatively close to the behavior of the correspond�
ing dependences for the Fermi energy. A fundamen�
tally new result of this work is thought to be the fact
that the properties of SEMS in antiferromagnetic PCs
and the effects of resonance excitation of these states
by an external electromagnetic wave can be effectively
driven by an external dc magnetic field. For example,
we showed that, when studying the magnetic�field
dependence of the transmission spectrum of antiferro�
magnetic PC with embedded 2DEG, one can deter�
mine the type of carrier dispersion law in 2DEG, i.e.,
a linear (for graphene) or quadratic (e.g., for a thin
graphite film, metal, or semiconductor) law.

For SEMS to be excited on graphene, the oscilla�
tion frequencies should not be much lower than pulsed
electron relaxation frequency ν, which is rather high
due to the effect of a substrate (e.g., ν ~ 1013 s–1 for
conventional “non�suspended” graphene [41, 42]).
Terahertz or higher frequencies meet this condition.
Therefore, the most convenient material for the for�
mation of a magnetic PC is an antiferromagnet, the
resonance frequencies in which can lie in the submil�
limeter region of the electromagnetic spectrum [43].
We consider the case of low temperatures well below
Néwel temperature TN. Numerical calculations were
performed for antiferromagnetic iron difluoride FeF2
with TN ≈ 78 K at liquid�helium temperatures [44].

2. FORMULATION OF THE PROBLEM 
AND BASIC EQUATIONS

The coordinate system is chosen so that axis y is
directed along the normal to antiferromagnetic PC
layers and external dc magnetic field H0 is directed
along axis z (Fig. 1). The unit cell of antiferromagnetic
PC consists of an antiferromagnet and a nonmagnetic
insulator with layer thicknesses d1 and d2, respectively.
The period of the antiferromagnetic PC structure is
d = d1 + d2. Graphene is located in plane y = Nd, i.e.,
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at the boundary between the (N – 1)th and Nth cells of
antiferromagnetic PC. For clarity, Fig. 1 schematically
shows graphene as a layer of a finite width. The antifer�
romagnet is nonconducting and is described by per�
mittivity ε1 and magnetic permeability tensor µ. The
nonmagnetic insulator is described by permittivity ε2.
The easy axis of the antiferromagnet is parallel to axis
z, i.e., vector H0. We consider the Voigt geometry,
where an electromagnetic wave propagates in plane xy
perpendicular to the easy axis of the ferromagnet and,
correspondingly, to the dc magnetic field direction.
Let a TE�polarized wave have field components E =
(0, 0, Ez) and H = (Hx, Hy, 0). The dc magnetic field is
assumed to be lower than critical field Hsf at which a
spin�flop transition proceeds in the antiferromagnet
[45]. We also neglect the dissipative losses in the anti�
ferromagnetic PC layers.

Maxwell equations for the fields in the antiferro�
magnet region are written as

(1)

(2)

where vectors B and H are related to each other by a
certain constitutive equation. When specifying elec�
tromagnetic wave fields in the form

(3)

we can write this constitutive equation as Bj = μjkHk,
where tensor µ is [44, 45]

(4)

(5)

(6)

where ωm = 4πγM0, ωa = γHa, ω±
 = ω ± γH0;

(7)

where γ is the gyromagnetic ratio, M0 is the sublattice
magnetization, and Ha and Hex are the effective anisot�
ropy and exchange fields, respectively. Note that criti�
cal field Hsf at which a spin�flop transition proceeds in
the antiferromagnet is written as

(8)

curlE 1
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From Maxwell equations (1) and (2), we obtain the
following expressions for electric field component Ez
and magnetic field components Hx and Hy:

(9)

(10)

(11)

where

(12)

(13)

(14)

Factor exp[i(kxx – ωt)] will be omitted in Eqs. (9)–
(11) and the subsequent field equations.

In the region of the nonmagnetic insulator (μ2 = 1),
the Maxwell equations are described by Eqs. (1) and
(2), where vector H substitutes for vector B, permittiv�
ity ε2 substitutes for ε1, and field equations have the
form
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Fig. 1. Geometry of the problem (APC is the antiferro�
magnetic photonic crystal).
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Using the approach developed in [46] to describe
the coupled Tamm states on a crystal surface, we rep�
resent the fields in the region y > Nd as the superposi�
tion of incident and reflected waves,

(19)

(20)

where k is the Bloch wavenumber [47], the first terms
in Eqs. (19) and (20) correspond to the fields of the
wave incident on the interface y = Nd, and the second
terms correspond to the fields of the wave reflected
from the interface y = Nd. Superscript “R” means that
fields belong to the region on the right of the plane y =
Nd of graphene. Constant Ain is taken to be specified
and constant Ar is to be determined from boundary
conditions. The fields of the transmitted wave (in the
region y < Nd, i.e., the region with superscript “L”) are
written in the form

(21)

(22)

where constant Atr is to be determined from boundary

conditions. Expressions for fields (y), (y);

(y), (y); and (y), (y) are given in
[37].

The fields in antiferromagnetic PC satisfy the
Bloch relation

(23)

and the translation condition [47]

(24)

where M(TE) is the TE wave propagation matrix and

cos(kd) = (  + )/2 [47]. Let Imk > 0. In this
case, the sign “plus” in the exponent in Eq. (23) cor�
responds to the wave propagating in the positive direc�
tion of axis y, and the sign “minus” corresponds to the
wave propagating in the negative direction of axis y.

With conditions (23) and (24), we can find the rela�
tion between the components of the electric and mag�
netic fields at the interface y = Nd in the following two
equivalent forms:

(25)
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From the conditions of continuity of the tangential
components of the electric and magnetic fields at the
boundaries of the PC layers, we find the following
expressions for the matrix M(TE) components:

(27)

(28)

(29)

(30)

We write boundary conditions in the graphene
plane in the form

(31)

(32)

where σ is the electrical conductivity of graphene,
which is the sum of the intraband (σintra) and interband
(σinter) conductivities [48]. For a degenerate electron
gas (kBT � EF, where kB is the Boltzmann constant, T
is the temperature, and EF is the Fermi energy), con�
ductivities σintra and σinter are determined from the
expressions [48]
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where ν = 108 cm/s, n is the carrier concentration in
graphene, and θ(x) is the Heaviside function [49].
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During passage through the graphene plane, the prop�
agation matrix has the form

(36)

We find the Fresnel transmission coefficient in the
region y < Nd. The vanishing of the denominator of
this coefficient corresponds to the excitation of a sur�
face electromagnetic wave (at kx ≠ 0). Therefore, set�
ting the denominator of the Fresnel transmission coef�
ficient of an electromagnetic wave equal to zero, we
derive a dispersion equation for surface electromag�
netic waves. At kx = 0, this equation describes the
properties of SEMS in the structure under study.

When meeting boundary conditions (31) and (32),
we obtain the following expression for Fresnel trans�
mission coefficient tF of surface electromagnetic waves
in the region y < Nd:

(37)

Therefore, the dispersion equation for such waves
takes the form

(38)

From here on, we will analyze the properties of SEMS
in the presence of a dc magnetic field by numerical
solution of Eq. (38) at kx = 0.

We now analyze the structure consisting of 2N unit
cells and graphene located at the center of the struc�
ture that is located in a nonmagnetic dielectric with
permittivity εd. Energy transmission coefficient D2N
for an electromagnetic wave that is incident on this
structure from the side of positive values of y is
expressed as

(39)

where kdy =  and

(40)

3. NUMERICAL ANALYSIS 
OF THE SEMS EQUATION

We now numerically analyze Eq. (38) at kx = 0 and
ν = 0 and construct the dependences of the SEMS fre�
quencies on the external magnetic field. To this end,
we introduce dimensionless frequency Ω = ω/ω0,
where ω0 ≈ 0.995ω1, and chose the following material
parameters of the media composing antiferromagnetic
PC. As the antiferromagnetic medium, we chose iron
difluoride FeF2 [44]: ε1 ≈ 5.5, ω1 ≈ 1.6 × 1012 s–1, γ =
3.15 × 106 s–1 Oe–1, Ha ≈ 200 kOe, Hex ≈ 540 kOe, Hsf ≈
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1 0

4πσ
c

��������– 1⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

.=

tF
kd( )sin

kd( )sin 2πiσ
c

����������M12
TE( )–

������������������������������������������.=

kd( )sin 2πiσ
c

����������M12
TE( )

.=

D2N
2

F11 F22
ckdy

ω
��������F12– ω

ckdy

��������F21–+
��������������������������������������������������������,=

εdω2
/c2 kx

2–

F M TE( )( )
N
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465 kOe, and M0 = 560 G. As the nonmagnetic insu�
lator, we chose quartz glass with ε2 ≈ 3.8 [50]. The
structure temperature is taken to be T = 4.2 K, which
is well below the Néel temperature.

Figure 2 shows the Ω(H0) dependences (curves 1,
2) for d1 = d2 = 0.45c/ω0 and the electron concentra�
tion n = 1012 cm–2 (EF ≈ 1350 K) in graphene. The
shaded regions in Fig. 2 correspond to the allowed
bands of antiferromagnetic PC, and the white regions
correspond to the bandgaps of antiferromagnetic PC.
Curve 1 is located in the first bandgap and curve 2, in
the third bandgap. Curve 3 corresponds to the condi�
tion |μeff|  ∞ and curve 4, to the condition μeff = 0.
In the region between curves 3 and 4, we have μeff < 0
and Re(k1y) = 0. As is seen from Fig. 2, the character
of the Ω(H0) changes qualitatively when the bandgap
number increases. Using antiferromagnetic PC as the
medium surrounding the graphene plane, we can
detect SEMS excitation at a fixed frequency when an
external electromagnetic wave is incident on the struc�
ture along the normal by changing the dc magnetic
field.

4. NUMERICAL ANALYSIS OF THE FIELD 
DEPENDENCE OF THE TRANSMISSION 

COEFFICIENT

We now analyze the dependences of energy trans�
mission coefficient D2N on external magnetic field H0
at kx = 0 and εd = 1 for various carrier concentrations
n in graphene.

Figure 3 shows the D2N(H0) dependences for anti�
ferromagnetic PC with N = 10, d1 = d2 = 0.45c/ω0,
Ω = 1, and ν = 1013 s–1 for various values of n. SEMS
excitation corresponds to peaks A and B. It is seen
that, as the carrier concentration increases, the SEMS
peak shifts into the bandgap, its magnitude decreases,
and the peak becomes more diffuse. The last circum�
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Fig. 2. Dimensionless SEMS frequency vs. dc magnetic
field.
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stance is related to a sufficiently high relaxation fre�
quency ν. Note that concentration n can be changed
by the application of gate voltage to graphene [5].

Assume that 2DEG, the carrier dispersion law in
which can be both linear (graphene) and quadratic
(e.g., semiconductor), is located at the center of the
structure under study. In the former case, the conduc�
tivity of the conducting layer is described by Eqs. (33)
and (34); in the latter case, it is described by the Drude
formula for a degenerate electron gas,

(41)

where n, m, and  are the concentration, the effec�
tive mass, and the Fermi energy of electrons in 2DEG,
respectively. For an electron gas with a quadratic car�
rier dispersion law, the equation that describes the
properties of SEMS and the expression for the trans�
mission coefficient are determined from Eqs. (38) and
(39), where σ should be replaced by σD.

Let us analyze the dependence of dc magnetic
fields Hpeak corresponding to the SEMS peaks on the
carrier concentration for 2DEG with a linear or a qua�
dratic carrier dispersion law. Figure 4 shows the

Hpeak(n), EF(n), and (n) dependences for antiferro�
magnetic PC with N = 10, d1 = d2 = 0.45c/ω0, Ω = 1,
ν/ω0 � Ω, and m = 0.013m0 (InSb semiconductor, m0

is the free electron mass). In Fig. 4, curve 1 corre�
sponds to the Hpeak(n) dependence for 2DEG with a
linear electron dispersion law, curve 2, to the Hpeak(n)
dependence for 2DEG with a quadratic electron dis�
persion law; curve 3, to the EF(n) dependence; and

curve 4, to the (n) dependence. Line 5 corresponds

to an electron concentration ntr ≈ 4.1 × 1011 cm–2 in

σD ie2EF
D

π�
2 ω iν+( )

������������������������, EF
D π�

2n
m

����������,= =

EF
D

EF
D

EF
D

2DEG, and the equality EF =  holds true at this
concentration. As is seen in Fig. 4, the Hpeak(n) depen�
dence for 2DEG with a linear electron dispersion law

is qualitatively close to the dependence EF(n) ∝ ,
and the Hpeak(n) dependence for 2DEG with a qua�
dratic dispersion law is close to the dependence

(n) ∝ n. This finding means that the behavior of the
Hpeak(n) dependence points to a qualitative character
of an electron dispersion law in 2DEG. Note that the
inequality Imσ > ImσD is satisfied in the range n < ntr

and the inequality Imσ < ImσD is satisfied in the range
n > ntr. Note also that the condition Imσ > 0 is met for
the chosen graphene parameters and a frequency
Ω = 1. When the real losses in graphene (when the
ν/ω0 ratio is higher than or on the order of frequency
Ω) are taken into account, the behavior of the depen�
dences considered above is retained but the values of n
at which SEMS peaks are detected is bounded by the
range 109 cm–2 ≤ n < 5 × 1011 cm–2.

Figure 5 shows the distributions of the squared
moduli of the complex amplitudes of the electric and
magnetic fields in SEMS and the distribution of the
energy transmission coefficient along the structure
with graphene at kx = 0, N = 10, d1 = d2 = 0.45c/ω0,
Ω = 1, ν = 1013 s–1, n = 1012 cm–2, and εd = 1. A wave
is incident on the structure from the side of cell 20 and
graphene is placed in the plane y = 10d. As is seen in
Fig. 5, the envelopes of |Ez|

2 and |Hx|
2 (Fig. 5b, curve 1)

begin to decrease during the motion deep into the
structure beginning from cell 20 and do not increase
when the graphene plane is approached, as in the case
of the SEMS field distribution near the PM–PC (or
two different PCs) interface (see, e.g., [30, 32]). This
circumstance is related to a high value of frequency ν.
High dissipative losses of the electromagnetic field in
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the graphene plane lead to an approximately sixfold
jumplike decrease of D2N at y = 10d (Fig. 5b, curve 2).

5. CONCLUSIONS

The spectrum of SEMSs was theoretically studied
in the terahertz frequency range near graphene placed
in antiferromagnetic PC in the presence of a dc mag�
netic field. A relation that connects the SEMS fre�
quencies to the parameters of graphene and the anti�
ferromagnetic PC was obtained, and an expression for
the coefficient of transmission of an electromagnetic
wave through such a structure with a finite number of
elementary cells was derived. The dependences of the
positions of transmission coefficient maxima on the
magnetic field and the carrier concentration in 2DEG
with a linear or a quadratic electron dispersion law
were compared. The behavior of these dependences
was found to agree qualitatively with the behavior of
the dependence of the Fermi energy on the carrier
concentration in 2DEG with the corresponding elec�
tron dispersion law. This means that, when analyzing
the dependences of the position of the transmission
coefficient on the magnetic field and the carrier con�
centration in 2DEG, one can draw a conclusion
regarding the character of the carrier dispersion law.

REFERENCES

1. A. H. Castro Neto, F. Guinea, N. M. R. Peres,
K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81,
109 (2009).

2. W. Andreoni, in Physics and Chemistry of Materials with
Low�Dimensional Structures, Ed. by F. Levy and
E. Mooser (Springer, Berlin, 2000), Vol. 23, p. 448.

3. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Phys�
ical Properties of Carbon Nanotubes (Imperial College
Press, London, 1998), p. 259.

4. P. R. Wallace, Rev. Mod. Phys. 71, 622 (1947).

5. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang,
Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and
A. A. Firsov, Science (Washington) 306, 666 (2004).

6. J. C. Meyer, A. K. Geim, M. I. Katsnelson,
K. S. Novoselov, T. J. Booth, and S. Roth, Nature
(London) 446, 60 (2007).

7. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183
(2007).

8. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang,
M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and
A. A. Firsov, Nature (London) 438, 197 (2005).

9. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature
(London) 438, 201 (2005).

10. M. I. Katsnelson, K. S. Novoselov, and A. K. Geim,
Nat. Phys. 2, 620 (2006).

11. V. V. Cheianov, V. I. Fal’ko, and B. L. Altshuler, Science
(Washington) 315, 1252 (2007).

12. C. W. J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008).
13. P. Recher, B. Trauzettel, A. Rycerz, Ya. M. Blanter,

C. W. J. Beenakker, and A. F. Morpurgo, Phys. Rev. B:
Condens. Matter 76, 235404 (2007).

14. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson,
F. Schedin, L. A. Ponomarenko, D. Jiang, and
A. K. Geim, Phys. Rev. Lett. 97, 016801 (2006).

15. F. Sols, F. Guinea, and A. H. Castro Neto, Phys. Rev.
Lett. 99, 166803 (2007).

16. V. P. Gusynin, V. A. Miransky, S. G. Sharapov, and
I. A. Shovkovy, Phys. Rev. B: Condens. Matter 74,
195429 (2006).

17. C.�H. Zhang and Y. N. Joglekar, Phys. Rev. B: Con�
dens. Matter 75, 245414 (2007).

18. N. M. R. Peres, F. Guinea, and A. H. Castro Neto,
Phys. Rev. B: Condens. Matter 72, 174406 (2005).

19. F. Rana, IEEE Trans. Nanotechnol. 7, 91 (2008).
20. I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and

Y. S. Kivshar Phys. Rev. B: Condens. Matter 87, 075416
(2013).

21. A. S. Mayorov, D. C. Elias, M. Mucha�Kruczynski,
R. V. Gorbachev, T. Tudorovskiy, A. Zhukov, S. V. Moro�
zov, M. I. Katsnelson, V. I. Fal’ko, A. K. Geim, and

Fig. 5. Distributions (a) |Ez(y)|2 and (b) (1) |Hx(y)|2 and (2) D2N along the structure for N = 10.

20

1

2

3

|Hx |2, arb. units

10 150

2

(b)

1

0.1

0.2

0.3

0.4

5

4

y/d

D2N

20

1

2

|Ez|
2, arb. units

10 150

(a)

5
y/d



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 120  No. 4  2015

MAGNETIC�FIELD�DRIVEN SURFACE ELECTROMAGNETIC STATES 709

K. S. Novoselov, Science (Washington) 333, 860
(2011).

22. A. N. Grigorenko, M. Polini, and K. S. Novoselov, Nat.
Photonics 6, 749 (2012).

23. S. A. Mikhailov and K. Ziegler, Phys. Rev. Lett. 99,
016803 (2007).

24. A. A. Bulgakov and V. R. Kovtun, Opt. Spectrosc. 56
(5), 471 (1984).

25. A. A. Bulgakov and V. R. Kovtun, Solid State Commun.
56, 781 (1985).

26. I. E. Tamm, Phys. Z. Sowjetunion 1, 733 (1932).
27. M. E. Sasin, R. P. Seisyan, and M. A. Kaliteevski,

Superlattices Microstruct. 47, 44 (2010).
28. A. Kavokin, I. Shelykh, and G. Malpuech, Appl. Phys.

Lett. 87, 261105 (2005).
29. I. Iorsh, P. V. Panicheva, V. A. Slovinskii, and

M. A. Kaliteevski, Tech. Phys. Lett. 38 (4), 351 (2012).
30. A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin,

M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and
A. B. Granovsky, Phys. Rev. B: Condens. Matter 74,
045128 (2006).

31. T. Goto, A. V. Dorofeenko, A. M. Merzlikin,
A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisy�
ansky, and A. B. Granovsky, Phys. Rev. Lett. 101,
113902 (2008).

32. A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin,
and A. A. Lisyansky, Phys.—Usp. 53 (3), 243 (2010).

33. F. G. Bass and A. P. Tetervov, Phys. Rep. 140, 237
(1986).

34. D. P. Belozorov, M. K. Khodzitsky, and S. I. Tarapov,
J. Phys. D: Appl. Phys. 42, 055003 (2009).

35. Yu. O. Averkov, N. N. Beletskii, and V. M. Yakovenko,
Radiofiz. Elektron. (Kharkov) 2 (16), 40 (2011).

36. Yu. O. Averkov, N. N. Beletskii, S. I. Tarapov, et al.,
Radiofiz. Elektron. (Kharkov) 3 (17), 48 (2012).

37. Yu. O. Averkov, S. I. Tarapov, A. A. Kharchenko, and
V. M. Yakovenko, Low Temp. Phys. 40 (7), 667 (2014).

38. S. I. Tarapov and D. P. Belozorov, Low Temp. Phys. 38
(7), 603 (2012).

39. D. Smirnova, P. Buslaev, I. Iorsh, I. V. Shadrivov,
P. A. Belov, and Y. S. Kivshar, Phys. Rev. B: Condens.
Matter 89, 245414 (2014).

40. Yu. O. Averkov, V. M. Yakovenko, V. A. Yampol’skii,
and Franco Nori, Phys. Rev. B: Condens. Matter 90,
045415 (2014).

41. Y.�W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam,
E. H. Hwang, S. Das Sarma, H. L. Stormer, and
P. Kim, Phys. Rev. Lett. 99, 246803 (2007).

42. X. Hong, K. Zou, and J. Zhu, Phys. Rev. B: Condens.
Matter 80, 241415 (2009).

43. A. S. Borovik�Romanov, Lectures on Low�Temperature
Magnetism (Moscow State University, Moscow, 2010),
p. 48 [in Russian].

44. F. Lima, T. Dumelow, E. L. Albuquerque, and J. A. P. da
Costa, J. Opt. Soc. Am. B 28, 306 (2011).

45. E. A. Turov, A. V. Kolchanov, V. V. Men’shenin,
I. F. Mirsaev, and V. V. Nikolaev, Symmetry and Physical
Properties of Antiferromagnets (Fizmatlit, Moscow,
2001), p. 131 [in Russian].

46. I. M. Lifshitz and S. I. Pekar, Usp. Fiz. Nauk 56, 531
(1955).

47. F. G. Bass, A. A. Bulgakov, and A. P. Tetervov, High�
Frequency Properties of Semiconductors with Superlat�
tices (Nauka, Moscow, 1989), p. 23 [in Russian].

48. L. A. Falkovsky, J. Exp. Theor. Phys. 106 (3), 575
(2008).

49. M. Abramowitz and I. Stegun, Handbook of Mathemat�
ical Functions: With Formulas, Graphs, and Mathemati�
cal Tables (Dover, New York, 1965; Nauka, Moscow,
1979), p. 807.

50. A. P. Babichev, N. A. Babushkina, A. M. Bratkovskii,
et al., in Handbook of Physical Quantities, Ed. by
I. S. Grigoriev and E. Z. Melikhov (Energoatomizdat,
Moscow, 1991; CRC Press, Boca Raton, Florida,
United States, 1997), p. 549.

Translated by K. Shakhlevich


