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The paper suggests an efficient algorithm for rigorous calculation of the transformation of the
waveform of electromagnetic pulses propagating in regular waveguides. The algorithm is 
applied to analyzing the possibility of passive compression of frequency-modulated pulses. 
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1. INTRODUCTION 

The idea of passive compression of radio-frequency pulses has been formulated rather 
long ago (see, for example, papers [1–6]). Let a pulse modulated according to a certain 
law in frequency and amplitude be fed at the input of a dispersive waveguiding 
section. Then it is quite possible that all frequency components of the pulse would 
arrive at a certain spatial point simultaneously (in a certain sense of this word) and in-
phase. The effect would be accompanied by an increase in the pulse amplitude, while 
decrease in its length (for example, at a given power level). The main theoretical 
problem which should be solved in this situation consists in determining the law of 
amplitude and frequency modulation of the primary pulse required for the given 
dispersive system. Despite the apparent simplicity of this problem and a great number 
of performed theoretical and experimental studies (see, for example, [1-13]), the 
results obtained by today seem to be rather modest. For example, the attained 
compression factor, i.e., the input-to-output pulse length ratio, equals to several dozens 
at the best. The progress observed in this field over the recent fifty years concerns 
transition to shorter operation wavelengths rather then increase in the compression 
factor. In the author’s opinion this situation is most likely explained by the insufficient 
quality of the used mathematical models which should precede real physical 
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experiments. The main and common shortcoming characteristic for perhaps all the 
works the author has known is the explicit or implicit use of the so-called kinematical 
approximation (see, for example, [10]), within which the input pulse is represented 
(often purely conceptually) as a continuous chain of “particle” (wave packets) entering 
the dispersive element of the compressor each with its own time delay. On assumption 
(again without any foundation) that the frequency dependence of the “particle” speed 
coincides with the dispersion law pertaining to the compressor the pure kinematic 
equations of motions are used to determine both the time delays, i.e., the law of 
frequency modulation of the input pulse, and the “optimum” length of the dispersive 
element, i.e., such a distance after passage of which all the “particles” meet at one 
point. Undoubtedly, such a kinematic representation is useful for qualitative 
description of the physical processes occurring in a compressor. However, as it will be 
shown below, it proves to be a very rough approximation and is inapplicable for 
rigorous modeling and synthesis of specific radiophysical devices. 

In the present paper the possibility of electromagnetic pulse compression in regular 
homogeneous waveguides of arbitrary transverse cross-section is analyzed 
theoretically. The main advantage of the approach developed here is the use of 
rigorous methods for calculation of electrodynamic characteristics of the operating 
pulse and accurate performance of numerical experiments the results of which can be 
repeated in real physical devices if it is necessary. The main idea for determining the 
required modulation laws consists in solving preliminarily the “inverse” problem as 
follows. If we know the pulse form to be obtained in the result, then applying it to the 
output of the dispersive system and changing the time variable t  by t  we will obtain 
the input pulse of the system within an accuracy to the reverse change of t  with t . 
Once the time profile of the input signal has been found, there is no problem to 
determine the laws of its modulation. Such a way of carrying out numerical 
experiments was first suggested in paper [14]. It is a universal scheme applicable to 
any (at least linear ones) dispersive media or waveguiding systems. 

 
2. TRANSPORT OPERATORS FOR REGULAR WAVEGUIDES 

The well-known [15] dependence of the group velocity v  on frequency k  
 

   21 nv k v k k       (1) 
 

suggests that the effect of compression of frequency-modulated pulses can be observed 
even in such a simplest dispersive system like a regular waveguide. Here v  is the 
wave propagation velocity in the medium filling the waveguide and nk  is the 
waveguide cutoff frequency. For numerical modeling of this effect it is necessary to 
have robust and efficient algorithms capable of calculating transformations of the time 
profile of a pulse in the course of its motion through the waveguide. Papers [16-22] 
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suggest the transport operators relating electromagnetic fields in two arbitrary cross-
sections of a hollow regular semi-infinite waveguide with perfectly conducting walls. 
If the waveguide is filled by a medium characterized by the specific permittivity  , 
permeability   and conductivity  , then these operators for the space-and-time 
amplitudes  ,nu z t  of any transverse component of the field take the form 
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Here z  is supposed to be the longitudinal axis of the waveguide and the upper and 

lower signs correspond to waves propagating toward increasing and decreasing z , 
respectively. In addition 0 2s   , 2 2

n n s      2
n s   and 

0 0 0   , with 0  and 0  being the free space permittivity and permeability, 
respectively. The “time” t  has dimension of length since it is a product of the real time 
by the velocity of light in free space. Dimensions of other values correspond to the SI 
system. Magnitudes of the transverse eigenvalues n  are dependent on the waveguide 
type and wave polarization and can be calculated analytically for waveguides with the 
simplest cross-section geometry. For example [22], for a parallel-plate waveguide of 
height a  we have n n a  , 1,2,3...n   ( nTE -modes) and n n a  , 0,1,2,...n   
( nTM -modes). For a circular waveguide of radius b  these are 1,n nj b  , 1,2,3...n   
( 0nTE -modes) and 0,n nj b  , 1,2,3...n   ( 0nTM -modes), where ,m nj  are roots of the 

Bessel function mJ  (  , 0m m nJ j  ). The eigenvalues n  for waveguides of more 
complex transverse cross-sections can be found using numerical methods. 

The operators Eqs. (2) to (5) are exact in the sense that they strictly follow from 
the Maxwell equations. For this reason they can be used without any limitations for 
investigating evolution of a pulse with arbitrary waveform in the course of its motion 
through the waveguide. In particular, the spectrum of the signal under investigation 
can differ from zero at frequencies located both above and below the cutoff frequency. 
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In this case the operators Eqs. (2) through (5) are applicable as well and describe 
correctly transformations of the operating pulse waveform. To be convinced of that, let 
us rewrite Eq. (3) with infinite limits of integration, viz. 
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For simplicity it has been assumed that 1    and 0  , since the general case 

can be considered by analogy. Making use of the convolution theorem we obtain 
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Here and throughout below in the paper the spectrum  f k  of the signal  f t  is 

calculated using the integral Fourier transform, viz. 
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where 2k   , with   being the free-space wavelength. Making use of the value of 
the integral [23] 
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equation (7) can be brought to the familiar representation for electromagnetic wave 
frequency components in the waveguide 
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Here A  is the constant of integration of the equation Eq. (7). Similar derivations can 
be carried out for the convolutions Eqs. (2), (4) and (5). 

Thus, the operators Eqs. (2) to (5) describe correctly both the propagating and 
evanescent waves. This property is of prime importance for performance of numerical 
experiments. Any inaccuracy in specifying the time dependence of the input signal 
resulting in appearance of spectral components below the cutoff frequency proves to 
be not disastrous for the algorithm realizing the formulas Eqs. (2) to (5). All such 
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components will rapidly damp in the course of the pulse propagation through the 
waveguide as it occurs in reality. 

Now let us formulate the main steps of the algorithm of recalculation of the time-
dependent profile of the pulse  0 ,nu z t  from one (reference) cross-section 0z  onto 
another arbitrary waveguide cross-section z . Let the initial signal  0 ,nu z t  be 
specified within the time interval 0 ut t  , whereas the output signal is to be 
determined for the time interval 0 vt t  , v ut t  (see Appendix). Since the initial 
function  0 ,nu z t  is specified on a uniform time mesh with step th  which is 
independent of the parameter n , it might occur, generally speaking, that the period 

JT  of Bessel function oscillations in the convolution would be comparable with or 
even smaller than the step th . For such values of the parameters n  and th  it becomes 
impossible to exactly calculate the integrals in Eqs. (2) to (5). For this reason to 
prevent the appearance of such situations let us introduce a parameter   to control the 
accuracy of mesh approximation of the Bessel function. If the condition 

 

J tT h                   (11) 
 
holds, then the convolutions are calculated using the function  0 ,nu z t  with the preset 
step th . Otherwise Eq. (11) is not met the function  0 ,nu z t  is redefined for a finer 
mesh with such a step th  that the inequality Eq. (11) would be met. In the latter case 
the missed values  0 ,nu z t  can be obtained using interpolation formulas. It has been 
found experimentally that to provide the acceptable calculation accuracy it is sufficient 
to select   between 310  and 410 . The value JT  can be estimated using the asymptotic 
formula [23] 
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The algorithm for recalculation of the pulse waveform    0 , ,n nu z t u z t  

includes the following basic steps. 
1. Test of the prescribed function  0 ,nu z t  for satisfying the condition Eq. (11) as has 

been described above. 
2. Calculation of  0 ,nu z t t   for the time interval 0 ut t  . To that end the 

formulas of numerical five-point first-order differentiation [24] were used in the 
present paper. 

3. Calculation of  0 ,nu z t z   after the formula Eq. (5) for the time interval 
0 vt t  . It is assumed that    0 0, , 0n nu z t u z t t     for u vt t t  . 
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4. Calculation of  ,nu z t  using the formula Eq. (2) for the time interval 0 vt t  . 
Calculation of the convolution integrals is the main difficulty which can arise in 

practical implementation of the described algorithm. The “direct” use of the 
quadrature trapezoid formulas, the Simpson rule etc. would require to perform about 
 2O M  ( M  is the size of the arrays to be convolved) floating-point operations which 

makes the formulas Eqs. (2) to (5) impractical in the case of rather long pulses. To 
solve this problem an algorithm has been suggested in paper [25] for calculating such 
convolutions using the Fast Fourier Transform (FFT) which requires about 
 logO M M  operations to be performed. In the present paper a modification of this 

algorithm was used whose description is presented in the Appendix. 

 
3. PULSE COMPRESSION IN REGULAR WAVEGUIDES 

Now consider the possibility of compression of frequency-modulated pulses in a 
regular waveguide using the algorithm described in the previous Section. The general 
scheme of the numerical experiment includes the following steps. 
1. Selection of the pulse time-dependent profile which would be desirable to obtain at 

the compressor output. 
2. Solution of the “inverse” problem. Knowing the pulse selected according to item 1 

in the cross-section 0 0z   of the waveguide a segment of which we would like to 
use for constructing the power compressor, it is necessary to find its time profile at 
a given distance z  from the reference cross-section 0z . 

3. Determination of the laws of amplitude and frequency modulation of the signal 
obtained in item 2. 

4. Construction of the pulse using the modulation laws determined in item 3 and 
changing in it the time variable t  by t . 

5. Solution of the “direct” problem. It is necessary to excite the pulse obtained in 
item 4 within the waveguide cross-section 0z  and calculate its time dependence at 
the distance z . 
Selection of the pulse waveform to be finally obtained is determined by those 

problems for which solution each specific device is constructed. There is a great many 
of options here, however we will confine the present study, without the loss in 
generality of the analysis, to the following pulse 
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propagating in a regular homogeneous waveguide in the general case of arbitrary 
cross-section. Here  nu t  is the amplitude of one of the transverse components of the 
field and n  is the number of the respective wave (see the formulas Eqs. (2) to (5)). The 
factor  S t  composed of two splines has been introduced for convenience of 
calculations. It is intended for “smoothing” the source “edges” and makes it possible to 
more accurately calculate the time derivatives at the moments of source “switching 
on”, mint , and “switching off”, maxt . The selection of such pulse waveform is easily 
explainable. With mint  and maxt  going, respectively, to plus and minus infinity the 
amplitude spectrum of the signal  nu t  within the range c sk k  tends to a constant 
level while vanishes outside of this range. For this reason the dependence Eq. (13) can 
be regarded as an approximate representation of the Dirac delta function whose 
spectrum is uniform within the range k    . The unique properties of the delta-
function make it a key tool in the theoretical electrodynamics and signal processing 
theory, in particular, when investigating pulse responses of dynamic systems. For this 
reason it seems quite attractive to use at least its approximate analog in real physical 
devices as well. Let us select the following values of the parameters 
 

4A  , 6.25ck  , 2.75sk  , min 0 0t t  , 1 2 25t t T   , max 3 50t t  .     (14) 
 

The time step of discrete representation of the function  nu t  is 0.002th  . The time-
temporal dependence of the function Eq. (13) and its amplitude spectrum calculated 
for such parameters are shown in Figs. 1(a) and 1(b). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

FIG. 1: Pulse determined by Eq. (13) with the selected parameters (a) and its amplitude 
spectrum (b) 
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a)                                                                         b) 
 

FIG. 2: The pulse at the distance 100, 1000 and 10000 m (waveguide heights) from the 
reference cross-section (a) and functions of its amplitude (dashed line) and frequency (solid 
line) modulation (b) 
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To solve the “inverse” problem it is necessary to specify the waveguide type and 
the operating mode. Since the dependence on the waveguide type in the formulas 
Eqs. (2) to (5) appears through the parameter n  alone, it does not matter in principle 
what exactly waveguide has been selected in the capacity of the dispersive system. The 
final result will be the same for different waveguides with identical n . For this reason 
let us take, for specificity, a hollow ( 1   , 0  ) parallel-plate waveguide of 
height 1a   and investigate the transformation of the 1TE -mode ( 1n  ) in it. When 
the occasion requires the obtained results can be easily scaled to other types of 
waveguides with different transverse sizes. The cutoff frequencies of the selected 
waveguide equal nk n , and the pulse spectrum (Fig. 1(b)) covers the range 
corresponding to single-mode and two-mode propagation in the waveguide. 
Figure 2(a) shows transformations of the pulse presented in Fig. 1(a), which has been 
initially excited within the reference cross-section 0 0z  , corresponding to the cross-
sections 100z  , 1000  и 10000 . For the selected scale along the t -axis oscillations of 
the function  1 ,u z t z  are so dense that the area occupied by the pulse seems to be 
completely filled. More detailed information about these dependences can be obtained 
from the modulation laws (see below). As can be seen, the pulse length increases 
almost proportionally to the distance passed by the pulse. Therefore, increasing 
infinitely the waveguide segment length it is possible theoretically to construct a 
compressor with however large factor of compression of the input pulse. From the 
practical standpoint, all characteristics of the compressor will be confined due to loss 
associated with conduction currents in the waveguide walls. 

Let us find the laws of amplitude  A t  and frequency  k t  modulation of the 
obtained pulses. The window Fourier transform 
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makes it possible to visually represent signal changes in the coordinates of time-
frequency and to check the carrier frequency for uniqueness. Figures 3(a) and 3(b) 
show results of applying the transformation Eq. (15), respectively, to the initial 
function  1 0,u t  and the function  1 1000, 1000u t   with the use of the Hamming 
window [26]    0.54 0.46cos 2W t t w   of width 8w  . Each spectrum in 
Fig. 3(b) has been calculated for the respective position of the time window and 
normalized to unity 
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a)                                                                         b) 

FIG. 3: Window Fourier transforms of the functions  1 0,u t (a) and  1 1000, 1000u t   (b) 

 
The thick curve corresponds to 1~

1 normu  and actually demonstrates the frequency 
modulation law. However, it is not practical to apply the window transform Eq. (15) 
for determining the exact dependence  k t  since it requires selecting too fine 
frequency step, using two-coordinate interpolation formulas etc. As a result, the 
complexity of the computer programs and computation time increase unjustifiably. In 
the present paper a simpler and more efficient technique was used instead to 
simultaneously find both the frequency and amplitude modulation laws. First, 
sequences of zeros 1 2, ,... Ns s s  and extremes 1 2 1, ,..., Ne e e   of the wanted function  f t  
were determined within the given time interval 0 1,t t    . The zeros and extremes were 
arranged according to the inequalities 0 1 1 2 1 1 1... ...i i i N Nt s e s s e s e s t           . 
Then for every time moment ie  the amplitude and frequency were estimated by the 
following rule 
 
 

   i iA e f e  and    1i i ik e s s   .  (17) 
 

The quadratic interpolation formulas were used if for further calibration it is 
should be necessary to know the value of the amplitude and frequency for time 
moments which do not agree with ie . The experience of numerical experimenting 
shows that this way of estimating the dependences  A t  and  k t  proves to be more 
efficient than using the window Fourier transform (more accurate results and shorter 
computation time). 
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Finally, to unambiguously recover the initial function  f t  from the found 
modulation laws [27] 
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it also necessary to know the phase 0  of signal at the initial time moment. Since the 
reconstruction was performed for the interval  1, Ns s , we have  /

1 0f s  , and 0 0   
if  1 0f e   and 0   if  1 0f e  . 

The described algorithm of determining the modulation laws and recovering from 
these the initial signal has been applied to the pulses  1 ,u z t z  with ,100z  1000 
and 10000 (see Fig. 2(a)) and has provided acceptable results as for their accuracy. 
Figure 2(b) shows time dependences of the amplitudes (left scale) and frequencies 
(right scale) calculated for these pulses. Figure 4 presents time dependence of the 
absolute error    /

1 11000, 1000 1000, 1000u t u t    of recovering the signal 

 1 1000, 1000u t  . As can be seen the error is less by about three orders of magnitude 
than the value of the function itself (the integration in Eq. (18) was performed using 
the quadrature trapezoid formula). 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 4: Error of recovering the function  1 1000, 1000u t   from the found laws of amplitude 
and frequency modulation 
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The presence appreciable oscillations in the signal amplitude and frequency at the 
distance 100z   from the reference cross-section (Fig. 2(b)) indicates that the time 
“separation” of frequencies in the initial pulse has not yet occurred which makes it 
inconvenient for practical use. At greater z  the frequency modulation law shows a 
monotonous character. Pulses of the kind are of greatest interest for the study. 

The final step consists in recovering the desired pulse. To that end the signal 
 /

1 ,u z t z   1 Ns t s   is used to reconstruct the reversed in time signal 

   / / /
1 1 , Nu t u z s t z     10 Nt s s    which is to be excited within the reference 

cross-section of the waveguide 0 0z  . The time profile of the reconstructed pulse 
within the cross-section z  is described by a function which will be referred to as 

 *
1 ,u z t z . The signals / /

1u  and *
1u  for 1000z    1 50.19; 2499.03Ns s   are 

presented in Figs. 5(a) and 5(b), respectively. As can be seen from Fig. 1(a) the initial 
pulse 1u  has been reconstructed with a sufficiently high accuracy. The minor 
difference between *

1u  and 1u  is due to that we have truncated the long-lasting 
“ringing” tail of  1 1000, 1000u t   for 2500t  . Increasing the length of  1 ,u z t z  it 
is possible, at least in theory, to however accurately reproduce the profile of the 
desired signal.  
 

 
a)                                                              b) 

FIG. 5: The pulse within the reference cross-section of the waveguide 0 0z   (a) and its profile 
within the cross-section 1000z   (b) 

 
The compressor built around such waveguide section for to transform the pulse / /

1u  
into *

1u  will have the following characteristics. 
 Amplitude gain (output-to-input signal maximum magnitude ratio) 

* //
max max 10.998 1.263 8.708u u    . 

 Compression factor (input-to-output pulse length ratio) 
/ / * 2448.84 50 48.98T T    . 
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 Efficiency (output-to-input pulse power ratio) 

   
2 2* / / 67.76947 67.76961 1u t dt u t dt           . Here the integrals are 

taken over time intervals corresponding to the lengths *T  and / /T  of the 
respective pulses. 

 Power gain (product of the compression factor by the efficiency) 
48.98     . 

The above characteristics have been calculated with neglect of the loss due to the 
conduction currents in the waveguide walls. 

Now it seems interesting to compare the modulation law obtained for the pulse 
 1 ,u z t z  with that which could be expected proceeding from intuitive conception on 

propagation of the wave packets, by superposition of which the initial signal Eqs. (13) 
and (14) can be represented, through a dispersive system. If each of these packets is 
sufficiently narrowband near the frequency k  and they all at the time moment 0t  
 0 0t   are located within the reference cross-section 0 0z   (as follows from Fig. 3(a) 
it is a plausible assumption), then according to Eq. (1) the time of its arrival at the 
cross-section z  is 

 

 2
0 11z t t z k k      .    (19) 

 
Recall that the velocity of light in free space in the used system of units is equal to 

1. Expressing k  through t , we obtain 
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Figure 6 presents dependences )(tk  calculated after Eq. (20) for the cross-section 
1000z   with 0 0t  , 25  and 50 . Also shown there is the frequency modulation law 

(curve 4) calculated for the pulse  1 1000, 1000u t  . As can be seen, the  k t  
dependence calculated using the rigorous formulas will differ essentially from that 
calculated after the formula Eq. (20) no matter to what extent the beginning of the 
wave packets (parameter 0t ) is localized in time. Actually, each frequency component 
of the pulse propagates faster than it is expected proceeding from pure mechanical 
conception about motion of wave packets. The same conclusion can be derived from 
the comparison of the  k t  dependence for the pulse  / /

1u t  (see Fig. 5(a)) with the 
frequency modulation law obtained within the kinematical approximation. To that end 
let us set the input pulse length to 2500T   and its frequency range min maxk k k   to 
be confined by the following boundaries min 3.25k   and max 9k  . According to paper 
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[10], the “fly-in” time t  of a wave packet should be related to its group velocity v  
through the following expression 
 

1
1

2

1 1 v tv v
v T

  
       

,         (21) 

 
where 1v  and 2v  are the group velocities of the wave packets at the frequencies mink  
and maxk , respectively. In the case of a regular waveguide the  v k  dependence is 
given by the formula Eq. (1). Combining Eqs. (1) and (21) we obtain the modulation 
law of the input pulse which is shown in Fig. 7 by the dashed line. The solid line in the 
Figure corresponds to the  k t  dependence calculated after the exact formulas. The 
mere difference in these dependences already makes it impossible to use the 
kinematical approximation for synthesizing and optimizing real power compressors. 
Yet more aggravated situation arises in calculating the optimum length optL  of the 
waveguiding section which would provide, proceeding from the kinematical formulas, 
the best compression of the input pulse. For the above indicated parameters this length 
is equal to  1 2 2 1 881.14optL Tv v v v    [10], which value differs inadmissibly from 
the exact magnitude 1000z  . 
 

  

FIG. 6: Dependences  k t  calculated after 
Eq. (20) for 0 0t   (curve 1), 0 25t   (curve 
2) and 0 50t   (curve 3) and the frequency 
modulation law (curve 4) calculated for the 
pulse  1 1000, 1000u t   

FIG. 7:  k t  dependences calculated for the 
pulse shown in Fig. 5(a) with the use of the 
exact formulas (solid line) and the kinematical 
theory (dashed line) 

 
Thus, the kinematical conception that a radio pulse moves as a superposition of 

“particles”, proves to be too crude for adequate modeling of physical processes even in 
such a simple case where the dispersive element is represented by a section of a 
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regular waveguide. Using this approximation it is impossible to precisely answer the 
question what should be the frequency and moreover amplitude modulation law of the 
pulse delivered at the compressor input. This fact plays the role of prime importance 
for implementing both numerical and full-scale experiments since the knowledge of 
the dispersion law of a specific device does not imply knowledge of the frequency 
modulation law of the pulse to be fed at the input of this device. 
 

  
a)                                                              b) 

FIG. 8: Amplitude (a) and frequency (b) modulation laws for the pulse  1 1000, 1000u t   

calculated for four waveguides filled with a homogeneous nondispersive dielectric material 
characterized by the permeability 1   and conductivity 0  . Curves 1, 2, 3 and 4 
correspond to 1   and 1a  ; 4   and 1 2a  ; 9   and 1 3a  ; and 16   and 

1 4a  , respectively 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 9: Time profile of a pulse intended for compression in a parallel-plate waveguide filled by 
a dielectric material with 4   
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FIG. 10: The pulses  *
1 1000, 1000u t   observed after the pulse shown in Fig. 9 being 

passed the distance 1000  in waveguides with dielectric filling characterized by 4   and 
710   (panel a), 610   (panel b) and 510   (panel c) 

 
Now let us consider the question on the waveguide filling by nondispersive 

dielectric. The tackling of this question is ambiguous. On the one said this filling 
makes it possible to attain the greatest frequency separation in initial pulse at that 
waveguide length when the inverse problem is solved. As was to be expected, the 
greatest amplitude gain is reached, when the direct problem is solved. On the other 
hand, the losses in dielectric can reduce to zero this increase in gain. An unambiguous 
answer on the question on dielectric filling can be received after strong and careful 
numerical simulation of corresponding electrodynamical system. Let us illustrate this 
argument. Figure 8 shows the amplitude and frequency modulation laws which results 
the propagation at distance 1000z   of initial pulse (see Fig. 1(a)) in plane-parallel 
waveguides, filled with media having 1, 4, 9   and 16. It is supposed that 

1, 0    and waveguide hate is 1, 1/2 and 1/4 correspondently. With this selection 
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of the heights the cutoff frequencies and the dispersion law Eq. (1) prove to be 
identical for all four waveguides. Basically, the cases differ by the optical path lengths 
passed by the initial pulse. The result is quite expectable. Specifically, the longer the 
travel path of the pulse, the stronger its spreading in time and space. Now consider the 
effect of electric loss in the dielectric material filling the waveguide. Let us select the 
signal obtained for the waveguide with 4   and use it to reconstruct the signal 

 / /
1u t  (Fig. 9) following the above described algorithm to see how its form will be 

changed after passage the distance 1000z   in the waveguide for different non-zero 
values of  . Time profiles of the output pulses calculated for 7 610 , 10    and 510  
are shown in Fig. 10. This Figure presents maximum magnitudes of the compressed 
pulses. The respective amplitude gains are equal to 12.296  , 11.063 , and 3.906 , 
while the efficiency factors are 0.977  , 0.791 , and 0.102 . It is seen that in the case 
of sufficiently small   the use of waveguides with dielectric filling might be more 
preferable for the pulse compression. 

 
4. CONCLUSIONS 

The present paper suggests a rigorous algorithm for calculating transformations of the 
time profile of electromagnetic pulses propagating in a regular homogeneous 
waveguide of arbitrary cross-section with perfectly conducting walls. The algorithm 
has been used for comprehensive analysis of evolution of the signals described by the 
formulas Eqs. (2) to (5). An efficient computational scheme has been suggested for 
determining the frequency and amplitude modulation laws of the radio pulses intended 
for compression in sections of waveguides both hollow and filled with a homogeneous 
nondispersive dielectric material. It has been shown that the so-called kinematical 
approximation is inapplicable for rigorous description of propagation of broadband 
pulse in a dispersive system in the form of superposition of wave packets. 

 
5. APPENDIX: FAST ALGORITHM FOR CALCULATING CONVOLUTION 

INTEGRALS 

To create practicable algorithms of recalculating fields based on the formulas Eqs. (2) 
to (5) it is necessary to construct an efficient scheme of computing the convolution 
integrals as follows 

 

     
0

t

v t K t u d    .    (A.1) 

 

In the general case the function  u t  is specified within the time interval 
0 ut t  , while the function  v t  should be determined within the time interval 
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0 vt t  , with v ut t . As has been mentioned above, computation of the integral 
Eq. (A.1) “directly” using the quadrature formulas would require performance of about 
 2O M  floating-point operations, where M  is the size of the arrays to be convolved. 

Paper [25] suggested an algorithm for computing such convolution based on the Fast 
Fourier Transform (FFT) which requires about  logO M M  operations to be 
performed. In the Appendix a more computationally efficient modification of this 
algorithm is described. 

Suppose that in the initial time moment we have    0 0 0u v  . Let us go over to 
the mesh functions 

 

   / /, 0,1,2,..., 1, , 1t v t v v tv t v t T t t h t T h        , 

   / /, 0,1,2,..., 1, , 1t u t u u tu t u t T t t h t T h        ,   (A.2) 

    / /, 0,1,2,..., 1, ,t v tK t K t T t t h          
 

where th  is the sampling increment. For simplicity let us set v uT T  for the time being 
and write a discrete analog of Eq. (A.1) using the quadrature trapezoid formula 
 

0
0

0, , 0 1
2

t
t

t t u
hv v T K u t T  






       ,    (A.3) 

 
with 1T  , if either 0   or t   and 2T  , if 0 t  . Having transformed 
Eq. (A.3) such that to exclude the factor T  under the summation sign, viz. 
 

 0 0 0
0

0, , 0 1
2

t
t

t t t t t u
hv v h K u K u K u t T 






          ,  (A.4) 

 
we will operate in what follows with the sum 
 

0

t

t tw K u 





  .       (A.5) 

 
According to [25], let us represent the sum as a product of the lower triangular 

Toeplitz matrix K  by the column vector of the right-hand part, viz. 
 

  ,

,
,

0,
i j

i j

K i j
K

i j
 

   


w K u .       (A.6) 

 
For example, for 14uT   the relation Eq. (A.5) can be written as 
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 (A.7) 

 
According to [25] to speedup computation of this matrix product using the FFT it 

is necessary to partition the lower triangular fragment of the matrix K  into square 
blocks with a side dimension s  equal to a power of two. Eq. (A7) represents an 
example of such a partition. Then the product of a square block by a fragment of the 
column vector 
 

1 1

11 2 1

11 2 2 1

...

...
...... ... ... ... ...

...

ji k s k k

ji k s k k

j si s k s k s k s

uw K K K
uw K K K

uw K K K

  

   

       

    
    
     
    
    
      

  (A.8) 

 
(from Eq. (A.7) for any square block 1k i j s    ) can be reduced to the circular 
convolution 
 

   

1
/ /

mod
0

* , 0,1,..., 1
N

n mn m Nn
m

W K U n N





   K U   (A.9) 

 
of two vectors of size 2N s , viz. 
 

 1 1, ,..., ,0,...,0j j j su u u  U  and  /
1 2 1, ,....k k k sK K K  K  (A.10) 

 
by the following rule 
 

 1 , 0,1,..., 1i p s pw W p s     .    (A.11) 
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Then, from applying the convolution theorem to the expression Eq. (A.9) we arrive 
 

 1 /DFT DFT DFT      W K U ,        (A.12) 

 
where DTF  and 1DTF   mean respectively, the direct and the inverse discrete Fourier 
transforms, viz. 
 

   
2 21 1

1

0 0

1e e
i iN Nmn mn

N N
n m m n

m n
y DFT x x DTF y

N

   

 

     X Y .(A.13) 

 
If the square matrix size is greater than or equal to a certain FFTs , then 

computation of the product Eq. (A.8) using the FFT provides gain in speed as 
compared with the “direct” calculation according to the “row-by-column” rule. The 
greater is the size of the square matrix in Eq. (A.8) (and, as a result, the greater size of 
the vectors to be convolved in Eq. (A.9)), the greater advantage can be obtained 
through performing the matrix multiplication after the formulas Eqs. (A.12) and 
(A.11). And vise versa, multiplication of small blocks with sizes FFTs s  is more 
expedient to perform by the “row-by-column” rule since in this case a less number of 
operations is required than for the FFT-based multiplication. It has been found 
experimentally that the optimum value is 128FFTs  . 

The presented algorithm can be additionally optimized. It is easy to ascertain that 
the multiplication of a square block of arbitrary dimension s  representing a lower 
triangular matrix can be reduced to the circular convolution Eq. (A.9). If s  represents 
a power of two, then it is sufficient to set 1 2... 0k k k sK K K       in Eqs. (A.8) 
and (A.10). In the case of an arbitrary s  it is more convenient to rewrite Eq. (A.8) in 
the form of the following product (it has been taken into account here that after 
partition of the matrix K  into blocks the main diagonals of the all lower triangular 
matrices will contain the element 0K ) 
 

0

11 1 0

11 1 1 0

...... ... ... ...
...

ji

ji

j si s s

uw K
uw K K

uw K K K



   

    
    
     
    
    
      

,     (A.14) 

 
which can be calculated using the convolution Eq. (A.9) of the two vectors as follows 
 

 1 1, ,..., ,0,...,0j j j su u u  U  and  /
0 1 1, ,.... ,0,...,0sK K K K    (A.15) 

 
according to the rule 
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, 0,1,..., 1i p pw W p s    .                 (A.16) 
 

The dimension N  of the vectors U  and /K  is equal to the least power of two 
greater than 2 1s  . 

This is a very important property of the matrix Eq. (A.6) which makes it possible 
to minimize computational expenses associated with the partition into square blocks 
and calculation of the FFT plans [28] for each block. 

Finally, a more universal rule can be derived. The procedure of partition of the 
matrix K  in Eq. (A.6) should not necessarily result in square blocks. The 
multiplication of a rectangular block of size J I  by a column vector of size J  

 
1 1

11 2 1

11 2 1
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ji k J k k

j Ji I k I J k I k I
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  (A.17) 

 
(for any rectangular block 1k i j J    ) can be reduced as well to the circular 
convolution Eq. (A.9) of the two vectors as follows 
 

 1 1, ,..., ,0,...,0j j j Ju u u  U  and  /
1 1, ,.... ,0,...,0k k k I JK K K   K  (A.18) 

 
according to the rule 
 

1 , 0,1,..., 1i p J pw W p I     .                (A.19) 
 

Here the size N  of the vectors U  and /K  is equal to the least power of two greater 
than 1I J  . 

Now, let us describe briefly the procedure of partition of the matrix K  into 
fragments. In the general case with v ut t  the function  u t  can be prolonged by zeros 
to the time moment vt  in order to construct the procedure of partition of the lower 
triangular matrix as it was done in paper в [25]. However this approach does not seem 
to be rational. In real physical problems (one of these is considered in the paper) it 
might be quite possible that vt  is tens and even hundreds times greater than ut . In this 
case a greater part of the matrix K  will be multiplied by zero values of the vector U . 
However, it is possible to avoid performance of these unnecessary operations. To that 
end let us complement Eqs. (A.3) and (A.4), respectively, by the expressions 

 
1

0
, 1 1

2

uT
t

t t u v
hv T K u T t T  








       ,   (A.20) 
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and 
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1 0 0 1
0

, 1 1
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u
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hv h K u K u K u T t T 





  


          .  (A.21) 

 
The values tw   0 1vt T    will be again sought for using the matrix product 

Eq. (A.6), however now the matrix K  is a rectangular one, viz. 
 

0
0

1 0
1

0

1 01

1

1 1

... ... ...

... ......
... ...

... ... ...
... ... ...

...

... ... ...

...

JJ

J J

I I I J

Kw
K Kw

K K

uK K Kw
w K K

w K K



  

                                                                         

0

1

1

...

J

u

u 

 
 
 
 
 
 

  (A.22) 

 
Here for brevity the following notation is used vI T  and uJ T . 

The procedure of partition of the matrix K  into blocks makes two lists, one of the 
lower triangular matrices and another of complete rectangular matrices. At the initial 
time moment the lists contain, generally speaking, a single block each (in the formula 
Eq. (A.22) they are separated by the dashed line. Since the FFT algorithms are 
fastidious about the computer memory size, it is necessary to provide a limitation to 
the maximum size of the vectors to be convolved. To that end a parameter maxN  is 
used. If for a block with a lower triangular matrix it is needed to compute the 
convolution of vectors with lengths exceeding maxN , then such triangular fragment is 
divided into two triangular and one rectangular (see the formula Eq. (A.22)) such that 
at least one of the triangular fragments could be multiplied by the column vector using 
the FFT. If for a block with a complete rectangular matrix it is necessary to compute 
the convolution of vectors with lengths exceeding maxN , then the block is halved with 
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respect to the longer side. The specific value of maxN  depends on the capabilities of the 
specific computer and can be set by the user. In addition, when partitioning rectangular 
matrices it is necessary to try to obtain blocks in the form as close to the square one as 
possible since multiplication of square blocks using the FFT provides the maximum 
computational speedup. To that end rectangular blocks with side ratios greater than 
2 :1  are as well divided with respect to the longer side such that one of the obtained 
parts would be a square. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 11A: Computation time for estimating the convolution integral Eq. (5) for the signal 
given by Eqs. (13) and (14) in dependence on the input data set size. The calculations have 
been performed using the quadrature trapezoid formula (curve 1) and the optimized algorithm  
(curve 2) 

 
After the partition procedure the made lists are browsed and matrix blocks are 

multiplied by the respective fragments of the vector u . The multiplication algorithm 
depends on the size of the respective block. If for a lower triangular matrix lengths of 
the vectors U  and /K  are less than 2 FFTs , then the block is multiplied by the “row-
by-column” rule, otherwise according to the formulas Eqs. (A.12), (A.15) and (A.16). 
If the number of rows or columns in a complete rectangular block is less than FFTs , 
then the block is multiplied as well by the “row-by-column” rule, otherwise according 
to the formulas Eqs. (A.12), (A.18) and (A.19). At that all discrete Fourier transforms 
are performed using the FFT. The FFT procedures used in this paper have been taken 
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from website [28]. At last, when the sum Eq. (A.5) has been computed the final values 
of tv  are determined after the formulas Eqs. (A.4) and (A.21). 

The efficiency of the optimized algorithms is illustrated by Fig. 11А. Curve one 
shows the time of computing the convolution Eq. (5) of the signal Eqs. (13) and (14) 
directly after the trapezoid formula in dependence on the input array size. Curve 2 
corresponds to the time of computing the same convolution using the optimized 
algorithm. For an array of one million elements in size these times are equal to about 
1.78  h and 1 s, respectively. The calculations have been performed using a PC with an 
Intel Pentium 4 (Prescott) CPU operating at 3 GHz CPU clock. 
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