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The exact absorbing conditions (EAC) have been constructed and used for truncating an unbounded domain of computation in
open initial boundary value problems, which describe space-time transformations of electromagnetic waves in axially symmetrical
waveguides. The equivalence theorem is proved that gives grounds for rigorous theoretical justification of the EAC-method.

1. Introduction

Exact absorbing conditions (EAC) are used in computational
electrodynamics of nonsine waves for truncating the domain
of computation when replacing the original open initial
boundary value problem by a modified problem formulated
in a bounded domain [1–9]. In the present work, we construct
and analyze the EAC as applied to the axially symmetrical
waveguide structures illuminated by symmetrical pulsed TE-
and TM-waves (or TE

0
- and TM

0
-waves) and prove the

equivalency of the original (open) and modified (closed)
initial boundary value problems. The following results are
presented: the EAC for virtual boundaries in a cross-section
of regular circular and coaxial waveguides and the theorem
about the one-valued solvability of the modified closed
problem and its equivalency to the initial open problem
giving grounds for rigorous theoretical justification of the
EAC-method.

The efficient limitation of the computational space in open
initial boundary value problems (i.e., the problems whose
domain of analysis is infinite in one or more directions) is
a vital issue in computational electrodynamics as well as in
other physical disciplines dealing with mathematical simu-
lation and numerical experiments. Most of the well-known
and extensively used heuristic and approximate solutions to

this problem are based on the so-called absorbing boundary
conditions (ABC) [10–13] and perfectly matched layers (PML)
[14–16]. The use of various modifications and improving
techniques for respective methods yield good results in
various specific physical situations. However, it appears that,
for certain problems associated with the resonant wave
scattering, the numerical implementation of these methods
may cause unpredictable growth of the computational error
for large observation times [17–19].

The method utilizing the exact absorbing conditions for
the artificial boundaries that truncate an unbounded domain
of computation [1–9, 20, 21] is outnumbered by the classical
approximate approaches. However, testing numerical exper-
iments as well as a series of physical and applied results
obtained with the help of this method (see, e.g., [3, 5, 8, 21–
30]) shows its evident potential, especially, for obtaining
reliable numerical data on space-time and space-frequency
electromagnetic field transformations in open waveguide,
periodic, and compact resonators.

The essence of the method for open scalar problems,
which are formulated in the part Ω of the space 𝑅2 (𝑅𝑛 is 𝑛-
dimensional Euclidean space), is as follows. Assume that the
excitation sources and inhomogeneities of the medium are
located in a bounded region Ωint of the unbounded analysis
domain Ω. The propagation velocity of the electromagnetic
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wave𝑈(𝑔, 𝑡), 𝑔 ∈ Ω, generated by these sources and obstacles
is finite. Therefore, in time 𝑡 ≤ 𝑇 < ∞, the signal 𝑈(𝑔, 𝑡) will
not go outside the boundaries Π

𝑇
of some bounded domain

Ωint,𝑇 ⊂ Ω:

𝑈(𝑔, 𝑡)
𝑔∈Ωext,𝑇, 𝑡∈[0,𝑇]

= 0. (1)

Here, [0, 𝑇] is the closed interval 0 ≤ 𝑡 ≤ 𝑇 and Ωext,𝑇 is the
complement of the domain Ωint,𝑇 with respect to Ω; that is,
Ω = Ωint,𝑇 ∪ Π𝑇 ∪ Ωext,𝑇.

Formula (1) gives us the well-known exact radiation
condition for outgoing (from the domain Ωint where all
sources and obstacles are located) pulsed wave 𝑈(𝑔, 𝑡). The
only but rather essential limitation of this simple condition is
that, with growing 𝑇, the domainΩint,𝑇 is expanding, and the
boundary Π

𝑇
is moving farther away from the domain Ωint.

That is why the condition in the form of (1) is not used for
truncating the computational space of open electrodynamic
problems. In EAC-method, the condition (1) is transferred
from the field-free points 𝑔 ∈ Ωext,𝑇 onto some artificial
boundary Γ located in the region,where the intensity of space-
time field transformations can be arbitrary in magnitude and
takes the form

𝐷[𝑈 (𝑔, 𝑡)]
𝑔∈Γ

= 0; 𝑡 ≥ 0. (2)

The electromagnetic wave 𝑈(𝑔, 𝑡) must be outgoing in this
case as well, or, in other words, it is bound to intersect the
boundary Γ only in one direction, moving away from the
sources and obstacles. Here, as above, 𝑈(𝑔, 𝑡) (𝑔 ∈ Ω, 𝑡 ≥

0) is a scalar or vector field function, while 𝐷[𝑈] is some
integrodifferential operator on Γ × [0,∞), [0,∞) = {𝑡 : 0 ≤

𝑡 < ∞}. Symbol “×” denotes direct product of two sets.
The boundary Γ divides the unbounded domain Ω into

two domains Ωint and Ωext such that Ω = Ωint ∪ Ωext ∪
Γ. In the first one (bounded), we can formulate the initial
boundary value problem with respect to the function 𝑈(𝑔, 𝑡)
using the boundary condition in (2). We will further call this
problem the modified problem as distinct from the original
initial boundary value problem formulated in the unbounded
domain Ω with the radiation condition (1) involved. In the
domain Ωint, the desired function 𝑈(𝑔, 𝑡) can be determined
by using standard finite-difference [31] or finite element [32]
algorithms. For the domain Ωext, EAC-method allows us
to construct and use the so-called “transport operators”
𝑍
𝑞∈Γ→𝑔∈Ωext

(𝑡)[𝑈] [3, 8, 33, 34]

𝑈(𝑔, 𝑡) = 𝑍
𝑞∈Γ→𝑔∈Ωext

(𝑡) [𝑈 (𝑞, 𝜏)] , 0 ≤ 𝜏 ≤ 𝑡, (3)

to calculate the function 𝑈(𝑔, 𝑡) at the points 𝑔 ∈ Ωext from
its values on the boundary Γ.

The analytical forms of the operators 𝐷[𝑈] and 𝑍[𝑈]

depend on the geometry of the domain Ωext, and, evidently,
on the problem dimensions and the coordinate system. How-
ever, in all cases, the derivation of these operators is based on
the common sequence of transformations widely used in the
theory of hyperbolic equations [3, 35]: (i) the isolation of the
regular domainΩext where the wave𝑈(𝑔, 𝑡) propagates freely
moving away from the domain Ωint enveloping all sources
and scattering objects, (ii) incomplete separation of variables

in the original initial boundary value problem for the domain
Ωext resulting in the problem for the one-dimensional Klein-
Gordon equation with respect to the space-time amplitudes
of the field 𝑈(𝑔, 𝑡), (iii) integral transformation (image ↔
original function) of the problem for one-dimensional Klein-
Gordon equation, (iv) solution of auxiliary boundary value
problems for ordinary differential equations with respect to
the images of amplitudes of the field 𝑈(𝑔, 𝑡), and (v) inverse
integral transformation.

As a result, the nonlocal (in space and time) exact
absorbing conditions on the artificial boundary Γ are derived.
In some cases, these nonlocal conditions can be reduced
to the local conditions by replacing certain integral forms
with the differential forms and defining an additional initial
boundary value problem with respect to some auxiliary
function of time and transverse coordinates [2, 3, 8].The exact
EAC (2) can be then included into a standard finite-difference
algorithms or into algorithms of finite element method with
the domain of calculation reduced down to Ωint. How-
ever, one can confidently assert that relevant computational
schemes are stable and convergent only when the modified
problem is uniquely-solvable and equivalent to the original
problem [36]. Although the corresponding assertions have
been formulated in some works on the subject (see, e.g., [1, 3,
8]), they have been proved analytically just only in [9] for the
initial boundary value problems describing TE

0
- and TM

0
-

pulsed wave scattering on compact open axially symmetrical
structures. In Section 6, we replicate the proof scheme for
the initial boundary value problem associated with compact
discontinuities in circular and coaxial waveguides and thus
demonstrate that there is reason to believe that it can be used
for the other types of EAC as well.

2. Formulation of the Model Problem

The two-dimensional initial boundary value problem de-
scribing the transformation of pulsed symmetrical (𝜕/𝜕𝜙 ≡ 0)
TE
0
- (𝐸
𝜌
= 𝐸
𝑧
= 𝐻
𝜙
≡ 0) and TM

0
-waves (𝐻

𝜌
= 𝐻
𝑧
= 𝐸
𝜙
≡

0) in the open axially symmetrical waveguide units (Figure 1)
is given (see [3, 8]) by

[−𝜀 (𝑔)
𝜕
2

𝜕𝑡2
− 𝜎 (𝑔) 𝜂

0

𝜕

𝜕𝑡
+

𝜕
2

𝜕𝑧2
+

𝜕

𝜕𝜌
(
1

𝜌

𝜕

𝜕𝜌
𝜌)]

× 𝑈 (𝑔, 𝑡) = 𝐹 (𝑔, 𝑡) ; 𝑡 > 0, 𝑔 ∈ Ω,

𝑈 (𝑔, 𝑡)
𝑡=0

= 𝜑 (𝑔) ,
𝜕

𝜕𝑡
𝑈 (𝑔, 𝑡)

𝑡=0

= 𝜓 (𝑔) ;

𝑔 = {𝜌, 𝑧} ∈ Ω,

𝐸
𝑡𝑔
(𝑝, 𝑡)

𝑝={𝜌,𝜙,𝑧}∈Σ
= 0, 𝑈 (0, 𝑧, 𝑡) = 0

for |𝑧| < ∞; 𝑡 ≥ 0.

(4)

Here, �⃗� = {𝐸
𝜌
, 𝐸
𝜙
, 𝐸
𝑧
} and �⃗� = {𝐻

𝜌
, 𝐻
𝜙
, 𝐻
𝑧
} are the elec-

tric and magnetic field vectors, {𝜌, 𝜙, 𝑧} are the cylindri-
cal coordinates, 𝑈(𝑔, 𝑡) = 𝐸

𝜙
(𝑔, 𝑡) for TE

0
-waves, and
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Figure 1: Open axially symmetrical waveguide transformer.

𝑈(𝑔, 𝑡) = 𝐻
𝜙
(𝑔, 𝑡) for TM

0
-waves.The function𝑈(𝑔, 𝑡) deter-

mines other nonzero field components as well:𝐻
𝜌
,𝐻
𝑧
in the

case of TE
0
-waves and 𝐸

𝜌
, 𝐸
𝑧
in the case of TM

0
-waves (see,

e.g., formulas (1.13) and (1.15) in [3]). By Σ = Σ
𝜙
× [0, 2𝜋],

we denote perfectly conducting surfaces obtained by rotating
the piecewise smooth curve Σ

𝜙
about the 𝑧-axis. The relative

permittivity 𝜀(𝑔) (𝑔 = {𝜌, 𝑧}) and specific conductivity 𝜎(𝑔)
are smooth enough nonnegative functions inside Ωint and
take free space values outside (in case of TE

0
-waves) or

𝜀(𝑔) ≡ 1 and 𝜎(𝑔) ≡ 0 (in TM
0
-case), 𝜂

0
= (𝜇
0
/𝜀
0
)
1/2 is

the impedance of free space, 𝜀
0
and 𝜇

0
are the electric and

magnetic constants of vacuum.We use the SI system of units.
The “time” variable 𝑡 is the product of the real time by the
velocity of light in free space and so is measured in meters.

The domain of analysis Ω is the part of the half-plane
Ωtotal = {𝑝 = {𝜌, 𝜙, 𝑧} : 𝜌 > 0, |𝑧| ≥ 0, 𝜙 = 𝜋/2} bounded by
the contours Σ

𝜙
.The regionsΩint andΩadd = ∪

𝐽

𝑗=1
Ω
𝑗
(regular

semiinfinite circular and coaxial waveguides) are separated by
the virtual boundaries Γ

𝑗
= {𝑔
𝑗
= {𝜌
𝑗
, 𝑧
𝑗
} ∈ Ω : 𝑧

𝑗
= 0}

and Ω = Ωint ∪ Ωadd ∪ Γadd, Γadd = ∪
𝐽

𝑗=1
Γ
𝑗
. Here, {𝜌

𝑗
, 𝜙
𝑗
, 𝑧
𝑗
}

is the local coordinate system associated with the waveguide
Ω
𝑗
(Figure 1).
The functions 𝐹(𝑔, 𝑡), 𝜑(𝑔), 𝜓(𝑔), 𝜎(𝑔), and 𝜀(𝑔) − 1

which are finite in the closure Ω of Ω are supposed to satisfy
the theorem on the unique solvability of problem (4) in the
Sobolev space 𝑊1

2
(Ω
𝑇
), Ω𝑇 = Ω × (0, 𝑇), (0, 𝑇) = {𝑡 : 0 <

𝑡 < 𝑇 < ∞} (see Statement 2 and [3, 36]). The “current”
and “instantaneous” sources given by the functions 𝐹(𝑔, 𝑡)
and 𝜑(𝑔), 𝜓(𝑔) as well as all scattering elements given by the
functions 𝜀(𝑔), 𝜎(𝑔), and by the contours Σ

𝜙
are located in

the regionΩint. In axially symmetrical problems, at the points
𝑔 = {𝜌, 𝑧} such that 𝜌 = 0, only𝐻

𝑧
- or 𝐸

𝑧
-field components

are nonzero [2, 3, 8]. Hence, it follows that 𝑈(0, 𝑧, 𝑡) = 0 for
|𝑧| < ∞, 𝑡 ≥ 0 in (4).

Let us assume that 0 < ] ≤ 1/𝜀(𝑔) ≤ 𝜇 < ∞ for 𝑔 ∈ Ω

and that the functions 𝜎/𝜀, 𝜀/𝜀2 are bounded inΩ. Then, the
following statement (see also [3, 36]) is true.

Statement. Let 𝐹(𝑔, 𝑡)/𝜀(𝑔) ∈ 𝐿
2,1
(Ω
𝑇
), 𝜑(𝑔) ∈

∘

𝑊
1

2
(Ω) (for

TE
0
-waves) or 𝜑(𝑔) ∈ 𝑊

1

2
(Ω) (for TM

0
-waves) and 𝜓(𝑔) ∈

𝐿
2
(Ω). Then, problem (4) has a generalized solution from

𝑊
1

2
(Ω
𝑇
), and the uniqueness theorem is true in this space.

Here, the following notation is used: 𝜀 is the partial
derivative of 𝜀(𝑔) with respect to 𝜌 or 𝑧, 𝐿

𝑛
(𝐺) is the space

of functions 𝑓(𝑔) (where 𝑔 ∈ 𝐺) for which the function
|𝑓(𝑔)|

𝑛 is integrable in 𝐺,𝑊𝑙
𝑚
(𝐺) is the set of all the elements

𝑓(𝑔) from 𝐿
𝑚
(𝐺) having generalized derivatives up to the

order 𝑙 inclusive from 𝐿
𝑚
(𝐺), 𝐿

2,1
(𝐺
𝑇
) is the space containing

all elements 𝑓(𝑔, 𝑡) ∈ 𝐿
1
(𝐺
𝑇
) with finite norm ‖𝑓‖ =

∫
𝑇

0
(∫
𝐺
|𝑓|
2
𝑑𝑔)
1/2

𝑑𝑡, and
∘

𝑊
1

2
(𝐺) is the subspace of space

𝑊
1

2
(𝐺), inwhich the set of finitary and infinitely differentiable

in 𝐺 functions is a dense set.

3. Exact Radiation Conditions for Outgoing
Pulsed Waves

In the domain Ω
𝑗
(Figure 2), where the field 𝑈(𝑔, 𝑡) propa-

gates freely up to 𝑧
𝑗
= ∞ as 𝑡 → ∞, the 2D initial boundary

value problem (4) can be rewritten in the local coordinates
𝑔
𝑗
= {𝜌
𝑗
, 𝑧
𝑗
} in the following way:

[−
𝜕
2

𝜕𝑡2
+

𝜕
2

𝜕𝑧
2

𝑗

+
𝜕

𝜕𝜌
𝑗

(
1

𝜌
𝑗

𝜕

𝜕𝜌
𝑗

𝜌
𝑗
)]𝑈(𝑔

𝑗
, 𝑡) = 0;

𝑡 > 0, 𝑔
𝑗
∈ Ω
𝑗
,

𝑈 (𝑔
𝑗
, 𝑡)

𝑡=0
= 0,

𝜕

𝜕𝑡
𝑈 (𝑔
𝑗
, 𝑡)

𝑡=0

= 0;

𝑔
𝑗
= {𝜌
𝑗
, 𝑧
𝑗
} ∈ Ω

𝑗
,

𝐸
𝑡𝑔
(𝑝
𝑗
, 𝑡)

𝑝
𝑗
={𝜌
𝑗
,𝜙
𝑗
,𝑧
𝑗
}∈Σ

= 0, 𝑈 (0, 𝑧
𝑗
, 𝑡) = 0

for 0 ≤ 𝑧
𝑗
≤ ∞; 𝑡 ≥ 0.

(5)

Separation of variables in (5) results in

𝑈(𝑔
𝑗
, 𝑡) = ∑

𝑛

𝑢
𝑛𝑗
(𝑧
𝑗
, 𝑡) 𝜇
𝑛𝑗
(𝜌
𝑗
) ,

𝑢
𝑛𝑗
(𝑧
𝑗
, 𝑡) = ∫

𝑎
𝑗

0 ,or 𝑏
𝑗

∫𝑈(𝑔
𝑗
, 𝑡) 𝜇
𝑛𝑗
(𝜌
𝑗
) 𝜌
𝑗
𝑑𝜌
𝑗
;

𝑔
𝑗
= {𝜌
𝑗
, 𝑧
𝑗
} ∈ Ω

𝑗
,

(6)

where the orthonormal (with the weight factor 𝜌
𝑗
) basic sets

{𝜇
𝑛𝑗
(𝜌
𝑗
)}
𝑛
(and the sets {𝜆

𝑛𝑗
}
𝑛
of the transversal eigenvalues

𝜆
𝑛𝑗
) are obtained from the homogeneous Sturm-Liouville

problems

[
𝑑

𝑑𝜌
𝑗

1

𝜌
𝑗

𝑑

𝑑𝜌
𝑗

𝜌
𝑗
+ 𝜆
2

𝑛𝑗
]𝜇
𝑛𝑗
(𝜌
𝑗
) = 0; 𝜌

𝑗
∈ (0, 𝑎

𝑗
) ,

𝜇
𝑛𝑗
(0) = 𝜇

𝑛𝑗
(𝑎
𝑗
) = 0 (TE

0
-waves) or

𝜇
𝑛𝑗
(0) =

𝑑 (𝜌
𝑗
𝜇
𝑛𝑗
(𝜌
𝑗
))

𝑑𝜌
𝑗

𝜌
𝑗
=𝑎
𝑗

= 0 (TM
0
-waves)

(7)
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Figure 2: Virtual boundary Γ
𝑗
in the regular (a) circular and (b)

coaxial waveguide Ω
𝑗
.

(ifΩ
𝑗
is the circular waveguide with 0 ≤ 𝜌

𝑗
≤ 𝑎
𝑗
) or

[
𝑑

𝑑𝜌
𝑗

1

𝜌
𝑗

𝑑

𝑑𝜌
𝑗

𝜌
𝑗
+ 𝜆
2

𝑛𝑗
]𝜇
𝑛𝑗
(𝜌
𝑗
) = 0; 𝜌

𝑗
∈ (𝑏
𝑗
, 𝑎
𝑗
) ,

𝜇
𝑛𝑗
(𝑏
𝑗
) = 𝜇
𝑛𝑗
(𝑎
𝑗
) = 0 (TE

0
-waves) or

𝑑 (𝜌
𝑗
𝜇
𝑛𝑗
(𝜌
𝑗
))

𝑑𝜌
𝑗

𝜌
𝑗
=𝑏
𝑗

=

𝑑 (𝜌
𝑗
𝜇
𝑛𝑗
(𝜌
𝑗
))

𝑑𝜌
𝑗

𝜌
𝑗
=𝑎
𝑗

= 0 (TM
0
-waves)

(8)

(if Ω
𝑗
is the coaxial waveguide with 𝑏

𝑗
≤ 𝜌
𝑗
≤ 𝑎
𝑗
). Hereafter,

𝑛 = 0, 1, 2, . . . only in the case of TM
0
-waves and only for

coaxial waveguide Ω
𝑗
. In all other cases, 𝑛 = 1, 2, 3, . . ..

The form of the boundary conditions on waveguide walls for
the case of TM

0
-waves in (7) and (8) is determined by the

following relationships: 𝑈(𝑔, 𝑡) = 𝐻
𝜙
(𝑔, 𝑡), 𝐸

𝑡𝑔
(𝑝
𝑗
, 𝑡)|
𝑝
𝑗
∈Σ

=

𝐸
𝑧
𝑗

(𝑝
𝑗
, 𝑡)|
𝑝
𝑗
∈Σ
, and 𝜕𝐸

𝑧
𝑗

/𝜕𝑡 = 𝜂
0
𝜌
𝑗

−1
𝜕(𝜌
𝑗
𝐻
𝜙
𝑗

)/𝜕𝜌
𝑗
[3].

The spatial-temporal amplitudes 𝑢
𝑛𝑗
(𝑧
𝑗
, 𝑡) of the wave

𝑈(𝑔
𝑗
, 𝑡), 𝑔
𝑗
∈ Ω
𝑗
are obtained by solving the initial boundary

value problems

[−
𝜕
2

𝜕𝑡2
+

𝜕
2

𝜕𝑧
2

𝑗

− 𝜆
2

𝑛𝑗
]𝑢
𝑛𝑗
(𝑧
𝑗
, 𝑡) = 0; 𝑡 > 0, 𝑧

𝑗
> 0

𝑢
𝑛𝑗
(𝑧
𝑗
, 0) = 0,

𝜕

𝜕𝑡
𝑢
𝑛𝑗
(𝑧
𝑗
, 𝑡)

𝑡=0

= 0; 𝑧
𝑗
≥ 0

(9)

(it is assumed that the excitation 𝑈(𝑔, 𝑡), being generated by
the sources 𝜑(𝑔), 𝜓(𝑔), and 𝐹(𝑔, 𝑡) located inΩint, has not yet
reached the boundary 𝑧

𝑗
= 0 separating the regions Ωint and

Ω
𝑗
by the time 𝑡 = 0).

Analytical representations for solutions 𝜇
𝑛𝑗
(𝜌) and 𝜆

𝑛𝑗
to

the problems (7) and (8) are well-known [3, 8] and, for TE
0
-

waves, take the form:

𝜇
𝑛𝑗
(𝜌
𝑗
) = 𝐺

1
(𝜆
𝑛𝑗
, 𝜌
𝑗
)√2

× [𝑎
2

𝑗
𝐺
2

0
(𝜆
𝑛𝑗
, 𝑎
𝑗
) − 𝑏
2

𝑗
𝐺
2

0
(𝜆
𝑛𝑗
, 𝑏
𝑗
)]
−1/2

;

𝑏
𝑗
< 𝜌
𝑗
< 𝑎
𝑗
,

𝜆
𝑛𝑗
> 0 are the roots of the equation 𝐺

1
(𝜆
𝑗
, 𝑎
𝑗
) = 0,

𝐺
𝑞
(𝜆
𝑗
, 𝜌
𝑗
) = 𝐽
𝑞
(𝜆
𝑗
𝜌
𝑗
)𝑁
1
(𝜆
𝑗
𝑏
𝑗
) − 𝑁

𝑞
(𝜆
𝑗
𝜌
𝑗
) 𝐽
1
(𝜆
𝑗
𝑏
𝑗
) ;

𝑞 = 0, 1

(10)

for coaxial waveguide Ω
𝑗
and

𝜇
𝑛𝑗
(𝜌
𝑗
) = 𝐽
1
(𝜆
𝑛𝑗
𝜌
𝑗
)√2[𝑎

𝑗
𝐽
0
(𝜆
𝑛𝑗
𝑎
𝑗
)]
−1

;

0 < 𝜌
𝑗
< 𝑎
𝑗
,

𝜆
𝑛𝑗
> 0 are the roots of the equation 𝐽

1
(𝜆
𝑗
𝑎
𝑗
) = 0

(11)

for circular waveguide Ω
𝑗
. For TM

0
-waves, we have

𝜇
𝑛𝑗
(𝜌
𝑗
) = 𝐽
1
(𝜆
𝑛𝑗
𝜌
𝑗
)√2[𝑎

𝑗
𝐽
1
(𝜆
𝑛𝑗
𝑎
𝑗
)]
−1

;

0 < 𝜌
𝑗
< 𝑎
𝑗
,

𝜆
𝑛𝑗
> 0 are the roots of the equation 𝐽

0
(𝜆
𝑗
𝑎
𝑗
) = 0

(12)

(circular waveguideΩ
𝑗
) and

𝜇
𝑛𝑗
(𝜌
𝑗
) = 𝐺

1
(𝜆
𝑛𝑗
, 𝜌
𝑗
)√2

× [𝑎
2

𝑗
𝐺
2

1
(𝜆
𝑛𝑗
, 𝑎
𝑗
) − 𝑏
2

𝑗
𝐺
2

1
(𝜆
𝑛𝑗
, 𝑏
𝑗
)]
−1/2

for 𝑛 = 1, 2, . . . ,

𝜇
0
(𝜌
𝑗
) = [𝜌

𝑗
√ln (𝑎

𝑗
/𝑏
𝑗
)]

−1

; 𝑏
𝑗
< 𝜌
𝑗
< 𝑎
𝑗
,

𝜆
𝑛𝑗
> 0 for 𝑛 = 1, 2, . . . are the roots of the equation

𝐺
0
(𝜆
𝑗
, 𝑏
𝑗
) = 0, 𝜆

0𝑗
= 0,

𝐺
𝑞
(𝜆
𝑗
, 𝜌
𝑗
) = 𝐽
𝑞
(𝜆
𝑗
𝜌
𝑗
)𝑁
0
(𝜆
𝑗
𝑎
𝑗
) − 𝑁

𝑞
(𝜆
𝑗
𝜌
𝑗
) 𝐽
0
(𝜆
𝑗
𝑎
𝑗
) ;

𝑞 = 0, 1

(13)

(coaxial waveguide Ω
𝑗
). Here, 𝐽

𝑞
(⋅ ⋅ ⋅ ) and 𝑁

𝑞
(⋅ ⋅ ⋅ ) are the

Bessel and Neumann cylindrical functions.
By applying to (9) the cosine Fourier transform

𝑓 (𝜔) = √
2

𝜋
∫

∞

0

𝑓 (𝑧
𝑗
) cos (𝜔𝑧

𝑗
) 𝑑𝑧
𝑗

←→ 𝑓(𝑧
𝑗
) = √

2

𝜋
∫

∞

0

𝑓 (𝜔) cos (𝜔𝑧𝑗) 𝑑𝜔

(14)
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and taking into account that

−𝜔
2
𝑓 (𝜔) − √

2

𝜋
[
𝑑

𝑑𝑧
𝑗

𝑓 (𝑧
𝑗
)]

𝑧
𝑗
=0

←→
𝑑
2

𝑑𝑧
2

𝑗

𝑓 (𝑧
𝑗
) (15)

[37], we are led to the following Cauchy problems for the
images �̃�

𝑛𝑗
(𝜔, 𝑡) of the functions 𝑢

𝑛𝑗
(𝑧
𝑗
, 𝑡):

𝐷(√𝜆
2

𝑛𝑗
+ 𝜔2) [�̃�

𝑛𝑗 (𝜔, 𝑡)] ≡ [
𝜕
2

𝜕𝑡
2
+ (𝜆
2

𝑛𝑗
+ 𝜔
2
)] �̃�
𝑛𝑗 (𝜔, 𝑡)

=−√
2

𝜋
𝑢


𝑛𝑗
(0, 𝑡) ; 𝜔 > 0, 𝑡 > 0,

�̃�
𝑛𝑗
(𝜔, 0) = 0,

𝜕

𝜕𝑡
�̃�
𝑛𝑗
(𝜔, 𝑡)

𝑡=0

= 0; 𝜔 ≥ 0,

(16)

where 𝑢
𝑛𝑗
(𝑐, 𝑡) = 𝜕𝑢

𝑛𝑗
(𝑧
𝑗
, 𝑡)/𝜕𝑧

𝑗
|
𝑧
𝑗
=𝑐
. The fact that the wave

𝑈(𝑔
𝑗
, 𝑡) (𝑔
𝑗
∈ Ω
𝑗
) is an outgoing one and thus the amplitudes

𝑢
𝑛𝑗
(𝑧
𝑗
, 𝑡) of all its partial components are zero at any time 𝑡

for the values of 𝑧
𝑗
large enough played an important part in

derivation of (16).
Continuing the functions �̃�

𝑛𝑗
(𝜔, 𝑡) and 𝑢

𝑛𝑗
(0, 𝑡) by zero on

the semiaxis 𝑡 < 0, we pass on to generalized formulation of
the Cauchy problems (16) [38]:

𝐷(√𝜆
2

𝑛𝑗
+ 𝜔2) [�̃�

𝑛𝑗 (𝜔, 𝑡)]

= −√
2

𝜋
𝑢


𝑛
(0, 𝑡) + 𝛿

(1)
(𝑡) �̃�
𝑛𝑗
(𝜔, 0)

+ 𝛿 (𝑡)
𝜕

𝜕𝑡
�̃�
𝑛𝑗
(𝜔, 𝑡)

𝑡=0

= −√
2

𝜋
𝑢


𝑛𝑗
(0, 𝑡) ;

𝜔 > 0, −∞ < 𝑡 < ∞,

(17)

where 𝛿(⋅ ⋅ ⋅ ) and 𝛿(1)(⋅ ⋅ ⋅ ) are the Dirac delta-function and its
generalized derivative of the first order.

A convolution of the fundamental solution 𝐺(𝜆, 𝑡) =

𝜒(𝑡)𝜆
−1 sin 𝜆𝑡 (𝜒(⋅ ⋅ ⋅ ) is the Heaviside step function) of the

operator 𝐷(𝜆)[⋅ ⋅ ⋅ ] with the right-hand side of the equation
𝐷(𝜆)[𝑢(𝑡)] = 𝑓(𝑡) gives its solution 𝑢(𝑡) [3, 38].Therefore, the
unknown functions �̃�

𝑛𝑗
(𝜔, 𝑡) can be represented as

�̃�
𝑛𝑗 (𝜔, 𝑡)

= −√
2

𝜋
∫

𝑡

0

sin [(𝑡 − 𝜏)√𝜆2
𝑛𝑗
+ 𝜔2]

𝑢


𝑛𝑗
(0, 𝜏)

√𝜆
2

𝑛𝑗
+ 𝜔2

𝑑𝜏;

𝜔 ≥ 0, 𝑡 ≥ 0.

(18)

Applying to (18) the inverse transform (14), we get for the
originals 𝑢

𝑛𝑗
(𝑧
𝑗
, 𝑡):

𝑢
𝑛𝑗
(𝑧
𝑗
, 𝑡)

= −∫
0

𝐽
0
[𝜆
𝑛𝑗
((𝑡 − 𝜏)

2
− 𝑧
2

𝑗
)
1/2

]

× 𝜒 [(𝑡 − 𝜏) − 𝑧
𝑗
] 𝑢


𝑛𝑗
(0, 𝜏) 𝑑𝜏; 𝑧

𝑗
≥ 0, 𝑡 ≥ 0.

(19)

Onmultiplication of (19) by𝜇
𝑛𝑗
(𝜌
𝑗
) and summation over all 𝑛,

we obtain the exact radiation condition (ERC) for the pulsed
waves 𝑈(𝑔

𝑗
, 𝑡) outgoing towards 𝑧

𝑗
= ∞:

𝑈(𝑔
𝑗
, 𝑡)

= −∑

𝑛

{{{

{{{

{

∫

𝑡−𝑧
𝑗

0

𝐽
0
[𝜆
𝑛𝑗
((𝑡 − 𝜏)

2
− 𝑧
2

𝑗
)
1/2

]

×[

[

∫

𝜌
𝑗(2)

𝜌
𝑗(1)

𝜕𝑈 (𝜌
𝑗
, 𝑧
𝑗
, 𝜏)

𝜕𝑧
𝑗

𝑧
𝑗
=0

𝜇
𝑛𝑗
(𝜌
𝑗
) 𝜌
𝑗
𝑑𝜌
𝑗
]

]

𝑑𝜏

}}}

}}}

}

× 𝜇
𝑛𝑗
(𝜌
𝑗
) ; 𝑔

𝑗
= {𝜌
𝑗
, 𝑧
𝑗
} ∈ Ω

𝑗
, 𝑡 ≥ 𝑧

𝑗
.

(20)

In (20), one should set 𝜌
𝑗(1)

= 0 and 𝜌
𝑗(2)

= 𝑎
𝑗
for a circular

waveguide Ω
𝑗
or 𝜌
𝑗(1)

= 𝑏
𝑗
and 𝜌

𝑗(2)
= 𝑎
𝑗
for a coaxial

waveguide.
Equations (19) and (20) specify the diagonal transport

operator𝑋
0→𝑧

𝑗

(𝑡)[𝑢


𝑗
], which operates in the space of ampli-

tudes 𝑢
𝑗
(𝑧
𝑗
, 𝑡) = {𝑢

𝑛𝑗
(𝑧
𝑗
, 𝑡)}
𝑛
according to the rule

𝑢
𝑗
(𝑧
𝑗
, 𝑡)=𝑋

0→𝑧
𝑗

(𝑡) [𝑢


𝑗
(0, 𝜏)] ; 𝑢



𝑗
(𝑐, 𝜏) = {𝑢



𝑛𝑗
(𝑐, 𝜏)}

𝑛
,

𝑧
𝑗
≥ 0, 𝑡 ≥ 𝑧

𝑗
, 𝑡 − 𝑧

𝑗
≥ 𝜏 ≥ 0,

(21)

and the operator

𝑈(𝑔
𝑗
, 𝑡) = 𝑍

𝑞
𝑗
∈Γ
𝑗
→𝑔
𝑗
∈Ω
𝑗

(𝑡) [𝑈

(𝑞
𝑗
, 𝜏)] ;

𝑈

(𝑞
𝑗
, 𝜏) =

𝜕𝑈 (𝑔
𝑗
, 𝜏)

𝜕𝑧
𝑗

𝑧
𝑗
=0

,

𝑡 ≥ 𝑧
𝑗
, 𝑡 − 𝑧

𝑗
≥ 𝜏 ≥ 0,

(22)

accounting for all transformations of the wave 𝑈(𝑔
𝑗
, 𝑡)

outgoing through the boundary Γ
𝑗
into the hollow regular

waveguide Ω
𝑗
.

4. Nonlocal Absorbing Conditions

By dropping the observation point in (19) onto the artificial
boundary Γ

𝑗
(𝑧
𝑗
= 0), we obtain

𝑢
𝑛𝑗
(0, 𝑡) = −∫

𝑡

0

𝐽
0
[𝜆
𝑛𝑗
(𝑡 − 𝜏)] 𝑢



𝑛𝑗
(0, 𝜏) 𝑑𝜏; 𝑡 ≥ 0.

(23)

Differentiating (23) with respect to 𝑡, we can write

[
𝜕

𝜕𝑡
+

𝜕

𝜕𝑧
𝑗

] 𝑢
𝑛𝑗
(𝑧
𝑗
, 𝑡)

𝑧
𝑗
=0

= 𝜆
𝑛𝑗
∫

𝑡

0

𝐽
1
[𝜆
𝑛𝑗 (𝑡 − 𝜏)] 𝑢



𝑛𝑗
(0, 𝜏) 𝑑𝜏; 𝑡 ≥ 0.

(24)
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Here, the well-known relationships 𝑑𝐽
0
(𝑥)/𝑑𝑥 = −𝐽

1
(𝑥),

𝐽
0
(0) = 1, and 𝜒(1)(𝑡 −𝜏) = 𝛿(𝑡−𝜏), where 𝜒(1)(⋅ ⋅ ⋅ ) stands for

the generalized derivative of 𝜒(⋅ ⋅ ⋅ ), have been used.
Let us now apply to (24) the Laplace transform

𝑓 (𝑠) = ∫

∞

0

𝑓 (𝑡) e−𝑠𝑡𝑑𝑡 ←→ 𝑓 (𝑡) =
1

2𝜋𝑖
∫

𝛼+𝑖∞

𝛼−𝑖∞

𝑓 (𝑠) e𝑠𝑡𝑑𝑠.

(25)

Taking into account the formulas 𝑓
1
(𝑠)𝑓
2
(𝑠) ↔ ∫

𝑡

0
𝑓
1
(𝑡 −

𝜏)𝑓
2
(𝜏)𝑑𝜏 (the convolution theorem), 𝜆2[√𝑠2 + 𝜆2(√𝑠2 + 𝜆2 +

𝑠)]
−1

↔ 𝜆𝐽
1
(𝜆𝑡) [39], and 𝑠𝑓(𝑠) − 𝑓(0) ↔ 𝑑𝑓(𝑡)/𝑑𝑡, we pass

on to the following expression in the space of images �̃�
𝑛𝑗
(𝑧, 𝑠):

[
𝜕

𝜕𝑧
𝑗

+ 𝑠] �̃�
𝑛𝑗
(𝑧
𝑗
, 𝑠)

𝑧
𝑗
=0

=

𝜆
2

𝑛
�̃�


𝑛𝑗
(0, 𝑠)

√𝑠
2 + 𝜆
2

𝑛𝑗
(√𝑠
2 + 𝜆
2

𝑛𝑗
+ 𝑠)

.

(26)

Equation (26) can be transformed to

�̃�


𝑛𝑗
(0, 𝑠) = −(𝑠 +

𝜆
2

𝑛𝑗

𝑠 + √𝑠
2 + 𝜆
2

𝑛𝑗

)�̃�
𝑛𝑗
(0, 𝑠) . (27)

By applying the inverse Laplace transform to (27), we turn
back to the originals:

[
𝜕

𝜕𝑡
+

𝜕

𝜕𝑧
𝑗

] 𝑢
𝑛
(𝑧
𝑗
, 𝑡)

𝑧
𝑗
=0

= −𝜆
𝑛𝑗
∫

𝑡

0

𝐽
1
[𝜆
𝑛𝑗
(𝑡 − 𝜏)] (𝑡 − 𝜏)

−1
𝑢
𝑛𝑗
(0, 𝜏) 𝑑𝜏;

𝑡 ≥ 0.

(28)

Here, the formula (𝑠 + √𝑠2 + 𝜆2)
−1

↔ (𝜆𝑡)
−1
𝐽
1
(𝜆𝑡) [40] is

used.
To justify the use of the Laplace transform (25) when

passing from (24) to (28), we refer to the estimates performed
in the book [41]. From these estimates, it follows that, at
points 𝑔 of any bounded subdomain of the domain Ω, the
field 𝑈(𝑔, 𝑡) generated by a system of sources with compact
supports cannot grow faster than exp(𝛼𝑡) for 𝑡 → ∞,
where 𝛼 > 0 is some constant. The estimates are valid for
all electrodynamic structures whose spectrum of complex-
valued eigenfrequencies {𝑘

𝑛
}
𝑛
does not contain the points 𝑘

𝑚

from the upper half-plane of the first (physical) sheet, which
constitutes a natural domain of variation of the complex
frequency parameter 𝑘 [3]. All the open structures considered
in this section fall into this category [42].

Rewriting (23), (24), and (28) in terms of (6), we obtain

𝑈(𝜌
𝑗
, 0, 𝑡)

= −∑

𝑛

{

{

{

∫

𝑡

0

𝐽
0
[𝜆
𝑛𝑗
(𝑡 − 𝜏)]

×[

[

∫

𝜌
𝑗(2)

𝜌
𝑗(1)

𝜕𝑈 (𝜌
𝑗
, 𝑧
𝑗
, 𝜏)

𝜕𝑧
𝑗

𝑧
𝑗
=0

𝜇
𝑛𝑗
(𝜌
𝑗
) 𝜌
𝑗
𝑑𝜌
𝑗
]

]

𝑑𝜏
}

}

}

× 𝜇
𝑛𝑗
(𝜌
𝑗
) ; 𝜌

𝑗(1)
≤ 𝜌 ≤ 𝜌

𝑗(2)
, 𝑡 ≥ 0,

(29)

[
𝜕

𝜕𝑡
+

𝜕

𝜕𝑧
𝑗

]𝑈 (𝜌
𝑗
, 𝑧
𝑗
, 𝑡)

𝑧
𝑗
=0

= ∑

𝑛

𝜆
𝑛𝑗

{

{

{

∫

𝑡

0

𝐽
1
[𝜆
𝑛𝑗
(𝑡 − 𝜏)] × [

[

∫

𝜌
𝑗(2)

𝜌
𝑗(1)

𝜕𝑈 (𝜌
𝑗
, 𝑧
𝑗
, 𝜏)

𝜕𝑧
𝑗

𝑧
𝑗
=0

×𝜇
𝑛𝑗
(𝜌
𝑗
) 𝜌
𝑗
𝑑𝜌
𝑗
]

]

𝑑𝜏
}

}

}

× 𝜇
𝑛𝑗
(𝜌
𝑗
) ; 𝜌

𝑗(1)
≤ 𝜌
𝑗
≤ 𝜌
𝑗(2)

, 𝑡 ≥ 0,

(30)

[
𝜕

𝜕𝑡
+

𝜕

𝜕𝑧
𝑗

]𝑈 (𝜌
𝑗
, 𝑧
𝑗
, 𝑡)

𝑧
𝑗
=0

= −∑

𝑛

𝜆
𝑛𝑗
{∫

𝑡

0

𝐽
1
[𝜆
𝑛𝑗
(𝑡 − 𝜏)] × (𝑡 − 𝜏)

−1

× [∫

𝜌
𝑗(2)

𝜌
𝑗(1)

𝑈(𝜌
𝑗
, 0, 𝜏) 𝜇

𝑛𝑗
(𝜌
𝑗
) 𝜌
𝑗
𝑑𝜌
𝑗
]𝑑𝜏}

× 𝜇
𝑛𝑗
(𝜌
𝑗
) ; 𝜌

𝑗(1)
≤ 𝜌
𝑗
≤ 𝜌
𝑗(2)

, 𝑡 ≥ 0.

(31)

Relationships (23), (24), (28), and (29)–(31) are valid for
all the waves 𝑈(𝜌

𝑗
, 𝑧
𝑗
, 𝑡) outgoing into the waveguide Ω

𝑗
.

Equations (23), (24), and (28) relate space-time amplitudes of
all modes guided by the regular structure towards 𝑧

𝑗
= ∞ on

the boundary Γ
𝑗
, while (29)–(31) relate space-time amplitudes

of the waves integrally. Therefore, the open problem (4) and
the problem with a bounded domain of analysis Ωint given
by (4) together with any boundary condition like (29)–(31)
on the virtual boundaries Γ

𝑗
, 𝑗 = 1, 2, . . . , 𝐽, are equivalent

(see Section 6). For the same reason, the boundary conditions
given by (29)–(31) can be considered as exact boundary
conditions: the wave 𝑈(𝑔, 𝑡) is not distorted when crossing
the boundary Γ

𝑗
; there is no reflection into the domain Ωint;

the wave𝑈(𝑔, 𝑡) passes into the domainΩ
𝑗
completely, as if it

is absorbed by that domain or by its boundary Γ
𝑗
. For the first

time, (23) and (29) were used as exact absorbing boundary
conditions in [1].
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Conditions (29)–(31) are nonlocal in the spatial variable
(𝜌
𝑗
) and in time as well; the function 𝑈(𝜌

𝑗
, 𝑧
𝑗
, 𝑡) and its

derivatives at each point of the boundary 𝑧
𝑗
= 0 and at each

time point 𝑡 are related to the values of this function or its
derivatives at all points of the boundary and at all time points
𝜏 < 𝑡.

5. Local Absorbing Conditions

By using the relation

𝐽
0 (𝑥) =

2

𝜋
∫

𝜋/2

0

cos (𝑥 sin𝜑) 𝑑𝜑 (32)

[37], rewrite (23) as

𝑢
𝑛𝑗 (0, 𝑡)

= −
2

𝜋
∫

𝜋/2

0

{∫

𝑡

0

cos [𝜆
𝑛𝑗 (𝑡 − 𝜏) sin𝜑] 𝑢



𝑛𝑗
(0, 𝜏) 𝑑𝜏} 𝑑𝜑;

𝑡 ≥ 0.

(33)

Denote

𝑤
𝑛𝑗
(𝑡, 𝜑) = −∫

𝑡

0

sin [𝜆
𝑛𝑗
(𝑡 − 𝜏) sin𝜑] 𝑢

𝑛𝑗
(0, 𝜏)

𝜆
𝑛𝑗
sin𝜑

𝑑𝜏;

𝑡 ≥ 0, 0 ≤ 𝜑 ≤
𝜋

2
.

(34)

Then,

𝜕𝑤
𝑛𝑗
(𝑡, 𝜑)

𝜕𝑡
= −∫

𝑡

0

cos [𝜆
𝑛𝑗
(𝑡 − 𝜏) sin𝜑] 𝑢

𝑛𝑗
(0, 𝜏) 𝑑𝜏,

(35)

and we have from (33) that

𝑢
𝑛𝑗
(0, 𝑡) =

2

𝜋
∫

𝜋/2

0

𝜕𝑤
𝑛𝑗
(𝑡, 𝜑)

𝜕𝑡
𝑑𝜑; 𝑡 ≥ 0. (36)

The integral form (34) is equivalent to the following differen-
tial form:

[
𝜕
2

𝜕𝑡2
+ 𝜆
2

𝑛𝑗
sin2𝜑]𝑤

𝑛𝑗
(𝑡, 𝜑) = −𝑢



𝑛𝑗
(0, 𝑡) ;

𝑡 > 0,

𝑤
𝑛𝑗
(0, 𝜑) =

𝜕𝑤
𝑛𝑗
(𝑡, 𝜑)

𝜕𝑡

𝑡=0

= 0.

(37)

Indeed, by passing on to the generalized formulation of the
corresponding Cauchy problem and using the fundamental
solution 𝐺(𝜆, 𝑡) = 𝜒(𝑡)𝜆

−1 sin 𝜆𝑡 of the operator 𝐷(𝜆) ≡

[𝑑
2
/𝑑𝑡
2
+𝜆
2
] (see [3]), we can easily verify that formulas (34)

and (37) determine the same function 𝑤
𝑛𝑗
(𝑡, 𝜑).

Let us nowmultiply (36) and (37) by 𝜇
𝑛𝑗
(𝜌
𝑗
) and sum over

all 𝑛. As a result, taking into consideration that

∑

𝑛

𝜆
2

𝑛𝑗
𝑢
𝑛𝑗
(𝑧
𝑗
, 𝑡) 𝜇
𝑛𝑗
(𝜌
𝑗
) = −

𝜕

𝜕𝜌
𝑗

1

𝜌
𝑗

𝜕

𝜕𝜌
𝑗

𝜌
𝑗
𝑈(𝜌
𝑗
, 𝑧
𝑗
, 𝑡) ,

∑

𝑛

𝜆
2

𝑛𝑗
𝑤
𝑛𝑗
(𝑡, 𝜑) 𝜇

𝑛𝑗
(𝜌
𝑗
) = −

𝜕

𝜕𝜌
𝑗

1

𝜌
𝑗

𝜕

𝜕𝜌
𝑗

𝜌
𝑗
𝑊(𝜌
𝑗
, 𝑡, 𝜑)

(38)

for

𝑊(𝜌
𝑗
, 𝑡, 𝜑) = ∑

𝑛

𝑤
𝑛𝑗
(𝑡, 𝜑) 𝜇

𝑛𝑗
(𝜌
𝑗
) (39)

(see problems (7) and (8)), we obtain

𝑈(𝜌
𝑗
, 0, 𝑡) =

2

𝜋
∫

𝜋/2

0

𝜕𝑊(𝜌
𝑗
, 𝑡, 𝜑)

𝜕𝑡
𝑑𝜑;

𝑡 ≥ 0, 𝜌
𝑗(1)

≤ 𝜌
𝑗
≤ 𝜌
𝑗(2)

,

(40a)

[
𝜕
2

𝜕𝑡2
− sin2𝜑 𝜕

𝜕𝜌
𝑗

1

𝜌
𝑗

𝜕

𝜕𝜌
𝑗

𝜌
𝑗
]𝑊(𝜌

𝑗
, 𝑡, 𝜑)

= −

𝜕𝑈 (𝜌
𝑗
, 𝑧
𝑗
, 𝑡)

𝜕𝑧
𝑗

𝑧
𝑗
=0

; 𝜌
𝑗(1)

< 𝜌
𝑗
< 𝜌
𝑗(2)

, 𝑡 > 0,

𝑊 (𝜌
𝑗
, 0, 𝜑) =

𝜕𝑊(𝜌
𝑗
, 𝑡, 𝜑)

𝜕𝑡

𝑡=0

= 0, 𝜌
𝑗(1)

≤ 𝜌
𝑗
≤ 𝜌
𝑗(2)

.

(40b)

Here, 𝑊(𝜌
𝑗
, 𝑡, 𝜑) is an auxiliary function. It can be deter-

mined by solving the initial boundary value problem (40b),
which is the inner problem with respect to the local EAC
(40a); 0 ≤ 𝜑 ≤ 𝜋/2 is a numerical parameter.

Transforming (24) and (28) in a similar way, we obtain
the following exact local boundary conditions, differing from
(40a) and (40b):

[
𝜕

𝜕𝑡
+

𝜕

𝜕𝑧
𝑗

]𝑈 (𝜌
𝑗
, 𝑧
𝑗
, 𝑡)

𝑧
𝑗
=0

=
2

𝜋
∫

𝜋/2

0

𝑊(𝜌
𝑗
, 𝑡, 𝜑) cos2𝜑𝑑𝜑;

𝑡 ≥ 0, 𝜌
𝑗(1)

≤ 𝜌
𝑗
≤ 𝜌
𝑗(2)

,

(41a)

[
𝜕
2

𝜕𝑡2
− cos2𝜑 𝜕

𝜕𝜌
𝑗

1

𝜌
𝑗

𝜕

𝜕𝜌
𝑗

𝜌
𝑗
]𝑊(𝜌

𝑗
, 𝑡, 𝜑) = −

𝜕

𝜕𝜌
𝑗

1

𝜌
𝑗

𝜕

𝜕𝜌
𝑗

𝜌
𝑗

× [

[

𝜕

𝜕𝑧
𝑗

𝑈(𝜌
𝑗
, 𝑧
𝑗
, 𝑡)

𝑧
𝑗
=0

]

]

; 𝜌
𝑗(1)

< 𝜌
𝑗
< 𝜌
𝑗(2)

, 𝑡 > 0,

𝑊 (𝜌
𝑗
, 0, 𝜑) =

𝜕𝑊(𝜌
𝑗
, 𝑡, 𝜑)

𝜕𝑡

𝑡=0

= 0; 𝜌
𝑗(1)

≤ 𝜌
𝑗
≤ 𝜌
𝑗(2)

,

(41b)
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[
𝜕

𝜕𝑡
+

𝜕

𝜕𝑧
𝑗

]𝑈 (𝜌
𝑗
, 𝑧
𝑗
, 𝑡)

𝑧
𝑗
=0

=
2

𝜋
∫

𝜋/2

0

𝜕𝑊(𝜌
𝑗
, 𝑡, 𝜑)

𝜕𝑡
sin2𝜑𝑑𝜑;

𝑡 ≥ 0, 𝜌
𝑗(1)

≤ 𝜌
𝑗
≤ 𝜌
𝑗(2)

,

(42a)

[
𝜕
2

𝜕𝑡2
− cos2𝜑 𝜕

𝜕𝜌
𝑗

1

𝜌
𝑗

𝜕

𝜕𝜌
𝑗

𝜌
𝑗
]𝑊(𝜌

𝑗
, 𝑡, 𝜑)

=
𝜕

𝜕𝜌
𝑗

1

𝜌
𝑗

𝜕

𝜕𝜌
𝑗

𝜌
𝑗
𝑈(𝜌
𝑗
, 0, 𝑡) ; 𝜌

𝑗(1)
< 𝜌
𝑗
< 𝜌
𝑗(2)

, 𝑡 > 0

𝑊(𝜌
𝑗
, 0, 𝜑) =

𝜕𝑊(𝜌
𝑗
, 𝑡, 𝜑)

𝜕𝑡

𝑡=0

= 0; 𝜌
𝑗(1)

≤ 𝜌
𝑗
≤ 𝜌
𝑗(2)

.

(42b)

When deriving (41a) and (41b), the following formula was
used:

𝐽
1
(𝑥) =

2

𝜋
∫

𝜋/2

0

sin (𝑥 cos𝜑) cos𝜑𝑑𝜑 (43)

[43], along with the substitutions

𝑤
𝑛𝑗
(𝑡, 𝜑) = 𝜆

𝑛𝑗
∫

𝑡

0

sin [𝜆
𝑛𝑗 (𝑡 − 𝜏) cos𝜑] 𝑢



𝑛𝑗
(0, 𝜏)

cos𝜑
𝑑𝜏;

𝑡 ≥ 0, 0 ≤ 𝜑 ≤
𝜋

2
,

(44)

while, in derivation of (42a) and (42b), we applied the integral
Poisson formula

𝐽
1 (𝑥) =

2𝑥

𝜋
∫

𝜋/2

0

cos (𝑥 cos𝜑) sin2𝜑𝑑𝜑 (45)

[37] and

𝑤
𝑛𝑗
(𝑡, 𝜑) = −𝜆

𝑛𝑗
∫

𝑡

0

sin [𝜆
𝑛𝑗
(𝑡 − 𝜏) cos𝜑] 𝑢

𝑛𝑗
(0, 𝜏)

cos𝜑
𝑑𝜏;

𝑡 ≥ 0, 0 ≤ 𝜑 ≤
𝜋

2
.

(46)

One should supplement the initial boundary value prob-
lems given by (40b), (41b), and (42b) in (40a)–(42b) and
posed relative to the auxiliary functions 𝑊(𝜌

𝑗
, 𝑡, 𝜑), by the

following boundary conditions for all time points 𝑡 ≥ 0:

𝑊(0, 𝑡, 𝜑) = 𝑊(𝑎
𝑗
, 𝑡, 𝜑) = 0; TE

0
-waves,

𝑊 (0, 𝑡, 𝜑) =

𝜕 (𝜌
𝑗
𝑊(𝜌
𝑗
, 𝑡, 𝜑))

𝜕𝜌
𝑗

𝜌
𝑗
=𝑎
𝑗

= 0; TM
0
-waves

(47)

(for the domain Ω
𝑗
corresponding to a circular waveguide)

and

𝑊(𝑏
𝑗
, 𝑡, 𝜑) = 𝑊(𝑎

𝑗
, 𝑡, 𝜑) = 0; TE

0
-waves,

𝜕 (𝜌
𝑗
𝑊(𝜌
𝑗
, 𝑡, 𝜑))

𝜕𝜌
𝑗

𝜌
𝑗
=𝑏
𝑗

=

𝜕 (𝜌
𝑗
𝑊(𝜌
𝑗
, 𝑡, 𝜑))

𝜕𝜌
𝑗

𝜌
𝑗
=𝑎
𝑗

= 0;

TM
0
-waves

(48)

(for the domainΩ
𝑗
corresponding to a coaxial waveguide).

Formulas (40a)–(42b) are derived from the same equa-
tions (23), (24), and (28) as formulas (29)–(31). They, as well
as formulas (29)–(31), faithfully describe behavior of the wave
𝑈(𝑔, 𝑡) on the boundary Γ

𝑗
, which is why they also can be used

as the exact absorbing conditions for the outgoing pulsed
waves formed by the unit. The conditions given by (40a)–
(42b) differ from those given by (29)–(31) in that they are
local: in (40a), (41a), and (42a), the function 𝑈(𝑔

𝑗
, 𝑡) and its

derivatives at each fixed point 𝜌
𝑗
of the boundary 𝑧

𝑗
= 0

and at each fixed time point 𝑡 are determined by the auxiliary
function𝑊(𝜌

𝑗
, 𝑡, 𝜑) at the same point 𝜌

𝑗
and the same time 𝑡.

6. Equivalence Theorem

The exact absorbing conditions derived in Sections 4 and 5
allowus to replace the original open problem (4) by the closed
(modified) problem

[−𝜀 (𝑔)
𝜕
2

𝜕𝑡2
− 𝜎 (𝑔) 𝜂

0

𝜕

𝜕𝑡
+

𝜕
2

𝜕𝑧2
+

𝜕

𝜕𝜌
(
1

𝜌

𝜕

𝜕𝜌
𝜌)]

× 𝑈 (𝑔, 𝑡) = 𝐹 (𝑔, 𝑡) ; 𝑡 > 0, 𝑔 ∈ Ωint,

𝑈 (𝑔, 𝑡)
𝑡=0

= 𝜑 (𝑔) ,
𝜕

𝜕𝑡
𝑈 (𝑔, 𝑡)

𝑡=0

= 𝜓 (𝑔) ;

𝑔 = {𝜌, 𝑧} ∈ Ωint,

𝐸
𝑡𝑔
(𝑝, 𝑡)

𝑝={𝜌,𝜙,𝑧}∈Σ
= 0, 𝑈 (0, 𝑧, 𝑡) = 0

for {0, 𝑧} ∈ Ωint,

𝐷add [𝑈 (𝑔, 𝑡)]
𝑔∈Γadd

= 0; 𝑡 ≥ 0

(49)

together with the total set (𝑗 = 1, 2, . . . , 𝐽) of the exact
radiation conditions (20) for the points 𝑔 ∈ Ωadd =

∪
𝐽

𝑗=1
Ω
𝑗
. Below, we prove that this replacement is equivalent,

that is, any solution to the problem (4) is at the same time
the solution to the problem (49), (20), and vice versa. By
𝐷add[𝑈(𝑔, 𝑡)]|𝑔∈Γadd = 0, Γadd = ∪

𝐽

𝑗=1
Γ
𝑗
, we denote the total

set (𝑗 = 1, 2, . . . , 𝐽) of the EAC including any 𝐽 local or/and
nonlocal boundary conditions from (29)–(31) and (40a)–
(42b).

Problem (4) is uniquely solvable in the space of gener-
alized functions 𝑊1

2
(Ω
𝑇
). Its unique solution 𝑈(𝑔, 𝑡) is at

the same time a solution to problem (49) from the Sobolev
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space 𝑊
1

2
(Ω
𝑇

int), where Ω
𝑇

int = Ωint × (0, 𝑇). This direct
inclusion is trivial. It is proved by the constructions from
Sections 3–5. The inverse inclusion will also be true if only
the generalized solution𝑈(𝑔, 𝑡) of problem (49) belonging to
the space𝑊1

2
(Ω
𝑇

int) is unique. Let us prove the uniqueness.
According to [36], the generalized solution of problem

(49) is an element 𝑈(𝑔, 𝑡) of the space𝑊1
2
(Ω
𝑇

int) being equal
to 𝜑(𝑔) at 𝑡 = 0 and satisfying the identity

∫
Ω
𝑇

int

[𝜀
𝜕𝑈

𝜕𝑡

𝜕𝛾

𝜕𝑡
− (

1

𝜌2

𝜕

𝜕𝜌
𝜌𝑈)

𝜕 (𝜌𝛾)

𝜕𝜌

−
𝜕𝑈

𝜕𝑧

𝜕𝛾

𝜕𝑧
− 𝜎𝜂
0

𝜕𝑈

𝜕𝑡
𝛾] 𝑑𝑔 𝑑𝑡

+ ∫
Φ
𝑇

[(
1

𝜌

𝜕

𝜕𝜌
𝜌𝑈)𝛾 cos (�⃗�, �⃗�) + 𝜕𝑈

𝜕𝑧
𝛾 cos (�⃗�, �⃗�)] 𝑑𝑠 𝑑𝑡

+ ∫
Ωint

𝜀𝜓𝛾 (𝑔, 0) 𝑑𝑔 = ∫
Ω
𝑇

int

𝐹𝛾 𝑑𝑔𝑑𝑡

(50)

for any function 𝛾(𝑔, 𝑡) from 𝑊
1

2
(Ω
𝑇

int) that is zero at 𝑡 = 𝑇.
Here, Φ𝑇 is a lateral surface of the cylinder Ω𝑇int (Φ

𝑇
= Φ ×

(0, 𝑇); Φ is the boundary of the domain Ωint); cos(�⃗�, �⃗�) and
cos(�⃗�, �⃗�) are cosines of the angles between the outer normal
�⃗� to the surface Φ𝑇 and the axes �⃗� and �⃗�, respectively. An
element of the end surfaces of the cylinder is 𝑑𝑔 = 𝜌𝑑𝜌𝑑𝑧.
Identity (50) is derived by multiplying the telegraph equation
from (49) by 𝛾(𝑔, 𝑡) and by integrating the result by parts in
Ω
𝑇

int [36, 44].
Suppose there exist two solutions of problem (49) belong-

ing to the space 𝑊
1

2
(Ω
𝑇

int) : 𝑈
1
(𝑔, 𝑡) and 𝑈

2
(𝑔, 𝑡). The

difference of these solutions 𝑢(𝑔, 𝑡) = 𝑈
1
(𝑔, 𝑡) − 𝑈

2
(𝑔, 𝑡) is

the solution of the homogeneous problem (49); therefore it
satisfies the identity (see formula (50))

∫
Ω
𝑇

int

[𝜀
𝜕𝑢

𝜕𝑡

𝜕𝛾

𝜕𝑡
− (

1

𝜌2

𝜕

𝜕𝜌
𝜌𝑢)

𝜕 (𝜌𝛾)

𝜕𝜌

−
𝜕𝑢

𝜕𝑧

𝜕𝛾

𝜕𝑧
− 𝜎𝜂
0

𝜕𝑢

𝜕𝑡
𝛾] 𝑑𝑔 𝑑𝑡

+∫
Φ
𝑇

[(
1

𝜌

𝜕

𝜕𝜌
𝜌𝑢) 𝛾 cos (�⃗�, �⃗�) + 𝜕𝑢

𝜕𝑧
𝛾 cos (�⃗�, �⃗�)] 𝑑𝑠 𝑑𝑡 = 0.

(51)

Let us introduce an arbitrary 𝜏 ∈ (0, 𝑇) and consider the
following function:

𝛾 (𝑔, 𝑡) =
{

{

{

∫

𝜏

𝑡

𝑢 (𝑔, 𝜁) 𝑑𝜁; 0 < 𝑡 < 𝜏

0; 𝜏 < 𝑡 < 𝑇.

(52)

It can be easily verified that 𝛾(𝑔, 𝑡) has (in Ω𝑇int) the general-
ized derivatives [44]

𝜕𝛾 (𝑔, 𝑡)

𝜕𝑡
= {

−𝑢 (𝑔, 𝑡) ; 0 < 𝑡 < 𝜏

0; 𝜏 < 𝑡 < 𝑇,

𝜕𝛾 (𝑔, 𝑡)

𝜕𝜌
=

{{

{{

{

∫

𝜏

𝑡

𝜕𝑢 (𝑔, 𝜁)

𝜕𝜌
𝑑𝜁; 0 < 𝑡 < 𝜏

0; 𝜏 < 𝑡 < 𝑇,

𝜕𝛾 (𝑔, 𝑡)

𝜕𝑧
=
{

{

{

∫

𝜏

𝑡

𝜕𝑢 (𝑔, 𝜁)

𝜕𝑧
𝑑𝜁; 0 < 𝑡 < 𝜏

0; 𝜏 < 𝑡 < 𝑇.

(53)

At the same time, we have 𝛾(𝑔, 𝑡)|
𝑡=𝑇

= 0. Substituting the
function 𝛾(𝑔, 𝑡) into identity (51), we obtain

∫
Ω
𝜏

int

[𝜀
𝜕𝑢

𝜕𝑡
𝑢 +

1

𝜌2
(
𝜕

𝜕𝜌
𝜌𝑢)(∫

𝜏

𝑡

𝜕

𝜕𝜌
𝜌𝑢 (𝜁) 𝑑𝜁)

+
𝜕𝑢

𝜕𝑧
(∫

𝜏

𝑡

𝜕

𝜕𝑧
𝑢 (𝜁) 𝑑𝜁) + 𝜎𝜂

0

𝜕𝑢

𝜕𝑡
𝛾] 𝑑𝑔 𝑑𝑡

− ∫
Φ
𝜏

[(
1

𝜌

𝜕

𝜕𝜌
𝜌𝑢) 𝛾 cos (�⃗�, �⃗�) + 𝜕𝑢

𝜕𝑧
𝛾 cos (�⃗�, �⃗�)] 𝑑𝑠 𝑑𝑡 = 0.

(54)

Since [44]

∫
Ω
𝜏

int

[𝑘 (𝑔) 𝑓 (𝑔, 𝑡) ∫

𝜏

𝑡

𝑓 (𝑔, 𝜁) 𝑑𝜁] 𝑑𝑔 𝑑𝑡

=
1

2
∫
Ωint

𝑘 (𝑔) (∫

𝜏

0

𝑓 (𝑔, 𝑡) 𝑑𝑡)

2

𝑑𝑔,

(55)

then

∫
Ω
𝜏

int

[
1

𝜌2
(
𝜕

𝜕𝜌
𝜌𝑢)(∫

𝜏

𝑡

𝜕

𝜕𝜌
𝜌𝑢 (𝜁) 𝑑𝜁)] 𝑑𝑔 𝑑𝑡

=
1

2
∫
Ωint

1

𝜌2
(∫

𝜏

0

𝜕

𝜕𝜌
𝜌𝑢𝑑𝑡)

2

𝑑𝑔 ≥ 0,

∫
Ω
𝜏

int

[
𝜕𝑢

𝜕𝑧
(∫

𝜏

𝑡

𝜕

𝜕𝑧
𝑢 (𝜁) 𝑑𝜁)] 𝑑𝑔 𝑑𝑡

=
1

2
∫
Ωint

(∫

𝜏

0

𝜕

𝜕𝑧
𝑢𝑑𝑡)

2

𝑑𝑔 ≥ 0.

(56)

By performing partial integration and taking into consid-
eration that 𝛾(𝑔, 𝑡)|

𝑡=𝜏
= 0 and 𝑢(𝑔, 𝑡)|

𝑡=0
= 0, we also obtain

∫
Ω
𝜏

int

[𝜀
𝜕𝑢

𝜕𝑡
𝑢] 𝑑𝑔 𝑑𝑡 =

1

2
∫
Ωint

𝜀[𝑢 (𝑔, 𝜏)]
2
𝑑𝑔 ≥ 0, (57)

∫
Ω
𝜏

int

[𝜎
𝜕𝑢

𝜕𝑡
𝛾] 𝑑𝑔 𝑑𝑡 = −∫

Ω
𝜏

int

[𝜎𝑢
𝜕𝛾

𝜕𝑡
] 𝑑𝑔 𝑑𝑡

= ∫
Ω
𝜏

int

𝜎𝑢
2
𝑑𝑔𝑑𝑡 ≥ 0.

(58)
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Thus, all the volume integrals entering identity (54) are
nonnegative. Show that the integral

𝐼
1 (𝜏) = −∫

Φ
𝜏

[(
1

𝜌

𝜕

𝜕𝜌
𝜌𝑢) 𝛾 cos (�⃗�, �⃗�)

+
𝜕𝑢

𝜕𝑧
𝛾 cos (�⃗�, �⃗�)] 𝑑𝑠 𝑑𝑡

(59)

is nonnegative as well. To this end, let us estimate the integral
𝐼
1
(𝜏) for the case of TE

0
-waves, when (see [3, 8])

𝑢 (𝑔, 𝑡) = 𝐸
𝜙
, 𝐸

𝜌
= 𝐸
𝑧
= 𝐻
𝜙
≡ 0,

𝜕𝐻
𝜌

𝜕𝑡
= 𝜂
−1

0

𝜕𝑢

𝜕𝑧
,

𝜕𝐻
𝑧

𝜕𝑡
= −𝜂
−1

0

1

𝜌

𝜕 (𝜌𝑢)

𝜕𝜌

(60)

(the case of TM
0
-waves can be considered similarly). Thus,

𝐼
1
(𝜏) = 𝜂

0
∫
Φ
𝜏

[
𝜕𝐻
𝑧

𝜕𝑡
𝛾 cos (�⃗�, �⃗�) −

𝜕𝐻
𝜌

𝜕𝑡
𝛾 cos (�⃗�, �⃗�)] 𝑑𝑠 𝑑𝑡

= −𝜂
0
∫
Φ
𝜏

[𝐻
𝑧

𝜕𝛾

𝜕𝑡
cos (�⃗�, �⃗�) − 𝐻

𝜌

𝜕𝛾

𝜕𝑡
cos (�⃗�, �⃗�)] 𝑑𝑠 𝑑𝑡

= 𝜂
0
∫
Φ
𝜏

[𝐻
𝑧
𝑢 cos (�⃗�, �⃗�) − 𝐻

𝜌
𝑢 cos (�⃗�, �⃗�)] 𝑑𝑠 𝑑𝑡

= 𝜂
0
∫
Φ
𝜏

[𝐻
𝑧
𝐸
𝜙
cos (�⃗�, �⃗�) − 𝐻

𝜌
𝐸
𝜙
cos (�⃗�, �⃗�)] 𝑑𝑠 𝑑𝑡

= 𝜂
0
∫
Γadd×(0,𝜏)

[𝐻
𝑧
𝐸
𝜙
cos (�⃗�, �⃗�) − 𝐻

𝜌
𝐸
𝜙
cos (�⃗�, �⃗�)] 𝑑𝑠 𝑑𝑡

= 𝜂
0
∫
Γadd×(0,𝜏)

([�⃗� × �⃗�] ⋅ �⃗�) 𝑑𝑠 𝑑𝑡 = 𝜂
0
𝐼
2
(𝜏) ≥ 0.

(61)

The last step in the chain of transformations (61) requires
explanation.The integral 𝐼

2
(𝜏), accurate within a fixed factor,

coincides with the electromagnetic field energy radiated from
the region Ωint × [0 ≤ 𝜙 ≤ 2𝜋] during the time 0 < 𝑡 < 𝜏

[45]. According to the condition 𝐷add[𝑢(𝑔, 𝑡)]|𝑔∈Γadd = 0 (the
operator 𝐷add[⋅ ⋅ ⋅ ], here, is given by (29)–(31) and (40a)–
(42b)), the functions �⃗� = {𝐸

𝜌
, 𝐸
𝜙
, 𝐸
𝑧
} and �⃗� = {𝐻

𝜌
, 𝐻
𝜙
, 𝐻
𝑧
}

correspond to the electromagnetic waves outgoing from the
domainΩint and the energy of the outgoing waves cannot be
negative.

Then, from (54)–(58) and (61), we have

∫
Ωint

𝜀[𝑢 (𝑔, 𝜏)]
2
𝑑𝑔 = 𝜂

0
∫
Ω
𝜏

int

𝜎𝑢
2
𝑑𝑔 𝑑𝑡 = 0, (62)

or, in view of arbitrariness of 𝜏,

𝑢 (𝑔, 𝑡) ≡ 0; 𝑔 ∈ Ωint, 0 < 𝑡 < 𝑇. (63)

Thus, the solution to the modified problem (49) exists
and it is unique. This result allows one to construct based on
(49) stable and convergent finite-difference or finite-element
computational schemes for computing approximate values of
the field 𝑈(𝑔, 𝑡), 𝑔 ∈ Ω, 0 ≤ 𝑡 ≤ 𝑇 < ∞ (see [3, 31, 36, 42])
and proves the following statement.

Statement. Suppose that problem (4) has a unique solution
from𝑊

1

2
(Ω
𝑇
). Then, problem (49) is uniquely solvable in the

space 𝑊1
2
(Ω
𝑇

int), and the closed region problem (20), (49) is
equivalent to the unbounded region problem (4).

7. Conclusion

In this paper, a problem of efficient truncation of the
computational domain of finite-difference or finite-element
methods is discussed for axially symmetrical openwaveguide
structures. The original problem describing pulsed wave
scattering on awaveguide discontinuity is an initial boundary
value problem formulated in an unbounded domain. The
exact absorbing conditions have been derived for artificial
boundaries enveloping all sources and scatterers in order to
truncate the computational domain and replace the original
open problem by an equivalent closed one.

It has been proved that the modified (closed) problem
is uniquely solvable if the original (open) problem is well-
posed. The solutions to these two problems coincide; that is,
these problems are equivalent. This result has been obtained
by developing the technique previously used in classical
works for studying initial boundary value problems with
Dirichlet and Neumann boundary conditions (see, e.g., [36,
44]) and for the first time modified for the open problems
with EAC in [9]. It can be now used for most problems of
the EAC-method. Conceptually, the proof of the equivalency
completes the mathematical justification of the correspond-
ing approach, whose computational efficiency has already
been confirmed in a series of works [3, 8, 22, 24–30].

In conclusion, it is worth noting once again that, in
contrast to the well-known approximate boundary condi-
tions utilized by finite-difference and finite-elementmethods,
the boundary conditions derived in this paper are exact
by construction and do not introduce an additional error
into any respective algorithm. This advantage is especially
valuable in resonant situations, where numerical simulation
requires large running time and calculational errors may
grow unpredictably if an open problem is replaced by an
insufficiently accurate closed problem.
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