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Abstract—Theoretical results on the plane electromagnetic wave
diffraction from a structure as a strip periodic grating on a
paramagnetic layer, the permeability of which possesses negative
real part in the microwave band, are obtained using analytical
regularization based on the solution to the Riemann-Hilbert problem.
The effect of the resonant transmission accompanied by extremely
high absorption is thoroughly studied across the frequency band of the
surface waves of the paramagnetic layer placed in the biasing magnetic
field. This effect is caused by the surface waves of the layer excited
resonantly by the plane incident wave with the diffraction grating
present. The resonant frequency is electronically tuned by the biasing
magnetic field.
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1. INTRODUCTION

Artificially structured materials have the exciting potential to revo-
lutionise communication technology because they can be engineered
for applications in microwave and optical devices. Among such com-
posite materials that are very popular now are the so called meta-
materials [1, 2], which at certain frequency are capable of exhibiting
anomalous refraction with negative real-valued permittivity and per-
meability due to their frequency dispersion. Also materials with one
negative constitutive parameter (permittivity or permeability) have
attracted much interest [3, 4].

The ever growing demand for better operating characteristics,
extended capabilities and new functions of today’s microwave devices
is the driving force behind the integration of composite materials in
modern microwave technology. Although periodic structures such as
diffraction gratings have a long history, their resonant behaviour in
combination with composite media is rather novel and theoretically
interesting as well as exciting for technological developments [5–7]. A
rather novel study carried out in papers [8–10] has shown that the
incident wave energy can be effectively absorbed in a resonant way by
the structure consisting of a diffraction grating and absorbing medium
with one of the constitutive parameters negative. For simplification the
frequency dispersion of the constitutive parameters was not considered
in those works.

In the present paper, we study diffraction of a plane wave by
a strip grating lying on an absorptive layer whose permeability is
frequency dependent and has a negative real part in the microwave
band. This diffraction problem is mathematically solved using
an Analytical Regularization [11, 12] based on the Riemann-Hilbert
problem method [13], and the obtained solution thus admits a rigorous
and provably accurate numerical treatment in the resonant domain.

We consider a crystal of ruby as a material of layer, which,
being a paramagnetic material placed in the biasing magnetic field,
demonstrates a frequency dispersion of its permeability. Note the
frequency dispersion is effectively controlled by the biasing magnetic
field. In spite of the rather simplified character of the dispersion form
chosen, this dispersion wholly satisfactorily describes the real processes
in the paramagnetic materials, and moreover the general character
of this frequency dispersion is typical for plenty of new composite
materials. A numerical modeling of the microwave diffraction in the
grating resonance band (where the wave length is comparable to the
grating period) reveals that the layer supports surface waves. The
grating transforms the incident plane wave into the superposition of the
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partial waves of spatial spectrum. Upon certain conditions the grating
surface harmonics from this superposition are able to excite the surface
waves of the layer. When this happens we observe the energetically
pronounced resonant regimes with interesting applied properties; one
of them, the regime of resonant transmission with extremely high
absorption, is studied here. The property of this regime can be used for
creating novel devices, non-reflecting coatings, and microwave antenna
components, the characteristics of which are electronically tunable by
the biasing magnetic field.

2. PROBLEM FORMULATION

The geometry of the structure is shown in Fig. 1(a). A periodic
grating of infinitely thin and perfectly conducting strips parallel to
the OX axis lies on the plane layer of paramagnetic material with
frequency dispersive relative permeability μ = μ(ω) and fixed relative
permittivity ε. The grating is placed in the plane z = 0, its period is
l, and the slot width is d. The thickness of paramagnetic layer equals
h.

(a) (b)

Figure 1. The structure geometry (a) and the wave incidence (b).

The interaction of electromagnetic field with paramagnetic
material under the condition of electron-spin resonance results in the
frequency dispersion of its permeability. The frequency behaviour of
the complex valued permeability follows from the macroscopic model
of the medium based on the well-known Bloch motion equation, see
for example [14, 15]. In the so-called “slowly passing” resonance line
approximation (i.e., for the stationary case) and for small amplitude
of alternating field, the permeability of the paramagnetic material
μ = μ′ + iμ′′ can be presented in the following form [14, 16]:
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where ω is the frequency of the incident wave, ω0 = γB0 is the Larmor
frequency of the electron-spin precession in the biasing magnetic field
B0, γ is the gyromagnetic ratio, χ0 is the static magnetic susceptibility,
and τ is a cross relaxation time.

Throughout the paper we suppose, that the paramagnetic layer
has the following parameters: τ = 10−8 s, χ0 = 1, and ε = 10.0. An
example of such a medium is ruby, where the electron-spin resonance
phenomenon occurs for one of allowed levels. Suppose that an external
magnetic field B0 = 2.697 T causing precession with the frequency
ω0 = 4.71× 1011 rad s−1 is applied to the paramagnetic layer, and also
suppose that the grating period is l = 5 × 10−3 m, and d/l = 0.5.
Under these assumptions the frequency dispersion of permeability
is shown in the Fig. 2 as a function of non-dimensional frequency
Ω = l

λ = l
2π

√
ε0μ0 ω, where λ is the wave length in vacuum and the

period l is given above. Thus, due to the magnetic interaction, in the
long-wave (l < λ) and in the resonant (l ∼ λ) ranges of the grating, the
real part of layer permeability has negative value, while the positive
imaginary part describes the losses in the medium.

Figure 2. The frequency dispersion of the permeability μ = μ′ +
iμ′′ as a function of the non-dimensional frequency parameter Ω =
1
2π

√
ε0μ0ω (l = 5 × 10−3 m).

The monochromatic plane wave of E-polarization (E||OX):
Ein = E0 exp

[
i
(
kinr− ωt

)]
, Hin = H0 exp

[
i
(
kinr− ωt

)]
is obliquely

incident on the grating such that

E0 = (ẽ, 0, 0) , H0 =
(

0, − ẽ

ρ
cos α,

ẽ

ρ
sin α

)
, (2)

where ẽ is a complex amplitude of the electric field, α ∈
[−π/2, π/2] is the angle between the incident wave vector kin =
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−ω
√

ε0μ0 (0, sin α, cos α) and the OZ axis (see Fig. 1(b)), and ρ =√
μ0/ε0 is the impedance of free space. We seek the diffracted field.

The incident field is x-independent, and the grating extends
infinitely in the x-direction, thus the problem is solvable in two-
dimensional terms (∂/∂x ≡ 0). The constitutive parameters of media
are scalar permittivity and permeability. Therefore, the considered
problem can be separately solved for E- or H-polarization (H‖OX)
cases. One can prove that the diffracted field has the same polarization
as the incident wave.

For solution existence and uniqueness, the conditions to satisfy
are: Maxwell’s equations, radiation condition, boundary conditions,
quasiperiodicity condition, and condition of the field energy finiteness
within any confined volume of space.

3. SOLUTION

The grating periodicity along the OY axis allows us to expand the
solution in a Fourier series. The series substitution in the Helmholtz
equation gives the field representation which coincides with the
Rayleigh expansion of the diffracted field in an infinite series of partial
waves of the spatial spectrum. Let the index j = 1 correspond to the
upper and lower half-spaces, and j = 2 to the paramagnetic layer, then
the propagation constant of the n-th harmonic is ξn = 2πn/l−k1 sin α

in the y-direction and ζ
(j)
n =

√
(kj)

2 − (ξn)2
(
Im

(
ζ

(j)
n

)
≥ 0

)
in the

z-direction, where k1 = ω
√

ε0μ0 and k2 = k1

√
εμ(ω). For example,

the field electrical component (which is parallel to the OX-axis) is

Ex = ẽ exp(−ik1(y sinα + z cos α)) +
+∞∑
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an exp

(
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n z
)

exp(iξny)
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where an, x±
n , and gn are the unknown complex amplitudes of the n-th

spatial harmonics in the corresponding partial domains.
Applying the boundary conditions to each surface (z = 0 and

z = −h) relates the sought Fourier coefficients in the all partial
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domains. Also using the boundary conditions provides the system of
functional equations to determine the unknown coefficients, which is a
system of dual series equations involving trigonometric functions. This
system is a particular case of the systems obtained and solved in work
[7]. It is equivalent to the operator equation of the first kind [17] in the
Hilbert space given by the Meixner condition [18]. Thus, the system is
ill-conditioned [19] and, generally speaking, the truncation technique
cannot be employed [20]. A direct usage of the methodological results
from [7] converts the system to the following form
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
n=−∞

n �=0

Xn exp (inϕ) + θX0 = 0, δ< |ϕ|<π

∞∑
n=−∞

n �=0

|n|
n

Xn exp(inϕ) + θX0 =
∞∑

n=−∞
pnXn exp(inϕ), |ϕ|<δ

∞∑
n=−∞

n �=0

(−1)n

n + θ
Xn + X0 = 0, ϕ=π

(4)

where Xn = snx+
n ; the coefficients sn and pn are expressible in terms

of structure parameters and frequency. The value θ ∈ [−0.5, 0.5) is
chosen so that −θ = m0 + Ω sin α, where m0 is the nearest integer
to −Ω sin α. In (4), we introduced ϕ = 2πy/l, δ = πd/l; thus the
inequality |ϕ| < δ indicates the grating slot, and δ < |ϕ| < π refers to
the strip. Upon sn and pn presentations which can be obtained from
[7], it can be shown that

pnXn =
|n|→∞

σnn−2, (5)

where
∑ |σn|2 < ∞. The rest of the unknown complex amplitudes in

all domains can be expressed in terms of x+
n .

The representation (5) indicates that the series in the right-hand
side of system (4) is uniformly and rapidly convergent. Thus for the
given problem the singularity (i.e., the slowly convergent series) of the
problem operator is separated to the left-hand side of the equations,
and the rapidly convergent series is on the right-hand side. This system
is equivalent to the Riemann-Hilbert problem [13]. Applying the
well-known analytical regularization method [11, 13] yields the infinite
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system of linear algebraic equations

θx+
0 =

+∞∑
p=−∞

γ0
pV0px

+
p +b0, x+

n =
+∞∑

p=−∞
γn

p Vnpx
+
p +bn, (6)

where the values γn
p , Vnp, and bn are given in [7, 13]. From the

asymptotic estimates of the coefficients γn
p ∼ 1/p2, and from the

behaviour of Vnp (e.g., for n 	= p we roughly have Vnp <
const

√
|p|√

|n||n−p|
as |n| , |p| → ∞), it follows that (6) is equivalent to a Fredholm
system of the second kind. As known, such a system can be solved
by a truncation procedure with any preassigned accuracy. Thus the
analytical regularization allows us to get rid of the ill-conditioning and
arrive at the form admitting effective numerical treatment.

4. NUMERICAL RESULTS

Let us introduce the reflection (R0) and transmission (T0) coefficients
in the zero order of the spectrum; these determine the relative fractions
of scattered energy density spread from the structure to the upper
and lower half-spaces by the propagating zero harmonics with the
corresponding wave vectors kR, T

0 =
(
0, ξ0, ±ζ

(1)
0

)
.

In the frequency band ΔΩ ∈ [0, 1/ (1 + sin α)], only the zero order
harmonics spread energy in the half-spaces, all others (n 	= 0) have
imaginary part of ζ

(1)
n , and thus exponentially decay from the structure.

These decaying harmonics travel along the grating (axis OY ) with the
phase velocities vy

n = cΩ/ (n − Ω sin α), where c is the velocity of light
in vacuum; the totality of these surface harmonics does not transfer
the field energy even along the surface. The paramagnetic layer with
negative permeability does not support traveling volumetric waves; all
the harmonics in (3) for the cdomain −h < z < 0 exponentially decay
away from the layer boundaries. The frequency band ΔΩ determines
the single-mode regime of diffraction which we actually consider here.
For this regime in the far field region, the diffracted field is represented
by only one propagation plane wave with energy fraction R0 (for the
half-space z > 0) and T0 (for z < −h). We suppose below that the
paramagnetic layer is thin (i.e., h/λ � 1), and let ẽ = 1; thus the
energy dissipation in the paramagnetic layer is defined by the loss
coefficient L0 = 1 − (R0 + T0) for the single-mode regime.

In the case of normal incidence of the plane wave, the frequency
dependence of the specular reflection and transmission of the zero
order harmonics is presented in Fig. 3 for the single layer, the single
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grating, and the structure. In what follows, the truncation number
of system (6) is 25. We observe the sharp minimum of the modulus
of reflection coefficient at Ω0 ≈ 0.154 (see Fig. 3(a)) for diffraction
from the structure. At the “long wave” range l/λ � 1, the single
grating nearly completely reflects the E-polarized incident wave, while
the single layer is almost transparent there.

The reflection minimum for the structure corresponds to the
resonance wave transmission with high absorption (≈ 37%) in the
rather thin paramagnetic layer (h/λ ≈ 3×10−3), the losses of which are
characterized by the dissipation factor tan δ = |μ′′/μ′| ≈ 2.82 × 10−4

(see Fig. 2, and Fig. 3(b)). The wave losses in the layer without grating
are only about 2 × 10−3% for this frequency Ω0 (see Fig. 3(a)).

The paramagnetic layer can be considered as an open resonant
structure possessing eigen-frequencies and relevant eigen-oscillations.
The study of the eigen-value problem for the paramagnetic layer
shows that it has a surface eigen-oscillation in the form of surface
waves [10, 21]. These surface waves cannot be excited by an incident
plane wave. Being a periodical inhomogeneity, the grating converts the
incident plane wave into an infinite superposition of spatial harmonics,
and thus makes possible the excitation of oscillations in the layer [22].
On the other hand, the grating makes different oscillations interact
with each other and so establishes an electrodynamical coupling
between different Floquet harmonics both inside and outside the layer.
In a condition of synchronism, when, for a certain frequency, the phase
velocities of one of the grating surface harmonics and the surface
wave of the layer are close enough, effective excitation of the layer
surface oscillations takes place. On the whole, the realization of this

(a)               (b) 

Figure 3. Reflection (R0), transmission (T0) and loss (L0) coefficients
versus frequency Ω (d/l = 0.5, h/l = 0.02, α = 0◦).



Progress In Electromagnetics Research M, Vol. 6, 2009 193

Figure 4. Reflection coefficient R0 (contours of equal magnitude)
versus frequency Ω and relative thickness h/l of the paramagnetic layer
(d/l = 0.5, α = 0◦).

Figure 5. Reflection coefficient R0 versus frequency Ω in the oblique
wave incidence case (d/l = 0.5, h/l = 0.02).

resonant condition corresponds to the eigen-regime of the grating-layer
structure.

The value of reflection coefficient R0 as a function of the non-
dimensional frequency and the relative thickness of the paramagnetic
layer h/l is represented in Fig. 4. In this picture we observe a
lengthy domain of the resonant transmission with high absorption. The
transmission frequency increases nearly linearly as the layer thickness
decreases.

In Fig. 5, we observe the splitting of the absorption resonance into
two ones, in the oblique incidence case. In this situation, the +n and
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Figure 6. Reflection coefficient R0 versus frequency Ω in the
dispersive and non dispersive cases (d/l = 0.5, h/l = 0.02, α = 0◦).

−n harmonics have different phase velocities vy
n (since α 	= 0◦), and

both are able to excite layer surface waves at certain frequencies, so
that two absorption resonances appear instead of one.

The influence of the frequency dispersion of the layer permeability,
given in the form (1), on the development of the absorption resonance
is compared to the reflection obtained with constant constitutive
parameters, which values give the same resonance, in Fig. 6. Varying
the dispersion character of the permeability can make the reflection
minimum considerably sharper, because of the essentially resonant
nature of the phenomenon. Ignoring the dispersion of the permeability
results in omitting important spectral features of the paramagnetic
layer; in this case we mainly observe the contribution of resonant
properties of the grating only. The combination of the two strongly
resonant systems, the grating and the layer, into one structure,
significantly complicates the spectral characteristics and changes the
reflection minimum width.

The frequency dependence of the reflection coefficient for the layer
permeability, given by (1), is shown in Fig. 7 for different values of
layer permittivity. The frequency of the absorption resonance depends
slightly on the layer permittivity; the spectrum of the surface waves
in the layer is principally determined by the permeability. As follows
from (1), the layer permeability, and thus the frequency of absorption
resonance, can be effectively controlled by electronically adjusting the
biasing magnetic field B (see Fig. 8).

The realization of the regime of the resonance transmission with
high absorption may be readily illustrated by Fig. 9 which shows
the modulus of the first five harmonics in the upper half-space (see
field presentation (3) for the domain 0 < z). As we can observe
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Figure 7. Reflection coefficient R0 versus frequency Ω for different
values of layer permittivity ε (d/l = 0.5, h/l = 0.02, α = 0◦).

Figure 8. Reflection coefficient R0 (contours of equal magnitude)
versus frequency Ω and relative biasing magnetic field B/B0 (B0 =
2.697 T, d/l = 0.5, h/l = 0.02, α = 0◦).

from the picture, at the resonant frequency Ω0, the amplitudes of the
surface harmonics (n 	= 0) have maxima, some of which significantly
exceed the unit amplitude of the incident wave; the zero volumetric
harmonic corresponding to the reflected plane wave has a minimum
amplitude. Under synchronism condition described above, one of the
surface grating harmonics excites the layer surface wave, and as a
result we observe the resonant maximum of the harmonic amplitude.
Due to the electrodynamical coupling established by the grating, all
harmonics demonstrate the amplitude extremum at this frequency.
Thus a resulting field of high magnitude can be formed near the
grating-layer interface. This high-power field is effectively absorbed
on the layer surface and partly penetrates into the lower half-space;
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Figure 9. Modulus of the first complex amplitudes |an| of the reflected
field versus frequency Ω (d/l = 0.5, h/l = 0.02).

as a result we observe the regime of the resonance transmission with
high absorption. This is a qualitative model of the regime; a detailed
quantitative analysis of this complicated resonant regime may be based
on the rigorous solution to the spectral problem for the structure, and
this is the subject of our next paper.

The diffraction process for the structure with conventional
magnetodielectric with positive real parts of the constitutive
parameters is quite different to that of paramagnetic materials with
negative real permeability. In the conventional magnetodielectric,
at least one (the zero) volumetric harmonic always propagates, and
the main contribution to the diffraction process (both spectral and
absorption features) is made just by the propagating volumetric
harmonics.

5. CONCLUSION

Using the analytical regularization based on the Riemann-Hilbert
problem method, we have solved the problem of plane electromagnetic
wave diffraction from the structure consisting of a strip grating and
paramagnetic layer with frequency dispersive material, which has
permeability of negative real part in the microwave band. The layer
with such dispersion possesses surface waves, which can be excited by
surface harmonics produced by the grating.

The diffraction regime of the resonance transmission with
extremely high absorption was observed and thoroughly investigated.
The regime is realized by a synchronism condition between the phase
velocities of one of the surface grating harmonics and the layer
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surface wave. This phenomenon is of resonance character, and it is a
response to the oscillatory excitations which are close to the structure
eigenmodes. The powerful surface field localized at the grating-layer
interface in the resonance is responsible for transmission and extremely
high absorption, which occurs just at the surface but not in the layer
volume.

The necessity of considering the dispersion character of the
constitutive parameters for adequate description of electromagnetic
process was demonstrated. In the oblique incidence case, the
phenomenon of splitting of the absorption resonance was shown.

The quality factor of the resonant regime considered is quite
high. Such structures, with a narrow and tunable pass-band, are
promising for application, for example, as filters or absorbing devices
with electronically tunable frequency.
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