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1. INTRODUCTION

The idea of passive compression of radio-frequency pulses has been formulated rather
long ago (see, for example, papers [1-6]). Let a pulse modulated according to a certain
law in frequency and amplitude be fed at the input of a dispersive waveguiding
section. Then it is quite possible that all frequency components of the pulse would
arrive at a certain spatial point simultaneously (in a certain sense of this word) and in-
phase. The effect would be accompanied by an increase in the pulse amplitude, while
decrease in its length (for example, at a given power level). The main theoretical
problem which should be solved in this situation consists in determining the law of
amplitude and frequency modulation of the primary pulse required for the given
dispersive system. Despite the apparent simplicity of this problem and a great number
of performed theoretical and experimental studies (see, for example, [1-13]), the
results obtained by today seem to be rather modest. For example, the attained
compression factor, i.e., the input-to-output pulse length ratio, equals to several dozens
at the best. The progress observed in this field over the recent fifty years concerns
transition to shorter operation wavelengths rather then increase in the compression
factor. In the author’s opinion this situation is most likely explained by the insufficient
quality of the used mathematical models which should precede real physical
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experiments. The main and common shortcoming characteristic for perhaps all the
works the author has known is the explicit or implicit use of the so-called kinematical
approximation (see, for example, [10]), within which the input pulse is represented
(often purely conceptually) as a continuous chain of “particle” (wave packets) entering
the dispersive element of the compressor each with its own time delay. On assumption
(again without any foundation) that the frequency dependence of the “particle” speed
coincides with the dispersion law pertaining to the compressor the pure kinematic
equations of motions are used to determine both the time delays, i.e., the law of
frequency modulation of the input pulse, and the “optimum” length of the dispersive
element, i.e., such a distance after passage of which all the “particles” meet at one
point. Undoubtedly, such a kinematic representation is useful for qualitative
description of the physical processes occurring in a compressor. However, as it will be
shown below, it proves to be a very rough approximation and is inapplicable for
rigorous modeling and synthesis of specific radiophysical devices.

In the present paper the possibility of electromagnetic pulse compression in regular
homogeneous waveguides of arbitrary transverse cross-section is analyzed
theoretically. The main advantage of the approach developed here is the use of
rigorous methods for calculation of electrodynamic characteristics of the operating
pulse and accurate performance of numerical experiments the results of which can be
repeated in real physical devices if it is necessary. The main idea for determining the
required modulation laws consists in solving preliminarily the “inverse” problem as
follows. If we know the pulse form to be obtained in the result, then applying it to the
output of the dispersive system and changing the time variable ¢ by —¢ we will obtain
the input pulse of the system within an accuracy to the reverse change of — with ¢.
Once the time profile of the input signal has been found, there is no problem to
determine the laws of its modulation. Such a way of carrying out numerical
experiments was first suggested in paper [14]. It is a universal scheme applicable to
any (at least linear ones) dispersive media or waveguiding systems.

2. TRANSPORT OPERATORS FOR REGULAR WAVEGUIDES

The well-known [15] dependence of the group velocity v on frequency &

v(k)zw/l—(kn/k)2 )

suggests that the effect of compression of frequency-modulated pulses can be observed
even in such a simplest dispersive system like a regular waveguide. Here v is the
wave propagation velocity in the medium filling the waveguide and k, is the
waveguide cutoff frequency. For numerical modeling of this effect it is necessary to
have robust and efficient algorithms capable of calculating transformations of the time
profile of a pulse in the course of its motion through the waveguide. Papers [16-22]
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suggest the transport operators relating electromagnetic fields in two arbitrary cross-
sections of a hollow regular semi-infinite waveguide with perfectly conducting walls.
If the waveguide is filled by a medium characterized by the specific permittivity &,
permeability x4 and conductivity o , then these operators for the space-and-time

amplitudes u, (Z,t) of any transverse component of the field take the form

1l gy (

()= [ e, =) ez ) Jar. @)
un(Z,t)=-‘|—%ﬂ£%‘exp(—s(t—r))%(nn(t—r))df, (3)

ou, (2.1) :iﬁ{aun(z,t)Hun(Z’t)}+mj%.exp(_s(t_f))% (m,(t—7))dzs @)

s (20417, [, (2.7 exp ({1 7)) "

0

M @{M t Mdr (5

Here z is supposed to be the longitudinal axis of the waveguide and the upper and
lower signs correspond to waves propagating toward increasing and decreasing z,

respectively. In addition s=on,/2e , 1, =+A}/eu—s (/ln > g,usz) and
Mo =+ Ho/& » With & and pu, being the free space permittivity and permeability,
respectively. The “time” ¢ has dimension of length since it is a product of the real time
by the velocity of light in free space. Dimensions of other values correspond to the SI

system. Magnitudes of the transverse eigenvalues A, are dependent on the waveguide
type and wave polarization and can be calculated analytically for waveguides with the
simplest cross-section geometry. For example [22], for a parallel-plate waveguide of
height @ we have A, =nrn/a, n=1,2,3... (TE, -modes) and A, =nn/a, n=0,1,2,...
(TM ,-modes). For a circular waveguide of radius b these are 4, = jl’n/b ,n=1,2,3..
(TE,,-modes) and A, = j,, /b, n=1,2,3... (TM, -modes), where j,  are roots of the

Bessel function J, (J, ( jm’n)=0 ). The eigenvalues A, for waveguides of more

complex transverse cross-sections can be found using numerical methods.

The operators Egs. (2) to (5) are exact in the sense that they strictly follow from
the Maxwell equations. For this reason they can be used without any limitations for
investigating evolution of a pulse with arbitrary waveform in the course of its motion
through the waveguide. In particular, the spectrum of the signal under investigation
can differ from zero at frequencies located both above and below the cutoff frequency.
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In this case the operators Egs. (2) through (5) are applicable as well and describe
correctly transformations of the operating pulse waveform. To be convinced of that, let
us rewrite Eq. (3) with infinite limits of integration, viz.

% ou (z, J, (1), ifr=0
un(z,t)=-T-I%‘K(ﬂ%(r—r))dr, K(t)z{o Q liftt><0' (6)

—00

For simplicity it has been assumed that ¢ = u=1 and ¢ =0, since the general case
can be considered by analogy. Making use of the convolution theorem we obtain

ii, (z,k) =;%-1&(1«). (7)

Here and throughout below in the paper the spectrum f (k) of the signal f (t) is
calculated using the integral Fourier transform, viz.

f(k)zij‘f(t)e”“ dt & f(t)= jf(k)e-'*’ dk (8)

where k =27/A, with 1 being the free-space wavelength. Making use of the value of
the integral [23]

= ) k)", it 0<k<,
K(k)=[J,(A,e)e" dt= s ©9)
0 i(k=27) ", if 0<A, <k

equation (7) can be brought to the familiar representation for electromagnetic wave
frequency components in the waveguide

A(K)e™, B=\A}—k*, if 0<k<2,

ii, (z,k) = (10)

A(k)e™, B=\k =2}, if 0<4,<k.

Here A is the constant of integration of the equation Eq. (7). Similar derivations can
be carried out for the convolutions Egs. (2), (4) and (5).

Thus, the operators Egs. (2) to (5) describe correctly both the propagating and
evanescent waves. This property is of prime importance for performance of numerical
experiments. Any inaccuracy in specifying the time dependence of the input signal
resulting in appearance of spectral components below the cutoff frequency proves to
be not disastrous for the algorithm realizing the formulas Egs. (2) to (5). All such
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components will rapidly damp in the course of the pulse propagation through the
waveguide as it occurs in reality.
Now let us formulate the main steps of the algorithm of recalculation of the time-

dependent profile of the pulse un(zo,t) from one (reference) cross-section z, onto
another arbitrary waveguide cross-section z . Let the initial signal u, (zo,t) be
specified within the time interval 0<7<¢ , whereas the output signal is to be
determined for the time interval 0<tz<¢ , t >t (see Appendix). Since the initial
function u, (zo,t) is specified on a uniform time mesh with step /4 which is
independent of the parameter 1, , it might occur, generally speaking, that the period
T, of Bessel function oscillations in the convolution would be comparable with or

even smaller than the step 4, . For such values of the parameters 77, and 4, it becomes

impossible to exactly calculate the integrals in Egs. (2) to (5). For this reason to
prevent the appearance of such situations let us introduce a parameter « to control the
accuracy of mesh approximation of the Bessel function. If the condition

r//htza (11)

holds, then the convolutions are calculated using the function u, (z,,7) with the preset
step 4, . Otherwise Eq. (11) is not met the function u, (z,,7) is redefined for a finer
mesh with such a step /4, that the inequality Eq. (11) would be met. In the latter case
the missed values u, (z,,7) can be obtained using interpolation formulas. It has been
found experimentally that to provide the acceptable calculation accuracy it is sufficient
to select o between 10° and 10*. The value 7, can be estimated using the asymptotic

formula [23]
J,(n,t)~ 2 cos nt-"Z 21 T,=2n/n,. (12)
7n,t "2 4 ' !

The algorithm for recalculation of the pulse waveform u, (Zo,t) —>u, (Z,t)
includes the following basic steps.
1. Test of the prescribed function u, (z,,7) for satisfying the condition Eq. (11) as has
been described above.
2. Calculation of ou,(z,,t) / ot for the time interval 0<¢<¢ . To that end the

formulas of numerical five-point first-order differentiation [24] were used in the
present paper.

3. Calculation of ou,(z,,t) / Oz after the formula Eq.(5) for the time interval
0<r<t, . Itis assumed that u, (z,,t)=0u,(z,,t)/0t=0 for t, <t <t,.
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4. Calculation of u, (z,t) using the formula Eq. (2) for the time interval 0<¢<¢, .
Calculation of the convolution integrals is the main difficulty which can arise in

practical implementation of the described algorithm. The “direct” use of the

quadrature trapezoid formulas, the Simpson rule etc. would require to perform about

O(M 2) (M is the size of the arrays to be convolved) floating-point operations which

makes the formulas Egs. (2) to (5) impractical in the case of rather long pulses. To
solve this problem an algorithm has been suggested in paper [25] for calculating such
convolutions using the Fast Fourier Transform (FFT) which requires about
O(M logM ) operations to be performed. In the present paper a modification of this

algorithm was used whose description is presented in the Appendix.

3. PULSE COMPRESSION IN REGULAR WAVEGUIDES

Now consider the possibility of compression of frequency-modulated pulses in a

regular waveguide using the algorithm described in the previous Section. The general

scheme of the numerical experiment includes the following steps.

1. Selection of the pulse time-dependent profile which would be desirable to obtain at
the compressor output.

2. Solution of the “inverse” problem. Knowing the pulse selected according to item 1
in the cross-section z, =0 of the waveguide a segment of which we would like to

use for constructing the power compressor, it is necessary to find its time profile at

a given distance z from the reference cross-section z,,.

3. Determination of the laws of amplitude and frequency modulation of the signal

obtained in item 2.

4. Construction of the pulse using the modulation laws determined in item 3 and
changing in it the time variable ¢ by —¢.

5. Solution of the “direct” problem. It is necessary to excite the pulse obtained in
item 4 within the waveguide cross-section z, and calculate its time dependence at

the distance z.

Selection of the pulse waveform to be finally obtained is determined by those
problems for which solution each specific device is constructed. There is a great many
of options here, however we will confine the present study, without the loss in
generality of the analysis, to the following pulse

u,(1)=A4-S(t)-cos(k, (Z—T))-sin(ks(Z—T))/(Z—T), t. <t<t_,(13)

X(t) z(t_tmin )/(tl _tmin); tmin SZSZI
S(t)=x"(3-2x); <L n<t<t,

x(t):(t_tmax)/(tz _tmax); ZZ Stgtmax
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propagating in a regular homogeneous waveguide in the general case of arbitrary
cross-section. Here u, (7) is the amplitude of one of the transverse components of the
field and # is the number of the respective wave (see the formulas Egs. (2) to (5)). The
factor S(t) composed of two splines has been introduced for convenience of

calculations. It is intended for “smoothing” the source “edges” and makes it possible to
more accurately calculate the time derivatives at the moments of source “switching
on”, t and “switching off”, ¢ The selection of such pulse waveform is easily

min max *

explainable. With ¢, and ¢ going, respectively, to plus and minus infinity the
amplitude spectrum of the signal u, (t) within the range k, £k tends to a constant
level while vanishes outside of this range. For this reason the dependence Eq. (13) can
be regarded as an approximate representation of the Dirac delta function whose
spectrum is uniform within the range —oo < k£ <o . The unique properties of the delta-
function make it a key tool in the theoretical electrodynamics and signal processing
theory, in particular, when investigating pulse responses of dynamic systems. For this
reason it seems quite attractive to use at least its approximate analog in real physical
devices as well. Let us select the following values of the parameters

A=4,k =625,k =275t =t,=0, t,=t,=T=25,¢_=t,=50. (14)

min max

The time step of discrete representation of the function u, (¢) is A, =0.002. The time-

temporal dependence of the function Eq. (13) and its amplitude spectrum calculated
for such parameters are shown in Figs. 1(a) and 1(b).
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FIG. 1: Pulse determined by Eq. (13) with the selected parameters (a) and its amplitude
spectrum (b)
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FIG. 2: The pulse at the distance 100, 1000 and 10000 m (waveguide heights) from the
reference cross-section (a) and functions of its amplitude (dashed line) and frequency (solid
line) modulation (b)
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To solve the “inverse” problem it is necessary to specify the waveguide type and
the operating mode. Since the dependence on the waveguide type in the formulas
Eqgs. (2) to (5) appears through the parameter 7, alone, it does not matter in principle
what exactly waveguide has been selected in the capacity of the dispersive system. The
final result will be the same for different waveguides with identical 7, . For this reason
let us take, for specificity, a hollow (& =u=1, o =0) parallel-plate waveguide of
height @ =1 and investigate the transformation of the TE,-mode (n=1) in it. When
the occasion requires the obtained results can be easily scaled to other types of
waveguides with different transverse sizes. The cutoff frequencies of the selected
waveguide equal k, =nz , and the pulse spectrum (Fig. 1(b)) covers the range
corresponding to single-mode and two-mode propagation in the waveguide.
Figure 2(a) shows transformations of the pulse presented in Fig. 1(a), which has been
initially excited within the reference cross-section z, =0, corresponding to the cross-
sections z =100, 1000 u 10000 . For the selected scale along the ¢ -axis oscillations of
the function u, (z,t + z) are so dense that the area occupied by the pulse seems to be
completely filled. More detailed information about these dependences can be obtained
from the modulation laws (see below). As can be seen, the pulse length increases
almost proportionally to the distance passed by the pulse. Therefore, increasing
infinitely the waveguide segment length it is possible theoretically to construct a
compressor with however large factor of compression of the input pulse. From the
practical standpoint, all characteristics of the compressor will be confined due to loss
associated with conduction currents in the waveguide walls.

Let us find the laws of amplitude A(t) and frequency k(t) modulation of the
obtained pulses. The window Fourier transform

f(t,k)z%Tf(r)W(r—t+%)e””dr (15)

makes it possible to visually represent signal changes in the coordinates of time-
frequency and to check the carrier frequency for uniqueness. Figures 3(a) and 3(b)
show results of applying the transformation Eq. (15), respectively, to the initial

function u, (0,¢) and the function u,(1000,7+1000) with the use of the Hamming

window [26] W (t)=0.54—0.46cos(2zt/w) of width w=8 . Each spectrum in

Fig. 3(b) has been calculated for the respective position of the time window and
normalized to unity

@ (t,k) =i (t, k) /maxii (t,k). (16)
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FIG. 3: Window Fourier transforms of the functions , (0,7) (a) and , (1000,7+1000) (b)

~ norm

The thick curve corresponds to u,"”" =1 and actually demonstrates the frequency
modulation law. However, it is not practical to apply the window transform Eq. (15)
for determining the exact dependence k() since it requires selecting too fine
frequency step, using two-coordinate interpolation formulas etc. As a result, the
complexity of the computer programs and computation time increase unjustifiably. In
the present paper a simpler and more efficient technique was used instead to
simultaneously find both the frequency and amplitude modulation laws. First,

sequences of zeros s,,s,,...s, and extremes ¢,,e,,...,ey_, of the wanted function /()
were determined within the given time interval [fo,fl] The zeros and extremes were

arranged according to the inequalities 7, <s, <¢, <s, <...s, <e, <5, , <.y, <8, <I,.

i+l

Then for every time moment e, the amplitude and frequency were estimated by the
following rule

A(e,.)=|f(e,.)| and k(ei)zﬂ/(sm—si). (17)

The quadratic interpolation formulas were used if for further calibration it is
should be necessary to know the value of the amplitude and frequency for time
moments which do not agree with e,. The experience of numerical experimenting
shows that this way of estimating the dependences A(r) and k() proves to be more

efficient than using the window Fourier transform (more accurate results and shorter
computation time).
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Finally, to unambiguously recover the initial function f (t) from the found
modulation laws [27]

f/(t)zA(t)sin{(po+jk(r)d1j,with s, <t<sy (18)

1

it also necessary to know the phase ¢, of signal at the initial time moment. Since the
reconstruction was performed for the interval [s,,s, |, we have f”(s,)=0, and ¢, =0
if f(e)>0 and @, =7 if f(¢)<0.

The described algorithm of determining the modulation laws and recovering from
these the initial signal has been applied to the pulses u, (z,t+ z) with z =100, 1000

and 10000 (see Fig. 2(a)) and has provided acceptable results as for their accuracy.
Figure 2(b) shows time dependences of the amplitudes (left scale) and frequencies
(right scale) calculated for these pulses. Figure 4 presents time dependence of the

absolute error u,(1000,7+1000)—u, (1000, +1000) of recovering the signal

u, (IOOO,t + 1000). As can be seen the error is less by about three orders of magnitude

than the value of the function itself (the integration in Eq. (18) was performed using
the quadrature trapezoid formula).

0.0050

0.0025

0.0

-0.0025

-0.0050 | | | I
0 500 1000 1500 2000 2500 ¢

FIG. 4: Error of recovering the function u, (1000,7+1000) from the found laws of amplitude

and frequency modulation
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The presence appreciable oscillations in the signal amplitude and frequency at the
distance z =100 from the reference cross-section (Fig. 2(b)) indicates that the time
“separation” of frequencies in the initial pulse has not yet occurred which makes it
inconvenient for practical use. At greater z the frequency modulation law shows a
monotonous character. Pulses of the kind are of greatest interest for the study.

The final step consists in recovering the desired pulse. To that end the signal

u (z,t+z) (s,<t<sy) is used to reconstruct the reversed in time signal
' (t)=u (z,sy—t+z) (0<r<s, —s) which is to be excited within the reference
cross-section of the waveguide z, =0. The time profile of the reconstructed pulse
within the cross-section z is described by a function which will be referred to as
u, (z,t+z) . The signals ' and u for z=1000 (s, ~50.19;s, ~2499.03) are
presented in Figs. 5(a) and 5(b), respectively. As can be seen from Fig. 1(a) the initial
pulse u, has been reconstructed with a sufficiently high accuracy. The minor
difference between u, and u, is due to that we have truncated the long-lasting
“ringing” tail of u, (1000,7+1000) for ¢ >2500. Increasing the length of u, (z,7+z) it

is possible, at least in theory, to however accurately reproduce the profile of the
desired signal.

15 12
' (1) ~1.263 —

! (1000.r+1000) | ¥10998

S I | [P—

-6

1.0

0.5

0.0

-0.5

-1.5 | | | |
| | | 1
0 500 1000 1500 2000 2500 2450 2460 2470 2480 2490 2500 ¢

a) b)

FIG. 5: The pulse within the reference cross-section of the waveguide z, =0 (a) and its profile
within the cross-section z =1000 (b)

The compressor built around such waveguide section for to transform the pulse u;’

into u, will have the following characteristics.
* Amplitude gain (output-to-input signal maximum magnitude ratio)
a=u., [ul ~10.998/1.263~8.708.

* Compression factor (input-to-output pulse length ratio)
B=T"|T" ~2448.84/50 ~ 48.98 .
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= Efficiency (output-to-input pulse power ratio)
y=|[v (t)]2 dt / [[u" (z)]2 dt ~67.76947/67.76961 ~ 1 . Here the integrals are

taken over time intervals corresponding to the lengths T~ and T" of the
respective pulses.
= Power gain (product of the compression factor by the efficiency)
0= -y~4898.
The above characteristics have been calculated with neglect of the loss due to the
conduction currents in the waveguide walls.
Now it seems interesting to compare the modulation law obtained for the pulse

u, (z,t+ z) with that which could be expected proceeding from intuitive conception on

propagation of the wave packets, by superposition of which the initial signal Egs. (13)
and (14) can be represented, through a dispersive system. If each of these packets is
sufficiently narrowband near the frequency & and they all at the time moment ¢,

(#, 20) are located within the reference cross-section z, =0 (as follows from Fig. 3(a)
it is a plausible assumption), then according to Eq. (1) the time of its arrival at the

cross-section z 1S
T=Z+t+to=Z/«H—(k1/k)2. (19)

Recall that the velocity of light in free space in the used system of units is equal to
1. Expressing k through ¢, we obtain

k

=
1_( ; J
Z+1+t,

Figure 6 presents dependences k(¢) calculated after Eq. (20) for the cross-section

k()=

(20)

z=1000 with #, =0, 25 and 50. Also shown there is the frequency modulation law
(curve 4) calculated for the pulse u,(1000,z+1000). As can be seen, the k()

dependence calculated using the rigorous formulas will differ essentially from that
calculated after the formula Eq. (20) no matter to what extent the beginning of the
wave packets (parameter ¢,) is localized in time. Actually, each frequency component

of the pulse propagates faster than it is expected proceeding from pure mechanical
conception about motion of wave packets. The same conclusion can be derived from

the comparison of the k(¢) dependence for the pulse u,’ (¢) (see Fig. 5(a)) with the
frequency modulation law obtained within the kinematical approximation. To that end
let us set the input pulse length to 7'=2500 and its frequency range k., <k <k, to

be confined by the following boundaries k,, =3.25 and £, =9. According to paper
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[10], the “fly-in” time ¢ of a wave packet should be related to its group velocity v
through the following expression

4 i
i) .

where v, and v, are the group velocities of the wave packets at the frequencies &
and £k

given by the formula Eq. (1). Combining Egs. (1) and (21) we obtain the modulation
law of the input pulse which is shown in Fig. 7 by the dashed line. The solid line in the

Figure corresponds to the k(t) dependence calculated after the exact formulas. The

respectively. In the case of a regular waveguide the v(k) dependence is

mere difference in these dependences already makes it impossible to use the
kinematical approximation for synthesizing and optimizing real power compressors.

Yet more aggravated situation arises in calculating the optimum length L, of the

waveguiding section which would provide, proceeding from the kinematical formulas,
the best compression of the input pulse. For the above indicated parameters this length

is equal to L, = Tvlvz/(v2 —vl) ~881.14 [10], which value differs inadmissibly from
the exact magnitude z =1000 .

k(r) 8-

6 |-

W
T

3 | L |

| 1 | |
0 500 1000 1500 2000 2500 ¢ 0 500 1000 1500 2000 2500 t

FIG. 6: Dependences k(r) calculated after FIG.7: k(¢) dependences calculated for the

Eq. (20) for z, =0 (curve 1), £, =25 (curve pulse shown in Fig. 5(a) with the use of the
exact formulas (solid line) and the kinematical

2) and t, =50 (curve 3) and the frequency theory (dashed line)

modulation law (curve 4) calculated for the
pulse u, (1000,7+1000)

Thus, the kinematical conception that a radio pulse moves as a superposition of
“particles”, proves to be too crude for adequate modeling of physical processes even in
such a simple case where the dispersive element is represented by a section of a
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regular waveguide. Using this approximation it is impossible to precisely answer the
question what should be the frequency and moreover amplitude modulation law of the
pulse delivered at the compressor input. This fact plays the role of prime importance
for implementing both numerical and full-scale experiments since the knowledge of
the dispersion law of a specific device does not imply knowledge of the frequency
modulation law of the pulse to be fed at the input of this device.

00 ! E
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

a) b)

FIG. 8: Amplitude (a) and frequency (b) modulation laws for the pulse , (1000,t+1000\/; )

calculated for four waveguides filled with a homogeneous nondispersive dielectric material
characterized by the permeability 4 =1 and conductivity o =0 . Curves 1, 2, 3 and 4

correspond to ¢=1 and a=1; ¢=4 and a=1/2; ¢=9 and a=1/3; and £=16 and

a=1/4, respectively

1.0 )
U, (t)
0.5 -
0.0
0.5
-1.0 ! | | !
0 1000 2000 3000 4000 5000 ¢

FIG. 9: Time profile of a pulse intended for compression in a parallel-plate waveguide filled by
a dielectric material with ¢ =4
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FIG. 10: The pulses u, (1000,t+1000\/; ) observed after the pulse shown in Fig. 9 being

passed the distance 1000 in waveguides with dielectric filling characterized by ¢ =4 and
o =107 (panela), o =10° (panel b) and o =10~ (panel c)

Now let us consider the question on the waveguide filling by nondispersive
dielectric. The tackling of this question is ambiguous. On the one said this filling
makes it possible to attain the greatest frequency separation in initial pulse at that
waveguide length when the inverse problem is solved. As was to be expected, the
greatest amplitude gain is reached, when the direct problem is solved. On the other
hand, the losses in dielectric can reduce to zero this increase in gain. An unambiguous
answer on the question on dielectric filling can be received after strong and careful
numerical simulation of corresponding electrodynamical system. Let us illustrate this
argument. Figure 8 shows the amplitude and frequency modulation laws which results
the propagation at distance z=1000 of initial pulse (see Fig. 1(a)) in plane-parallel
waveguides, filled with media having £=1,4,9 and 16. It is supposed that

u=1,0=0 and waveguide hate is 1, 1/2 and 1/4 correspondently. With this selection
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of the heights the cutoff frequencies and the dispersion law Eq. (1) prove to be
identical for all four waveguides. Basically, the cases differ by the optical path lengths
passed by the initial pulse. The result is quite expectable. Specifically, the longer the
travel path of the pulse, the stronger its spreading in time and space. Now consider the
effect of electric loss in the dielectric material filling the waveguide. Let us select the
signal obtained for the waveguide with £ =4 and use it to reconstruct the signal

u,' (¢) (Fig. 9) following the above described algorithm to see how its form will be
changed after passage the distance z=1000 in the waveguide for different non-zero
values of o . Time profiles of the output pulses calculated for c=10",10° and 10~

are shown in Fig. 10. This Figure presents maximum magnitudes of the compressed
pulses. The respective amplitude gains are equal to a ~12.296, 11.063, and 3.906,
while the efficiency factors are y =0.977, 0.791, and 0.102. It is seen that in the case

of sufficiently small o the use of waveguides with dielectric filling might be more
preferable for the pulse compression.

4. CONCLUSIONS

The present paper suggests a rigorous algorithm for calculating transformations of the
time profile of electromagnetic pulses propagating in a regular homogeneous
waveguide of arbitrary cross-section with perfectly conducting walls. The algorithm
has been used for comprehensive analysis of evolution of the signals described by the
formulas Egs. (2) to (5). An efficient computational scheme has been suggested for
determining the frequency and amplitude modulation laws of the radio pulses intended
for compression in sections of waveguides both hollow and filled with a homogeneous
nondispersive dielectric material. It has been shown that the so-called kinematical
approximation is inapplicable for rigorous description of propagation of broadband
pulse in a dispersive system in the form of superposition of wave packets.

5. APPENDIX: FAST ALGORITHM FOR CALCULATING CONVOLUTION
INTEGRALS

To create practicable algorithms of recalculating fields based on the formulas Egs. (2)
to (5) it is necessary to construct an efficient scheme of computing the convolution
integrals as follows

v(t)zjK(t—f)u(r)dr. (A.1)

In the general case the function u(t) is specified within the time interval

0<t<t,, while the function v(¢) should be determined within the time interval
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0<¢<t,, with ¢, >¢ . As has been mentioned above, computation of the integral
Eq. (A.1) “directly” using the quadrature formulas would require performance of about
O(M 2) floating-point operations, where M is the size of the arrays to be convolved.
Paper [25] suggested an algorithm for computing such convolution based on the Fast
Fourier Transform (FFT) which requires about O(M logM ) operations to be

performed. In the Appendix a more computationally efficient modification of this
algorithm is described.

Suppose that in the initial time moment we have u(O) = v(O) =0. Let us go over to
the mesh functions
v(t/)_>v” t=0’1’2""’]:1 _13 t/ :t.htﬂ tv Z(Tv _1)'1’1,,
u(t/)%ul’ tzo’l’z’""]:‘ _1’ t/ =t‘h” L, :(]; _1)'hm (A2)
K(t/)_>Km t=031,2,...,Tv —1’ t/ :t.hl’

where £, is the sampling increment. For simplicity let us set 7, =7, for the time being
and write a discrete analog of Eq. (A.1) using the quadrature trapezoid formula

v, =0, v=£ZT-K u, 0<t<T -1, (A.3)

with 7. =1, if either 7=0 or 7=¢ and 7. =2, if 0<7z<¢. Having transformed
Eq. (A.3) such that to exclude the factor 7. under the summation sign, viz.
: h
v, =0, v =hlZKl_T U, —E‘(Kl g+ Ky-u), 0<t<T -1, (A4)

=0

we will operate in what follows with the sum
t :ZKl—T .ur * (A5)

According to [25], let us represent the sum as a product of the lower triangular
Toeplitz matrix K by the column vector of the right-hand part, viz.

K

i-j°

0, i<j'

i<j
w=K-u, K, ={ (A.6)

For example, for 7, =14 the relation Eq. (A.5) can be written as
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- - KO - .
Wo E m U
W & Kl KO U
W. u
w| |6 K K K] "

3 3
K, K, K, K K,

Wy u,
W K K, K, K, E m us (A7)
Wo |_ & K K, ﬂ @ ﬂ K, « Ug
W E K(y Ks m K Kz Kl m Uy
Wy K, K, K, K, K, K, K, K K, Ug
" K, K, K, K, K; K, K; K, E m “s
ol e KKK K K KKK KK o
v Bl R ORIE R R &K R E R “
Wi K, K, K, K, @ K| |Ks K K, K| |K, K| K, U,

i _K13 K, X, K, K, Ky K, K¢ K, K, K, K, K K, i

According to [25] to speedup computation of this matrix product using the FFT it
is necessary to partition the lower triangular fragment of the matrix K into square
blocks with a side dimension s equal to a power of two. Eq. (A7) represents an
example of such a partition. Then the product of a square block by a fragment of the
column vector

W Ky K K, u;
Win | _ Ky o K Ky « Ui (A.8)
Wits—1 Kiaes - Ky Ko Ujs

(from Eq. (A.7) for any square block k=i—j—s+1) can be reduced to the circular
convolution

=

-1

W =(K/ *U)n =Yk

n (n—m)mod N
0

U

m?

n=0,1,..,N-1 (A.9)

m

of two vectors of size N =2s, viz.

ST k410 T k4251

U={u;,utt;,0,..,0) and K' ={K,.K, ...k, ,.,}  (A.10)

by the following rule

VVS—Ier’ p=0913"'3s_1' (All)

Wi+p =
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Then, from applying the convolution theorem to the expression Eq. (A.9) we arrive

W =DFT| DFT[K'|DFT[U]], (A.12)

where DTF and DTF™' mean respectively, the direct and the inverse discrete Fourier
transforms, viz.

—

=DFT[X]=Yx,¢ ¥ < x,=DTF'[Y :ﬁ eV (A.13)
m=0 :()

N-1 27i 1 N— 27i

If the square matrix size is greater than or equal to a certain s,., , then
computation of the product Eq. (A.8) using the FFT provides gain in speed as
compared with the “direct” calculation according to the “row-by-column” rule. The
greater is the size of the square matrix in Eq. (A.8) (and, as a result, the greater size of
the vectors to be convolved in Eq. (A.9)), the greater advantage can be obtained
through performing the matrix multiplication after the formulas Egs. (A.12) and
(A.11). And vise versa, multiplication of small blocks with sizes s <s,,, is more
expedient to perform by the “row-by-column” rule since in this case a less number of
operations is required than for the FFT-based multiplication. It has been found
experimentally that the optimum value is s,,, =128.

The presented algorithm can be additionally optimized. It is easy to ascertain that
the multiplication of a square block of arbitrary dimension s representing a lower
triangular matrix can be reduced to the circular convolution Eq. (A.9). If s represents
a power of two, then it is sufficient to set K, =K, = ... =K, , =0 in Egs. (A.8)
and (A.10). In the case of an arbitrary s it is more convenient to rewrite Eq. (A.8) in
the form of the following product (it has been taken into account here that after
partition of the matrix K into blocks the main diagonals of the all lower triangular
matrices will contain the element K|))

W, K, u;
Win _ K, K, o U (A.14)
Wits-1 K, K, K, Ujisa

which can be calculated using the convolution Eq. (A.9) of the two vectors as follows

U={u;,utt,,0,...,0) and K' ={K,,K,,..K _,0,..,0}  (A.15)

JH12 o jrs—1

according to the rule
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w, =W

i s p=0,1..,5-1. (A.16)

The dimension N of the vectors U and K’ is equal to the least power of two
greater than 2s —1.

This is a very important property of the matrix Eq. (A.6) which makes it possible
to minimize computational expenses associated with the partition into square blocks
and calculation of the FFT plans [28] for each block.

Finally, a more universal rule can be derived. The procedure of partition of the
matrix K in Eq. (A.6) should not necessarily result in square blocks. The
multiplication of a rectangular block of size J x 7 by a column vector of size J

W, Ky Ko K, u;
Wia | _ Ky e K Ky « Uy (A17)
Wit Kiriyo - Ko K U

(for any rectangular block k=i— j—J+1) can be reduced as well to the circular
convolution Eq. (A.9) of the two vectors as follows

U={u;utt;,;,0,..,0} and K' ={K K, ...k, ,;,,,0,...0  (A.18)

according to the rule

w, =W

i+p J-l+p>

p=0,1,.,1-1. (A.19)

Here the size N of the vectors U and K’ is equal to the least power of two greater
than 7+J—1.
Now, let us describe briefly the procedure of partition of the matrix K into

fragments. In the general case with ¢, >, the function u () can be prolonged by zeros
to the time moment #, in order to construct the procedure of partition of the lower
triangular matrix as it was done in paper B [25]. However this approach does not seem
to be rational. In real physical problems (one of these is considered in the paper) it
might be quite possible that 7, is tens and even hundreds times greater than ¢, . In this
case a greater part of the matrix K will be multiplied by zero values of the vector U.
However, it is possible to avoid performance of these unnecessary operations. To that
end let us complement Egs. (A.3) and (A.4), respectively, by the expressions

T,-1
vt:?ZTr‘Kt—r.ur’ ]—;—1<Z‘STL—1, (A20)
7=0
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and

7,1
. h
v=h Y K,_ -u —El(KTu_l-uﬁKo-uTu_l), T -1<t<T —1. (A2l)

The values w, (OStSTV —1) will be again sought for using the matrix product
Eq. (A.6), however now the matrix K is a rectangular one, viz.

— - KO
Wo
Wl Kl KO
X . . K]
wo | Ka e K .. K, o
e —— — —————————————— — p— u
w, |=| [k, AR (A.22)
Uy,
_WI—I_ L KI—I K]_J )

Here for brevity the following notationisused / =7, and J =7, .

The procedure of partition of the matrix K into blocks makes two lists, one of the
lower triangular matrices and another of complete rectangular matrices. At the initial
time moment the lists contain, generally speaking, a single block each (in the formula
Eq. (A.22) they are separated by the dashed line. Since the FFT algorithms are
fastidious about the computer memory size, it is necessary to provide a limitation to
the maximum size of the vectors to be convolved. To that end a parameter N _,_ is
used. If for a block with a lower triangular matrix it is needed to compute the
convolution of vectors with lengths exceeding N__ , then such triangular fragment is

divided into two triangular and one rectangular (see the formula Eq. (A.22)) such that
at least one of the triangular fragments could be multiplied by the column vector using
the FFT. If for a block with a complete rectangular matrix it is necessary to compute
the convolution of vectors with lengths exceeding N__ , then the block is halved with

max
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respect to the longer side. The specific value of N__ depends on the capabilities of the

specific computer and can be set by the user. In addition, when partitioning rectangular
matrices it is necessary to try to obtain blocks in the form as close to the square one as
possible since multiplication of square blocks using the FFT provides the maximum
computational speedup. To that end rectangular blocks with side ratios greater than
2:1 are as well divided with respect to the longer side such that one of the obtained
parts would be a square.
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Data array size

FIG. 11A: Computation time for estimating the convolution integral Eq. (5) for the signal
given by Egs. (13) and (14) in dependence on the input data set size. The calculations have
been performed using the quadrature trapezoid formula (curve 1) and the optimized algorithm
(curve 2)

After the partition procedure the made lists are browsed and matrix blocks are
multiplied by the respective fragments of the vector u. The multiplication algorithm
depends on the size of the respective block. If for a lower triangular matrix lengths of
the vectors U and K’ are less than 2s,,,, then the block is multiplied by the “row-
by-column” rule, otherwise according to the formulas Egs. (A.12), (A.15) and (A.16).
If the number of rows or columns in a complete rectangular block is less than s, ,

then the block is multiplied as well by the “row-by-column” rule, otherwise according
to the formulas Egs. (A.12), (A.18) and (A.19). At that all discrete Fourier transforms
are performed using the FFT. The FFT procedures used in this paper have been taken
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from website [28]. At last, when the sum Eq. (A.5) has been computed the final values
of v, are determined after the formulas Eqgs. (A.4) and (A.21).

The efficiency of the optimized algorithms is illustrated by Fig. 11A. Curve one
shows the time of computing the convolution Eq. (5) of the signal Egs. (13) and (14)
directly after the trapezoid formula in dependence on the input array size. Curve 2
corresponds to the time of computing the same convolution using the optimized
algorithm. For an array of one million elements in size these times are equal to about
1.78 hand 1 s, respectively. The calculations have been performed using a PC with an
Intel Pentium 4 (Prescott) CPU operating at 3 GHz CPU clock.
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