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1. Introduction

Rigorous models of one-dimensionally periodic diffraction gratings made their appearance
in the 1970s, when the corresponding theoretical problems had been considered in the con‐
text of classical mathematical disciplines such as mathematical physics, computational
mathematics, and the theory of differential and integral equations. Periodic structures are
currently the objects of undiminishing attention. They are among the most called-for disper‐
sive elements providing efficient polarization, frequency and spatial signal selection. Fresh
insights into the physics of wave processes in diffraction gratings are being implemented in‐
to radically new devices operating in gigahertz, terahertz, and optical ranges, into new ma‐
terials with inclusions ranging in size from micro- to nanometers, and into novel circuits for
in-situ man-made and natural material measurements.

However, the potentialities of classical two-dimensional models [1-7] are limited. Both theo‐
ry and applications invite further investigation of three-dimensional, vector models of peri‐
odic structures in increasing frequency. In our opinion these models should be based on
time-domain (TD) representations and implemented numerically by the mesh methods [8,9].
It follows from the well-known facts: (i) TD-approaches are free from the idealizations in‐
herent in the frequency domain; (ii) they are universal owing to minimal restrictions im‐
posed on geometrical and material parameters of the objects under study; (iii) they allow
explicit computational schemes, which do not require inversion of any operators and call for
an adequate run time when implementing on present-day computers; (iv) they result in data
easy convertible into a standard set of frequency-domain characteristics. To this must be
added that in recent years the local and nonlocal exact absorbing conditions (EAC) have
been derived and tested [6,7]. They allow one to replace an open initial boundary value
problem occurring in the electrodynamic theory of gratings with a closed problem. In addi‐

© 2012 Velychko et al.; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



tion, the efficient fast Fourier transform accelerated finite-difference schemes with EAC for
characterizing different resonant structures have been constructed and implemented [10].

It is evident that the computational scheme solving a grating problem must be stable and
convergent, computational error must be predictable, while the numerical results are bound
to be unambiguously treated in physical terms. To comply with these requirements, it is im‐
portant to carry out theoretical analysis at each stage of the modeling (formulation of boun‐
dary value and initial boundary value problems, determination of the correctness classes for
them, study of qualitative characteristics of singularities of analytical continuation for solu‐
tions of model boundary value problems into a domain of complex-valued frequencies, etc.).

In the present work, we present a series of analytical results providing the necessary theoret‐
ical background to the numerical solution of initial boundary value problems as applied to
two-dimensionally periodic structures. Section 1 is an Introduction. In Section 2 we give
general information required to formulate a model problem in electrodynamic theory of gra‐
tings. Sections 3 and 4 are devoted to correct and efficient truncation of the computational
space in the problems describing spatial-temporal electromagnetic wave transformation in
two-dimensionally periodic structures. Some important characteristics and properties of
transient and steady-state fields in regular parts of the rectangular Floquet channel are dis‐
cussed in Sections 5 and 7. In Section 6, the method of transformation operators (the TD-ana‐
log of the generalized scattering matrix method) is described; by applying this method the
computational resources can be optimized when calculating a multi-layered periodic struc‐
ture or a structure on a thick substrate. In Section 8, elements of spectral theory for two-di‐
mensionally periodic gratings are given in view of its importance to physical analysis of
resonant scattering of pulsed and monochromatic waves by open periodic resonators.

2. Fundamental Equations, Domain of Analysis, Initial and Boundary
Conditions

Space-time and space-frequency transformations of electromagnetic waves in diffraction
gratings, waveguide units, open resonators, radiators, etc. are described by the solutions of
initial boundary value problems and boundary value problems for Maxwell’s equations. In
this chapter, we consider the problems of electromagnetic theory of gratings resulting from
the following system of Maxwell’s equations for waves propagating in stationary, locally in‐
homogeneous, isotropic, and frequency dispersive media [9,11]:

rotH
→(g , t)=η0−1

∂ E
→ (g , t) + χε(g , t)∗E

→ (g , t)
∂ t + χσ(g , t)∗E

→ (g , t) + j
→ (g , t ), (1)

rotE
→ (g , t)= −η0

∂ H
→(g , t) + χμ(g , t)∗H

→(g , t)
∂ t , (2)

where
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g ={x, y, z} is the point in a three-dimensional spaceR 3;

x, y, and z are the Cartesian coordinates;

E
→ (g , t)= {Ex, Ey, Ez} and H

→(g , t)= {Hx, Hy, Hz} are the electric and magnetic field vectors;

η0 =(μ0 / ε0)1/2 is the intrinsic impedance of free space;

ε0 and μ0 are permittivity and permeability of free space;

j
→ (g , t) is the extraneous current density vector;

χε(g , t), χμ(g , t), and χσ(g , t) are the electric, magnetic, and specific conductivity susceptibil‐

ities; f 1(t)∗ f 2(t)= ∫ f 1(t −τ) f 2(τ)dτstands for the convolution operation.

We use the SI system of units. From here on we shall use the term “time” for the parametert ,
which is measured in meters, to mean the product of the natural time and the velocity of
light in vacuum.

With no frequency dispersion in the domainG⊂R 3, for the points g∈G we have

χε(g , t)=δ(t) ε(g)−1 , χμ(g , t)=δ(t) μ(g)−1 , χσ(g , t)=δ(t)σ(g ),

where δ(t) is the Dirac delta-function;ε(g), μ(g), and σ(g) are the relative permittivity, rela‐
tive permeability, and specific conductivity of a locally inhomogeneous medium, respective‐
ly. Then equations (1) and (2) take the form:

rotH
→(g , t)=η0−1ε(g) ∂E

→ (g , t)
∂ t + σ(g)E

→ (g , t) + j
→ (g , t ), (3)

rotE
→ (g , t)= −η0μ(g) ∂H

→(g , t)
∂ t . (4)

In vacuum, where ε(g)=μ(g)=1 andσ(g)=0, they can be rewritten in the form of the follow‐
ing vector problems [6]:

Δ −grad div− ∂2

∂ t 2 E
→ (g , t)= F

→
E (g , t), ∂

∂ t H
→(g , t)= −η0

−1rotE
→ (g , t) ,

F
→

E (g , t)=η0
∂
∂ t j

→ (g , t)
(5)

or

Δ − ∂2

∂ t 2 H
→(g , t)= F

→
H (g , t), η0−1

∂
∂ t E

→ (g , t)= rotH
→(g , t)− j

→ (g , t) ,

F
→

H (g , t)= − rot j
→ (g , t) .

(6)
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By Δ  we denote the Laplace operator. As shown in [6], the operator grad divE
→

 can be omit‐
ted in (5) from the following reasons. By denoting the volume density of induced and exter‐
nal electric charge through ρ1(g , t) and ρ2(g , t), we can write grad divE

→
=ε0−1grad(ρ1 + ρ2). In

homogeneous medium, where ε  and σ  are positive and non-negative constants, we have
ρ1(g , t)=ρ1(g ,0)exp(− tσ / ε), and if ρ1(g ,0)=0, then ρ1(g , t)=0 for anyt >0. The remaining term
ε0−1gradρ2 can be moved to the right-hand side of (5) as a part of the function defining cur‐
rent sources of the electric field.

To formulate the initial boundary value problem for hyperbolic equations (1)-(6) [12], ini‐
tial conditions at t =0 and boundary conditions on the external and internal boundaries of
the domain of analysis Q  should be added. In 3-D vector or scalar problems, the domain Q
is a part of the R 3-space bounded by the surfaces S  that are the boundaries of the domains
intS , filled with a perfect conductor:Q = R 3 \intS̄ . In the so-called open problems, the do‐
main of analysis may extend to infinity along one or more spatial coordinates.

The system of boundary conditions for initial boundary value problems is formulated in the
following way [11]:

• on the perfectly conducting surface S  the tangential component of the electric field vector
is zero at all times t

Εtg(g , t)| g∈S =0 for t ≥0; (7)

the normal component of the magnetic field vector on S  is equal to zero (Hnr(g , t)| g∈S =0),
and the function H tg(g , t)| g∈S  defines the so-called surface currents generated on S  by the
external electromagnetic field;

• on the surfacesS ε,μ,σ, where material properties of the medium have discontinuities, as
well as all over the domainQ, the tangential components Etg(g , t) and H tg(g , t) of the
electric and magnetic field vectors must be continuous;

• in the vicinity of singular points of the boundaries ofQ, i.e. the points where the tangents
and normals are undetermined, the field energy density must be spatially integrable;

• if the domain Q is unbounded and the field {E
→ (g , t), H

→(g , t)} is generated by the sources
having bounded supports in Q then for any finite time interval (0,T ) one can construct a
closed virtual boundary M ⊂Q sufficiently removed from the sources such that

{E
→ (g , t), H

→(g , t)}| g∈M ,t∈(0,T ) =0. (8)

The initial state of the system is determined by the initial conditions att =0. The reference
states E

→ (g ,0) and H
→(g ,0) in the system (1), (2) or the system (3), (4) are the same as E

→ (g ,0)
and ∂E

→ (g , t) / ∂ t | t=0 (H
→(g ,0)and ∂H

→(g , t) / ∂ t | t=0) in the differential forms of the second
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order (in the terms oft), to which (1), (2) or (3), (4) are transformed if the vector H
→

 (vectorE
→

)
is eliminated (see, for example, system (5), (6)). Thus, (5) should be complemented with the
initial conditions

Ε
→ (g ,0)=φ→ (g),

∂
∂ t Ε

→ (g , t)|
t=0

=ψ→ (g), g∈ Q̄. (9)

The functionsφ→ (g), ψ→ (g), and F
→ (g , t) (called the instantaneous and current source functions)

usually have limited support in the closure of the domainQ. It is the practice to divide cur‐
rent sources into hard and soft [9]: soft sources do not have material supports and thus they
are not able to scatter electromagnetic waves. Instantaneous sources are obtained from the
pulsed wave U

→ i(g , t) exciting an electrodynamic structure: φ→ (g)=U
→ i(g ,0)and

ψ→ (g)= ∂U
→ i(g , t) / ∂ t | t=0. The pulsed signal U

→ i(g , t) itself should satisfy the corresponding
wave equation and the causality principle. It is also important to demand that the pulsed
signal has not yet reached the scattering boundaries by the momentt =0.

The latter is obviously impossible if infinite structures (for example, gratings) are illuminat‐
ed by plane pulsed waves that propagate in the direction other than the normal to certain
infinite boundary. Such waves are able to run through a part of the scatterer’s surface by
any moment of time. As a result a mathematically correct modeling of the process becomes
impossible: the input data required for the initial boundary value problem to be set are de‐
fined, as a matter of fact, by the solution of this problem.

3. Time Domain: Initial Boundary Value Problems

The vector problem describing the transient states of the field nearby the gratings whose ge‐
ometry is presented in Figure 1 can be written in the form

( )
( ) ( ) ( )
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(10)

Here, Q̄is the closure ofQ, χε,μ,σ(g , t)are piecewise continuous functions and the surfaces S
are assumed to be sufficiently smooth. From this point on it will be also assumed that the
continuity conditions for tangential components of the field vectors are satisfied, if required.
The domain of analysis Q = R 3 \intS̄  occupies a great deal of the R 3-space. The problem for‐
mulated for that domain can be resolved analytically or numerically only in two following
cases.
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Figure 1. Geometry of a two-dimensionally periodic grating.

• The problem (10) degenerates into a conventional Cauchy problem (intS̄ =∅ , the medium
is homogeneous and nondispersive, while the supports of the functionsF

→ (g , t), φ→ (g), and
ψ→ (g) are bounded). With some inessential restrictions for the source functions, the classi‐
cal and generalized solution of the Cauchy problem does exist; it is unique and is descri‐
bed by the well-known Poisson formula [12].

• The functionsF
→ (g , t), φ→ (g), and ψ→ (g) have the same displacement symmetry as the period‐

ic structure. In this case, the domain of analysis can be reduced to
Q N ={g∈Q : 0< x < lx; 0< y < ly}, by adding to problem (10) periodicity conditions [7] on

lateral surfaces of the rectangular Floquet channelR ={g∈R 3 : 0< x < lx; 0< y < ly}.

The domain of analysis can also be reduced to Q N  in a more general case. The objects of
analysis are in this case not quite physical (complex-valued sources and waves). However,
by simple mathematical transformations, all the results can be presented in the customary,
physically correct form. There are several reasons (to one of them we have referred at the
end of Section 3) why the modeling of physically realizable processes in the electromagnetic
theory of gratings should start with the initial boundary value problems for the images
f N (g , t , Φx, Φy) of the functions f (g , t) describing the actual sources:

f (g , t)= ∫
−∞

∞

∫
−∞

∞

f̃ (z, t , Φx, Φy)exp(2πiΦx
x
lx

)exp(2πiΦy
y
ly

)dΦxdΦy

= ∫
−∞

∞

∫
−∞

∞

f N (g , t , Φx, Φy)dΦxdΦy

(11)
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From (11) it follows that

f N { ∂ f N

∂ x }(x + lx, y, z, t , Φx, Φy)=e2πiΦx f N { ∂ f N

∂ x }(x, y, z, t , Φx, Φy),

f N { ∂ f N

∂ y }(x, y + ly, z, t , Φx, Φy)=e2πiΦy f N { ∂ f N

∂ y }(x, y, z, t , Φx, Φy)

or, in other symbols,

D f N (x + lx, y)=e2πiΦxD f N (x, y),D f N (x, y + ly)=e2πiΦyD f N (x, y).

The use of the foregoing conditions truncates the domain of analysis to the domainQ N , which
is a part of the Floquet channelR, and allows us to rewrite problem (10) in the form

E
→ (g , t)= ∫

−∞

∞

∫
−∞

∞

E
→ N (g , t , Φx, Φy)dΦxdΦy, H

→(g , t)= ∫
−∞

∞

∫
−∞

∞

H
→ N (g , t , Φx, Φy)dΦxdΦy (12)

and
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(13)

It is known [6-8] that initial boundary value problems for the above discussed equations
can  be  formulated  such  that  they  are  uniquely  solvable  in  the  Sobolev  spaceW2

1(Q T ),
where Q T =Q ×(0,T )  and0≤ t ≤T .  On this  basis  we suppose in the subsequent discussion
that  the  problem  (13)  for  all  t∈ 0,T  has  also  a  generalized  solution  from  the  space
W2

1(Q N ,T )  and that  the uniqueness theorem is  true in this  space.  Here symbol × stands
for the operation of direct product of two sets, (0,T )and 0,T  are open and closed inter‐
vals, Wm

n(G)is the set of all elements f
→ (g) from the space L m(G) whose generalized deriv‐

atives up to the order n  inclusive also belong toL m(G). L m(G)is the space of the functions
f
→ (g)= { f x, f y, f z}  (forg∈G)  such that  the  functions  | f ...(g)| m  are  integrable  on the  do‐
mainG.
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4. Exact Absorbing Conditions for the Rectangular Floquet Channel

In this section, we present analytical results relative to the truncation of the computational
space in open 3-D initial boundary value problems of the electromagnetic theory of gratings.
In Section 3, by passing on to some special transforms of the functions describing physically
realizable sources, the problem for infinite gratings have been reduced to that formulated in
the rectangular Floquet channel R or, in other words, in the rectangular waveguide with
quasi-periodic boundary conditions. Now we perform further reduction of the domain Q N

to the region QL
N ={g∈Q N : | z | < L } (all the sources and inhomogeneities of the Floquet

channel R are supposedly located in this domain). For this purpose the exact absorbing con‐
ditions [6,7,10,13,14] for the artificial boundaries L ± (z = ± L ) of the domain QL

N  will be con‐
structed such that their inclusion into (13) does not change the correctness class of the
problem and its solutionE

→ N (g , t),H
→ N (g , t).

From here on we omit the superscripts N  in (13). By applying the technique similar to that
described in [13,14], represent the solution E

→ (g , t) of (13) in the closure of the domains
A={g∈R : z > L } and B ={g∈R : z < − L } in the following form:

E
→ (g , t)= ∑

n,m=−∞

∞
u→ nm

± (z, t)μnm(x, y), {x, y}∈ R̄ z, t ≥0, (14)

where the superscript ‘+ ’ corresponds to z ≥ L  and ‘− ’ to z ≤ − L and the following notation
is used:

Rz =(0< x < lx)× (0< y < ly);

{μnm(x, y)} (n, m =0, ± 1, ± 2,...) is the complete in L 2(Rz) orthonormal system of the functions
μnm(x, y)= (lxly)−1/2exp(iαnx)exp(iβmy);

αn =2π(Φx + n) / lx, βm =2π(Φy + m) / ly, andλnm
2 =αn

2 + βm
2.

The space-time amplitudes u→ nm
± (z, t) satisfy the equations

{ − ∂2

∂ t 2 +
∂2

∂ z 2 −λn m
2 u→ n m

± (z, t)=0, t >0

u→ n m
± (z,0)=0,

∂
∂ t u→ n m

± (z, t)|
t=0

=0
, {z ≥ L

z ≤ − L } . (15)

Equations (14) and (15) are obtained by separating variables in the homogeneous boundary
value problems for the equation Δ −∂2 / ∂ t 2 E

→ (g , t)=0 (see formula (5)) and taking into ac‐
count that in the domains A and B we have grad div E

→ (g , t)=0 andF
→

E (g , t)=0. It is also as‐
sumed that the field generated by the current and instantaneous sources located in QL  has
not yet reached the boundaries L ± by the moment of timet =0.
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The solutions u→ nm
± (z, t) of the vector problems (15), as well as in the case of scalar problems

[13,14], can be written as

u→ nm
± (±L , t)= ∓ ∫

0

t

J0 λnm(t −τ) u→ nm
± ′(±L , τ)dτ, t ≥0 . (16)

The above formula represents nonlocal EAC for the space-time amplitudes of the field E
→ (g , t)

in the cross-sections z = ± L  of the Floquet channelR. The exact nonlocal and local absorb‐
ing conditions for the field E

→ (g , t) on the artificial boundaries L ± follow immediately from
(16) and (14):

E
→

(x, y, ± L , t)

= ∓ ∑
n,m=−∞

∞ {∫
0

t

J0 λnm(t −τ) ∫
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∫
0
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∂E

→ (x̃, ỹ, z, τ)
∂ z |

z=±L
μnm
∗ (x̃, ỹ)d x̃d ỹ dτ} μnm(x, y),

{x, y}∈ R̄ z, t ≥0

(17)
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Here, u→ nm
± ′(±L , τ)=∂u→ nm

± (z, τ) / ∂ z | z=±L , J0(t)is the zero-order Bessel function, the super‐
script ‘∗ ’ stands for the complex conjugation operation, W

→
E (x, y, t , φ)is some auxiliary

function, where the numerical parameter φ lies in the range0≤φ ≤π / 2.

It is obvious that the magnetic field vector H
→(g , t) of the pulsed waves

U
→(g , t)= {E

→ (g , t), H
→(g , t)}outgoing towards the domains A and B satisfies similar boundary

conditions onL ±. The boundary conditions for E
→ (g , t) and H

→(g , t) (nonlocal or local) taken
together reduce the computational space for the problem (13) to the domain QL  (a part of
the Floquet channelR) that contains all the sources and obstacles.
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Now suppose that in addition to the sources j
→ (g , t), φ→ E (g), andφ→ H (g), there exist sources

j
→ A(g , t), φ→ E

A(g), and φ→ H
A(g) located in A and generating some pulsed wave

U
→ i(g , t)= {E→ i(g , t), H

→ i(g , t)} being incident on the boundary L + at timest >0. The field

U
→ i(g , t) is assumed to be nonzero only in the domainA. Since the boundary conditions (17),
(18) remain valid for any pulsed wave outgoing through L ± towards z = ± ∞ [13,14], then the
total field {E

→ (g , t), H
→(g , t)}is the solution of the initial boundary value problem (13) in the

domain QL  with the boundary conditions (17) or (18) on L − and the following conditions on
the artificial boundaryL +:

E
→ s(x, y, L , t)

= − ∑
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Here U
→ s(g , t)= {E→ s(g , t), H

→ s(g , t)}=U
→(g , t)−U

→ i(g , t) (g∈A,t >0) is the pulsed wave outgo‐
ing towardsz = + ∞. It is generated by the incident wave U

→ i(g , t) (‘reflection’ from the virtual
boundaryL +) and the sources j

→ (g , t), φ→ E (g), andφ→ H (g).

5. Some Important Characteristics of Transient Fields in the Rectangular
Floquet Channel

For numerical implementation of the computational schemes involving boundary condi‐
tions like (19) or (20), the function U

→ i(g , t) for t∈ 0,T  and its normal derivative with re‐
spect to the boundary L +are to be known. To obtain the required data for the wave U

→ i(g , t)

generated by a given set of sources j
→ A(g , t), φ→ E

A(g), andφ→ H
A(g), the following initial boundary

value problem for a regular hollow Floquet channelR are to be solved:
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The function ρ2
A(g , t) here determines the volume density of foreign electric charge.

First we determine the longitudinal components Ez
i and Hz

i of the field {E→ i, H
→ i} at all points

gof the domain R for all timest >0. Let us consider the scalar initial boundary value prob‐
lems following from (21):
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By separating of the transverse variables x and y in (22) represent the solution of the prob‐
lem as

{Ez
i(g , t)

Hz
i(g , t)}= ∑

n,m=−∞

∞ {vnm(z ,E )(z, t)

vnm(z ,H )(z, t)}μnm(x, y) (23)

To determine the scalar functions vnm(z ,E )(z, t) andvnm(z ,H )(z, t), we have to invert the follow‐
ing Cauchy problems for the one-dimensional Klein-Gordon equations:
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HereFnm(z ,E )
A , φnm(z ,E )

A , ψnm(z ,E )
A andFnm(z ,H )

A , φnm(z ,H )
A , ψnm(z ,H )

A are the amplitudes of the Fourier

transforms of the functionsFz ,E
A , φz ,E

A , ψz ,E
A andFz ,H

A , φz ,H
A , ψz ,H

A in the basic set{μnm(x, y)}.

Let us continue analytically the functionsvnm(z ,E )(z, t), vnm(z ,H )(z, t)andFnm(z ,E )
A , Fnm(z ,H )

A by

zero on the semi-axis t0 and pass on to the generalized formulation of the Cauchy problem
(24) [12]:

B(λnm)
vnm(z ,E )(z, t)

vnm(z ,H )(z, t) ≡ −
∂2

∂ t 2 +
∂2

∂ z 2 −λnm
2 {vnm(z ,E )(z, t)

vnm(z ,H )(z, t)}
= {Fnm(z ,E )

A

Fnm(z ,H )
A }−δ (1)(t){φnm(z ,E )

A

φnm(z ,H )
A }−δ(t){ψnm(z ,E )

A

ψnm(z ,H )
A }= { f nm(z ,E )

f nm(z ,H )
},

−∞ < z <∞, −∞ < t <∞, n, m =1, ± 2, ± 3,... ,

(25)

where δ(t) and δ (m)(t) are the Dirac delta-function and its derivative of the orderm. Taking
into account the properties of the fundamental solution

G(z, t , λ)= − (1 / 2)χ(t − | z |)J0
(λ t 2− z 2) of the operator B(λ) [6,13,14] (χ(t)is the Heaviside

step function), the solutions vnm(z ,E )(z, t) and vnm(z ,H )(z, t) of equations (25) can be written as

{vnm(z ,E )(z, t)

vnm(z ,H )(z, t)}=G(z, t , λnm)∗ { f nm(z ,E )

f nm(z ,H )
}=

−
1
2 ∫

−∞

t−|z−ω|

∫
−∞

∞

J0(λnm (t −τ)2− (z −ω)2)({Fnm(z ,E )
A

Fnm(z ,H )
A }−δ (1)(t){φnm(z ,E )

A

φnm(z ,H )
A }−δ(t){ψnm(z ,E )

A

ψnm(z ,H )
A })dωdτ,

− ∞ < z <∞, t ≥0, n, m =1, ± 2, ± 3,... .

(26)

Relations (23) and (26) completely determine the longitudinal components of the field
{E→ i, H

→ i}.

Outside the bounded domain enclosing all the sources, in the domainG⊂R, where the
waves generated by these sources propagate freely, the following relations [6,14] are valid:

{E→ i =( ∂2 U E

∂ x∂ z −
∂2 U H

∂ y∂ t )x→ + ( ∂2 U E

∂ y∂ z +
∂2 U H

∂ x∂ t )y→ + ( ∂2 U E

∂ z 2 −
∂2 U E

∂ t 2 )z→
η0H

→ i =( ∂2 U E

∂ y∂ t +
∂2 U H

∂ x∂ z )x→ + (− ∂2 U E

∂ x∂ t +
∂2 U H

∂ y∂ z )y→ + ( ∂2 U H

∂ z 2 −
∂2 U H

∂ t 2 )z→ (27)

in which
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U E ,H (g , t)= ∑
n,m=−∞

∞
unm

E ,H (z, t)μnm(x, y) (28)

are the scalar Borgnis functions such that Δ −∂2 / ∂ t 2 ∂U E ,H (g , t) / ∂ t =0. Equations (23),
(26)-(28) determine the field {E→ i, H

→ i} at all points g  of the domain G for all timest >0. Really,
since at the time point t =0 the domain G is undisturbed, then we have Δ −∂2 / ∂ t 2 U E ,H =0
(g∈G,t >0). Hence, in view of (27), (28), it follows:

Ez =
∂2 U E

∂ z 2 −
∂2 U E

∂ t 2 = − ( ∂2 U E

∂ x 2 +
∂2 U E

∂ y 2 )= ∑
n,m=−∞

∞
λnm

2 unm
E μnm,

η0Hz =
∂2 U H

∂ z 2 −
∂2 U H

∂ t 2 = − ( ∂2 U H

∂ x 2 +
∂2 U H

∂ y 2 )= ∑
n,m=−∞

∞
λnm

2 unm
H μnm

and (see representation (23))

unm
E (z, t)= (λnm)−2vnm(z ,E )(z, t), un

H (z, t)=η0(λnm)−2vnm(z ,H )(z, t ). (29)

Hence the functions U E ,H (g , t) as well as the transverse components of the field {E→ i, H
→ i} are

determined.

The foregoing suggests the following important conclusion: the fields generated in the re‐
flection zone (the domainA) and transmission zone (the domainB) of a periodic structure are
uniquely determined by their longitudinal (directed along z-axis) components and can be
represented in the following form (see also formulas (14) and (23)). For the incident wave we
have

{Ez
i(g , t)

Hz
i(g , t)}= ∑

n,m=−∞

∞ {vnm(z ,E )(z, t)

vnm(z ,H )(z, t)}μnm(x, y), g∈ Ā, t ≥0, (30)

for the reflected wave U
→ s(g , t)(which coincides with the total field U

→(g , t) ifU
→ i(g , t)≡0) we

have

{Ez
s(g , t)orEz(g , t)

Hz
s(g , t)orHz(g , t)}= ∑

n,m=−∞

∞ {unm(z ,E )
+ (z, t)

unm(z ,H )
+ (z, t)}μnm(x, y), g∈ Ā, t ≥0 (31)

and for the transmitted wave (coinciding in the domain B with the total fieldU
→(g , t)) we can

write
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{Ez(g , t)

Hz(g , t)}= ∑
n,m=−∞

∞ {unm(z ,E )
− (z, t)

unm(z ,H )
− (z, t)}μnm(x, y), g∈ B̄, t ≥0. (32)

In applied problems, the most widespread are situations where a periodic structure is excit‐
ed by one of the partial components of TE-wave (withEz

i(g , t)=0) or TM -wave (with

Hz
i(g , t)=0) [7]. Consider, for example, a partial wave of orderpq. Then we have

U
→ i(g , t)=U

→
pq(H )
i (g , t) : Hz

i(g , t)=vpq(z ,H )(z, t)μpq(x, y)

or

U
→ i(g , t)=U

→
pq(E )
i (g , t) : Ez

i(g , t)=vpq(z ,E )(z, t)μpq(x, y).

The excitation of this kind is implemented in our models in the following way. The time
function vpq(z ,H )(L , t) or vpq(z ,E )(L , t)is defined on the boundaryL +. This function deter‐

mines the width of the pulseU
→ i(g , t), namely, the frequency range K1, K2  such that for all

frequencies k  from this range (k =2π / λ, λis the wavelength in free space) the value

γ =
| ṽ pq(z ,H orE )(L , k )|

max
k∈ K1;K2

| ṽ pq(z ,H orE )(L , k )|

where ṽ pq(z ,H orE )(L , k ) is the spectral amplitude of the pulsevpq(z ,H orE )(L , t), exceeds some
given valueγ =γ0. All spectral characteristics f̃ (k ) are obtainable from the temporal charac‐
teristics f (t) by applying the Laplace transform

f̃ (k )= ∫
0

∞

f (t)eiktdt ↔ f (t)=
1

2π ∫
iα−∞

iα+∞

f̃ (k)e−iktdk , 0≤α ≤ Imk . (33)

For numerical implementation of the boundary conditions (19) and (20) and for calculating
space-time amplitudes of the transverse components of the wave U

→ i(g , t) in the cross-sec‐
tion z = L  of the Floquet channel (formulas (27) and (29)), the function (vpq(z ,H orE ))′(L , t) are
to be determined. To do this, we apply the following relation [7,14]:

v→ pq(H orE )(L , t)= ∫
0

t

J0 λpq(t −τ) (v→ pq(H orE ))′(L , t)dτ, t ≥0. (34)

which is valid for all the amplitudes of the pulsed wave U
→ i(g , t) outgoing towards z = −∞

and does not violate the causality principle.
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6. Transformation Operator Method

6.1. Evolutionary basis of a signal and transformation operators

Let us place an arbitrary periodic structure of finite thickness between two homogeneous di‐
electric half-spaces z1 = z − L >0 (withε =ε1) and z2 = − z − L >0 (withε =ε2). Let also a local co‐
ordinate system gj ={xj, yj, zj} be associated with each of these half-spaces (Figure 2).
Assume that the distant sources located in the domain A of the upper half-space generate a
primary wave U

→
1
i (g , t)= {E→ 1

i (g , t), H
→

1
i (g , t)} being incident on the artificial boundary L + (on

the planez1 =0) as viewed fromz1 =∞.

Denote by U
→

j
s (g , t)= {E→ j

s (g , t), H
→

j
s (g , t)} the fields resulting from scattering of the primary

wave U
→

1
i (g , t) in the domains A (where the total field is

U
→(g , t)= {E

→ (g , t), H
→(g , t)}=U

→
1
s(g , t) + U

→
1
i (g , t)) and B (whereU

→(g , t)=U
→

2
s(g , t)). In Section 5,

we have shown that the fields under consideration are uniquely determined by their longi‐
tudinal components, which can be given, for example, as:

{Ez
i(g , t)

Hz
i(g , t)}= ∑

n,m=−∞

∞ {vnm(1,E )(z1, t)
vnm(1,H )(z1, t)}μnm(x, y), z1≥0, t ≥0 (35)

{Ez
s(g , t)

Hz
s(g , t)}= ∑

n,m=−∞

∞ {unm( j ,E )(zj, t)
unm( j ,H )(zj, t)}μnm(x, y), zj ≥0, t ≥0, j =1,2 (36)

(see also formulas (30)-(32)). Here, as before, {μnm(x, y)}n,m=−∞
∞ is the complete (inL 2(Rz)) or‐

thonormal system of transverse eigenfunctions of the Floquet channel R (see Section 4),
while the space-time amplitudes unm( j ,E )(zj, t) and unm( j ,H )(zj, t) are determined by the solu‐
tions of the following problems (see also problem (15)) for the one-dimensional Klein-Gor‐
don equations:

{ −εj
∂2

∂ t 2 + ∂2

∂ zj
2 −λn m

2 unm( j ,E or H )(zj, t)=0, t >0

unm( j ,E or H )(zj,0)=0, ∂
∂ t unm( j ,E or H )(zj, t)| t=0 =0

, j =1,2 , n, m =0, ± 1, ± 2,... . (37)

Compose from the functionsvnm(1,E )(z1, t), vnm(1,H )(z1, t), unm( j ,E )(zj, t), unm( j ,H )(zj, t)and the
eigenvalues λnm (n, m =0, ± 1, ± 2,...) the setsv(1)(z1, t)= {vp(1)(z1, t)} p=−∞

∞ ,
u( j)(zj, t)= {up( j)(zj, t)} p=−∞

∞ , and {λp} p=−∞
∞  such that their members are defined according to the

rules depicted in Figure 3. The sets v(1)(z1, t) and u( j)(zj, t) are said to be evolutionary bases
of signals U

→
1
i (g , t) andU

→
j

s (g , t). They describe completely and unambiguously transforma‐
tion of the corresponding nonsine waves in the regular Floquet channels A and Bfilled with
dielectric.
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Figure 2. A two-dimensionally periodic grating between two dielectric half-spaces as element of a multi-layered struc‐
ture.

Let us introduce by the relations

up( j)′(0,t)≡
∂
∂ zj

up( j)(zj, t)|
zj=0

= ∫
0

t

∑
q=−∞

∞
S pq

AA(t −τ)δj
1 + S pq

BA(t −τ)δj
2 vq(1)(0,τ)dτ,

t ≥0, p =0, ± 1, ± 2,..., j =1,2

(38)

u( j)′(0,t)= {up( j)′(0,t)} p = S AAδj
1 + S BAδj

2 v(1)(0,τ) , t ≥0, j =1,2 (39)

the boundary (on the boundarieszj =0) transformation operators S AA and S BA of the evolu‐

tionary basis v(1)(z1, t) of the wave U
→

1
i (g , t) incoming from the domainA. Here δm

n stands for

the Kronecker delta, the operators’ elements Snm
XY  specify the space-time energy transforma‐

tion from the domain Y into the domain X  and from the mode of order m into the mode of
ordern.

It is evident that the operators S AA and S BA working in the space of evolutionary bases are
intrinsic characteristics of the periodic structure placed between two dielectric half-spaces.
They totalize an impact of the structure on elementary excitations composing any incident
signalU

→
1
i (g , t). Thus forvq(1)(0,t)=δq

rδ(t −η), where r  is an integer andη >0, we have

up(1)′(0,t)=S pr
AA(t −η) andup(2)′(0,t)=S pr

BA(t −η). We use this example with an abstract non‐
physical signal by methodological reasons in order to associate the transformation opera‐
tors’ components S pr

AA(t −τ) and S pr
BA(t −τ) with an ‘elementary excitation’.
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Figure 3. Construction of sets of the valuesvp(1), up( j), and λp (p= 0, ± 1, ± 2,...) from sets of the valuesvnm(1,E ), unm( j ,E ),
vnm(1,H ), unm( j ,H ), and λnm (m, n= 0, ± 1, ± 2,...): (a)p= 0,1,2,...; (b)p= −1,−2,−3,....

The operators S AA and S BA determine all the features of transient states on the upper and
bottom boundaries of the layer enclosing the periodic structure. Secondary waves outgoing
from these boundaries propagate freely in the regular Floquet channels A and B therewith
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undergoing deformations (see, for example, [6]). The space-time amplitudes up( j)(zj, t) of the
partial components of these waves (the elements of the evolutionary bases of the signals
U
→

j
s (g , t)) vary differently for different values of p and j. These variations on any finite sec‐

tions of the Floquet channels A и B are described by the diagonal transporting operators
Z0→z1

A  and Z0→z2

B  acting according the rule:

u( j)(zj, t)= {up( j)(zj, t)}= Z0→z1

A δj
1 + Z0→z2

B δj
2 u( j)′(0,τ) , j =1,2. (40)

The structure of the operators given by (40) can be detailed by the formula

up( j)(zj, t)= −
1
εj
∫
0

J0 λp
(t −τ)2

εj
− zj

2 χ( t −τ
εj
− zj)up( j)′(0,τ)dτ,

t ≥0, zj ≥0, p =0, ± 1, ± 2,..., j =1,2,

(41)

which reflects general properties of solutions of homogeneous problems (37), i.e. the solu‐
tions that satisfy zero initial conditions and are free from the components propagating in the
direction of decreasingzj. The derivation technique for (41) is discussed at length in [6,13,14].

6.2. Equations of the operator method in the problems for multilayer periodic structures

The operators S AA and S BA completely define properties of the periodic structure excited
from the channelA. By analogy with (38) we can determine transformation operators S BB

and S AB for evolutionary basis v(2)(z2, t)= {vp(2)(z2, t)} p=−∞
∞  of the wave

U
→

2
i (g , t)= {E→ 2

i (g , t), H
→

2
i (g , t)} incident onto the boundary z2 =0 from the channelB:

up( j)′(0,t)= ∫
0

t

∑
m=−∞

∞
S pq

AB(t −τ)δj
1 + S pq

BB(t −τ)δj
2 vq(2)(0,τ)dτ,

t ≥0, p =0, ± 1, ± 2,..., j =1,2.

(42)

Let us construct the algorithm for calculating scattering characteristics of a multilayer struc‐
ture consisting of two-dimensionally periodic gratings, for which the operatorsS AA, S BA,
S pq

AB, and S pq
BB are known. Consider a double-layer structure, whose geometry is given in

Figure 4. Two semi-transparent periodic gratings I and II are separated by a dielectric layer
of finite thickness M  (hereε =ε2(I)=ε1(II)) and placed between the upper and the bottom die‐
lectric half-spaces with the permittivity ε1(I) andε2(II), respectively. Let also a pulsed wave
like (35) be incident onto the boundary z1(I)=0from the Floquet channelA.
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Retaining previously accepted notation (the evident changes are conditioned by the pres‐
ence of two different gratings I and II), represent the solution of the corresponding initial
boundary value problem in the regular domainsA, B, and C  in a symbolic form

U (A)= ∑
p=−∞

∞
vp(1)(z1(I), t) + up(1)(z1(I), t) μp(x, y),

U (B)= ∑
p=−∞

∞
up(2)(z2(I), t) + up(1)(z1(II), t) μp(x, y),

U (C)= ∑
p=−∞

∞
up(2)(z2(II), t)μp(x, y).

The first terms in the square brackets correspond to the waves propagating towards the do‐
mainC , while the second ones correspond to the waves propagating towards the domain A
(Figure 4). The set {μp(x, y)} p=−∞

∞  is formed from the functionsμnm(x, y), (n, m =0, ± 1, ± 2,...),
while the set {λp} p=−∞

∞  is composed from the valuesλnm, (n, m =0, ± 1, ± 2,...) (Figure 3).

Figure 4. Schematic drawing of a double-layered structure.

By denoting
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u( j)′(I)≡
∂

∂ zj(I)
u( j)(zj(I), t)|

zj(I)=0
, u( j)(I)= {up( j)(zj(I), t)}| zj(I)=0,

according to formulas (38)-(42), we construct the following system of operator equations:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1

1

2

2

1 1 II 0 1

2 1 II 0 1

1 I 0 2

2 I 0 2

I I I I Z II

I I I I Z II

II II Z I

II II Z I .

AA AB B
z M

BA BB B
z M

BB B
z M

CB B
z M

u S v S u

u S v S u

u S u

u S u

= ®

= ®

= ®

= ®

¢ ¢ì é ùé ù= + ê úë ûï ë û
ï ¢ ¢é ùé ù= +ï ê úë ûï ë û
í ¢ ¢é ùï = ê úë ûï
ï ¢ ¢é ù=ï ê úë ûî

(43)

Equations (43) clearly represent step-by-step response of the complex structure on the exci‐
tation by the signal U

→
1
i (g , t) with the evolutionary basis v(1)(z1(I), t)= {vp(1)(z1(I), t)} p=−∞

∞  (or

simplyv(1)(I)). Тhus, for example, the first equation can be interpreted as follows. A signal
u(1)(I) (the secondary field inA) is a sum of two signals, where the first signal is a result of the
reflection of the incident signal v(1)(I) by the gratingI, while another one is determined by the
signal u(1)(II)being deformed during propagation in the channel Band interaction with the
gratingI.

By method of elimination the system (43) is reduced to the operator equation of the second
kind

u(2)′(I)=S BA(I) v(1)(I) + S BB(I)Zz1(II)=0→M
B S BB(II)Zz2(I)=0→M

B u(2)′(I) (44)

and some formulas for calculating the electromagnetic field components in all regions of the
two-layered structure. The observation time t  for the unknown function u(2)′(I) from the left-
hand side of equation (44) strictly greater of any moment of time τ for the function u(2)′(I) in
the right-hand side of the equation (owing to finiteness of wave velocity). Therefore equa‐
tion (44) can be inverted explicitly in the framework of standard algorithm of step-by-step
progression through time layers. Upon realization of this scheme and calculation of the
boundary operators by (38), (42), the two-layered structure can be used as ‘elementary’ unit
of more complex structures.

Turning back to (38)-(42), we see that the operators entering these equations act differently
that their analogues in the frequency domain, where the boundary operators relate a pair
‘field →  field’. Reasoning from the structure of the transport operators Z0→z1

A  and Z0→z2

B  (for‐

mulas (40) and (41)), we relate a pair ‘field →  directional derivative with respect to the
propagation direction’ to increase numerical efficiency of the corresponding computational
algorithms.
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7. Some Important Properties of Steady-State Fields in the Rectangular
Floquet Channel

7.1. Excitation by a TM -wave

Let a grating (Figure 1) be excited form the domain A by a pulsed TM -wave
U
→ i(g , t)=U

→
pq(E )
i (g , t) : Ez

i(g , t)=vpq(z ,E )(z, t)μpq(x, y) and the region QL  is free from the sour‐
ces j

→ (g , t), φ→ E (g), andφ→ H (g). The field generated in the domains A and B is determined com‐
pletely by their longitudinal components. They can be represented in the form of (31), (32).
Define steady-state fields {E

→̃ (g , k ), H
→̃(g , k)} (see formula (33) withImk =0) corresponding to

the pulsed fields{E→ i, H
→ i}, {E→ s, H

→ s}in A and the pulsed field {E
→

, H
→} inB, by their z-compo‐

nents:

{Ẽ z
i (g , k )

H̃ z
i (g , k )}= {ṽ pq(z ,E )(k )

0
}e−iΓpq(z−L )μpq(x, y), g∈ Ā (45)

{Ẽ z
s(g , k )

H̃ z
s(g , k)}= ∑

n,m=−∞

∞ {ũnm(z ,E )
+ (k )

ũnm(z ,H )
+ (k )}eiΓnm(z−L )μnm(x, y), g∈ Ā (46)

{Ẽ z(g , k )

H̃ z(g , k )}= ∑
n,m=−∞

∞ {ũnm(z ,E )
− (k)

ũnm(z ,H )
− (k )}e−iΓnm(z+L )μnm(x, y), g∈ B̄ (47)

where the following notation is used:ṽ pq(z ,E )(k )↔vpq(z ,E )(L , t),

ũnm(z ,E orH )
± (k)↔unm(z ,E orH )

± (±L , t), Γnm =(k 2−λnm
2 )1/2, ReΓnmRek ≥0, ImΓnm≥0[7].

The amplitudes ũnm(z ,E orH )
± (k) form the system of the so-called scattering coefficients of the

grating, namely, the reflection coefficients

Rpq(E )
nm(H ) =

ũnm(z ,H )
+ (k )

ṽ pq(z ,E )(k ) , Rpq(E )
nm(E ) =

ũnm(z ,E )
+ (k )

ṽ pq(z ,E )(k ) , n, m =0, ± 1, ± 2,... (48)

specifying efficiency of transformation of pq-th harmonic of a monochromatic TM -wave in‐
to of order nm-th harmonics of the scattered field {E→̃ s, H

→̃ s} in the reflection zone, and the
transmission coefficients

T pq(E )
nm(H ) =

ũnm(z ,H )
− (k )

ṽ pq(z ,E )(k ) , T pq(E )
nm(E ) =

ũnm(z ,E )
− (k )

ṽ pq(z ,E )(k ) , n, m =0, ± 1, ± 2,... (49)

determining the efficiency of excitation of the transmitted harmonics in the domainB.
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These coefficients are related by the energy balance equations

∑
n,m=−∞

∞ 1
λnm

2 (| Rpq(E )
nm(E ) | 2 + |T pq(E )

nm(E ) | 2) ± η0
2(| Rpq(E )

nm(H ) | 2 + |T pq(E )
nm(H ) | 2) {ReΓnm

ImΓnm
}

=
1

λpq
2 {ReΓpq + 2ImΓpqImRpq(E )

pq(E )

ImΓpq −2ReΓpqImRpq(E )
pq(E ) }∓ 1

ε0
{W1

W2
}, p, q =0, ± 1, ± 2,…,

(50)

W1 =
ε0η0

k ∫
QL

σ(g , k )| E
→̃ (g , k )|

2
dg ,

W2 = ∫
QL

μ0μ(g , k )| H
→̃(g , k )| 2−ε0ε(g , k )| E

→̃ (g , k)| 2 dg
(51)

They follow from the complex power theorem (Poynting theorem) in the integral form [11]

∮
SL

( E
→̃

× H
→̃∗ ⋅ds

→)= ∫
QL

div E
→̃

× H
→̃∗ dg = ikη0 ∫

QL

μ | H
→̃ | 2dg − ik

η0
∫

QL

ε | E
→̃ | 2dg − ∫

QL

σ | E
→̃ | 2dg (52)

whereε(g , k)−1= χ̃ε(g , k )↔χε(g , t), μ(g , k )−1= χ̃μ(g , k )↔χμ(g , t),
σ(g , k)= χ̃σ(g , k)↔χσ(g , t), ds

→
is the vector element of the surface SL  bounding the domain

QL . Equations (50)-(52) have been derived starting from the following boundary value
problem for a diffraction grating illuminated by a plane TM -wave
U
→̃

pq(E )
i (g , k ) : Ẽ z

i (g , k )=exp − iΓpq(z − L ) μpq(x, y):

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

0

0

2

2

rot , , , ,

rot , , , ,

, e 0, , 0 ,

, e ,0 , 0 ,

, 0, , 0

x

y

L

i
x y

i
y x

tg nrg S g S

H g k ik g k E g k

E g k ik g k H g k g Q

D E H l y D E H y y l z L

D E H x l D E H x x l z L

Ε g k H g k

p

p

h e

h m

F

F

Î Î

ì
ï = -
ï
ï = Î
ï
ï é ù é ù= £ £ <í ê ú ê úë û ë ûï
ï é ù é ù= £ £ <ï ê ú ê úë û ë ûï
ï = =
î

r r% %
r r% %

r r r r% % % %

r r r r% % % %

% %

(53)

{Ẽ z(g , k )

H̃ z(g , k )}= {10}e−iΓpq(z−L )μpq(x, y) + ∑
n,m=−∞

∞ {Rpq(E )
nm(E )(k )

Rpq(E )
nm(H )(k )}eiΓnm(z−L )μnm(x, y), g∈ Ā,

{Ẽ z(g , k )

H̃ z(g , k )}= ∑
n,m=−∞

∞ {T pq(E )
nm(E )(k )

T pq(E )
nm(H )(k )}e−iΓnm(z+L )μnm(x, y), g∈ B̄.

(54)
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When deriving (50), (51) we have also used the equations relating z-components of the ei‐
genmode of the Floquet channel

U
→̃(g , k ) : Ẽ z(g , k )= Ae±iΓzμ(x, y) and H̃ z(g , k)= Be±iΓzμ(x, y) (55)

(subscripts nm are omitted) with its longitudinal components:

Ẽ x = −
βkη0

λ 2 H̃ z ∓
αΓ
λ 2 Ẽ z, Ẽ y =

αkη0

λ 2 H̃ z ∓
βΓ
λ 2 Ẽ z,

H̃ x = ∓
αΓ
λ 2 H̃ z +

βk
η0λ

2 Ẽ z, H̃ y = ∓
βΓ
λ 2 H̃ z −

αk
η0λ

2 Ẽ z.
(56)

Here, ε̄(g , k)=ε(g , k ) + iη0σ(g , k ) / k , μ(x, y)= (lxly)−1/2exp(iαx)exp(iβy), Γ = k 2−λ 2,

λ 2 =α 2 + β 2.

According to the Lorentz lemma [11], the fields {E→̃ (1), H
→̃ (1)} and {E→̃ (2), H

→̃ (2)} resulting from the
interaction of a grating with two plane TM -waves

U
→̃

pq(E )
i(1) (g , k ) : Ẽ z

i(1)(g , k)=exp − iΓpq(Φx, Φy)(z − L ) μpq(x, y, Φx, Φy) and

U
→̃
−r ,−s(E )
i(2) (g , k ) : Ẽ z

i(2)(g , k )=exp − iΓ−r ,−s(−Φx, −Φy)(z − L ) μ−r ,−s(x, y, −Φx, −Φy),

satisfy the following equation

∮
SL

(( E
→̃ (1) × H

→̃ (2) − E
→̃ (2) × H

→̃ (1) )⋅ds
→)=0. (57)

From (57), using (54) and (56), we obtain

Rpq(E )
rs(E )(Φx, Φy)λp,q

2 (Φx, Φy)
Γpq(Φx, Φy) =

R−r ,−s(E )
−p,−q(E )(−Φx, −Φy)λ−r ,−s

2 (−Φx, −Φy)
Γ−r ,−s(−Φx, −Φy) ,

p, q, r , s =0, ± 1, ± 2,...
(58)

– the reciprocity relations, which are of considerable importance in the physical analysis of
wave scattering by periodic structures as well as when testing numerical algorithms for
boundary problems (53), (54).

Assume now that the first wave U
→̃

pq(E )
i(1) (g , k ) :

: Ẽ z
i(1)(g , k)=exp − iΓpq(Φx, Φy)(z − L ) μpq(x, y, Φx, Φy)=U

→̃
pq(E )
i(1) (g , k , A) be incident on the

grating from the domainA, as in the case considered above, while another wave
U
→̃
−r ,−s(E )
i(2) (g , k ) : Ẽ z

i(2)(g , k , B)=exp iΓ−r ,−s(−Φx, −Φy)(z + L ) μ−r ,−s(x, y, −Φx, −Φy) is incident
fromB. Both of these waves satisfy equation (57), whence we have
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T pq(E )
rs(E )(Φx, Φy, A)λp,q

2 (Φx, Φy)
Γpq(Φx, Φy) =

T−r ,−s(E )
−p,−q(E )(−Φx, −Φy, B)λ−r ,−s

2 (−Φx, −Φy)
Γ−r ,−s(−Φx, −Φy) ,

p, q, r , s =0, ± 1, ± 2,...
(59)

7.2. Excitation by a TE-wave

Let a grating be excited form the domain A by a pulsed TE -wave
U
→ i(g , t)=U

→
pq(H )
i (g , t) : Hz

i(g , t)=vpq(z ,H )(z, t)μpq(x, y) and the region QL  is free from the
sources j

→ (g , t), φ→ E (g), andφ→ H (g). The field generated in the domains A and B is determined
completely by their longitudinal components. They can be represented in the form of (31),
(32). Define steady-state fields {E

→̃ (g , k ), H
→̃(g , k)} corresponding to the pulsed fields{E→ i, H

→ i},
{E→ s, H

→ s}in A and the pulsed field {E
→

, H
→} inB, by their z-components as was done for the

TM -case (see equations (45)-(47)). Introduce the scattering coefficientsRpq(H )
nm(E ), Rpq(H )

nm(H ),

T pq(H )
nm(E ), and T pq(H )

nm(H ) by the relations like (48). These coefficients can be determined from the
problems

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

0

0

2

2

rot , , , ,
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, 0, , 0 ,
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x y

i
y x

tg nrg g
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h e
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î S S

r r% %
r r% %

r r r r% % % %

r r r r% % % %

% %

(60)

{Ẽ z(g , k )

H̃ z(g , k )}= {01}e−iΓpq(z−L )μpq(x, y) + ∑
n,m=−∞

∞ {Rpq(H )
nm(E )(k )

Rpq(H )
nm(H )(k )}eiΓnm(z−L )μnm(x, y), g∈ Ā,

{Ẽ z(g , k )

H̃ z(g , k )}= ∑
n,m=−∞

∞ {T pq(H )
nm(E )(k )

T pq(H )
nm(H )(k )}e−iΓnm(z+L )μnm(x, y), g∈ B̄

(61)

and satisfy the following relations, which are corollaries from the Poynting theorem and the
Lorentz lemma:

∑
n,m=−∞

∞ 1
λnm

2 (| Rpq(H )
nm(H ) | 2 + |T pq(H )

nm(H ) | 2) ±
1

η0
2 (| Rpq(H )

nm(E ) | 2 + |T pq(H )
nm(E ) | 2) {ReΓnm

ImΓnm
}=

=
1

λpq
2 {ReΓpq + 2ImΓpqImRpq(H )

pq(H )

ImΓpq −2ReΓpqImRpq(H )
pq(H ) }− 1

μ0
{W1

W2
}, p, q =0, ± 1, ± 2,…

(62)

Electromagnetic Waves146



and

Rpq(H )
rs(H )(Φx, Φy)λp,q

2 (Φx, Φy)
Γpq(Φx, Φy) =

R−r ,−s(H )
−p,−q(H )(−Φx, −Φy)λ−r ,−s

2 (−Φx, −Φy)
Γ−r ,−s(−Φx, −Φy) ,

p, q, r , s =0, ± 1, ± 2,...
(63)

T pq(H )
rs(H )(Φx, Φy, A)λp,q

2 (Φx, Φy)
Γpq(Φx, Φy) =

T−r ,−s(H )
−p,−q(H )(−Φx, −Φy, B)λ−r ,−s

2 (−Φx, −Φy)
Γ−r ,−s(−Φx, −Φy) ,

p, q, r , s =0, ± 1, ± 2,...
(64)

7.3. General properties of the grating’s secondary field

Let now k  be a real positive frequency parameter, and let an arbitrary semi-transparent gra‐
ting (Figure 1) be excited from the domain A by a homogeneous TM - or TE -wave

U
→̃

pq(E or H )
i (g , k ) : {Ẽ z

i (g , k ) or H̃ z
i (g , k )}=e−iΓpq(z−L )μpq(x, y) , p, q : ImΓpq =0 . (65)

The terms of infinite series in (54) and (61) are z-components of nm-th harmonics of the scat‐
tered field for the domains A andB. The complex amplitudes Rpq(E orH )

nm(E orH ) and T pq(E orH )
nm(E orH ) are

the functions ofk , Φx, Φy, as well as of the geometry and material parameters of the grating.
Every harmonic for which ImΓnm =0 and ReΓnm >0 is a homogeneous plane wave propagat‐
ing away from the grating along the vectork

→
nm:kx =αn, ky =βm, kz =Γnm(inA; Figure 5) or

kz = −Γnm (inB). The frequencies ksuch that Γnm(k )=0 (k =knm
± = ± |λnm |) are known as thresh‐

old frequency or sliding points [1-6]. At those points, a spatial harmonic of order nm with
ImΓnm >0 are transformed into a propagating homogeneous pane wave.

It is obvious that the propagation directions k
→

nm of homogeneous harmonics of the secon‐
dary field depends on their ordernm, on the values of k  and on the directing vector of the
incident wavek

→
pq
i :kx

i =αp, ky
i =βq,kz

i = −Γpq. According to (50) and (62), we can write the follow‐
ing formulas for the values, which determine the ‘energy content’ of harmonics, or in other
words, the relative part of the energy directed by the structure into the relevant spatial radi‐
ation channel:

(WR) pq
nm =(| Rpq(E )

nm(E ) | 2 + η0
2 | Rpq(E )

nm(H ) | 2) ReΓnm

λnm
2

λpq
2

Γpq
=(WR) pq(E )

nm(E ) + (WR) pq(E )
nm(H ),

(WT ) pq
np =(|T pq(E )

nm(E ) | 2 + η0
2 |T pq(E )

nm(H ) | 2) ReΓnm

λnm
2

λpq
2

Γpq
=(WT ) pq(E )

np(E ) + (WT ) pq(E )
np(H )

(66)
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(for TM -case) and

Figure 5. On determination of propagation directions for spatial harmonics of the field formed by a two-dimensional‐
ly periodic structure.

(WR) pq
nm =(| Rpq(H )

nm(H ) | 2 +
1

η0
2 | Rpq(H )

nm(E ) | 2) ReΓnm

λnm
2

λpq
2

Γpq
=(WR) pq(H )

nm(H ) + (WR) pq(H )
nm(E ),

(WT ) pq
np =(|T pq(H )

nm(H ) | 2 +
1

η0
2 |T pq(H )

nm(E ) | 2) ReΓnm

λnm
2

λpq
2

Γpq
=(WT ) pq(H )

nm(H ) + (WT ) pq(H )
nm(E )

(67)

(for TE -case). The channel corresponding to the nm-th harmonic will be named ‘open’ if
ImΓnm =0. The regime with a single open channel (nm = pq) will be called the single-mode re‐

gime.

Since|k
→

pq
i | = |k

→
nm | =k , the nm-th harmonic of the secondary field in the reflection zone

propagates in opposition to the incident wave only if αn = −αp and βm = −βq or, in other nota‐

tion, if

n = −2Φx − p and m = −2Φy −q (68)
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Generation of the nonspecularly reflected mode of this kind is termed the auto-collimation.

The amplitudes Rpq(E orH )
nm(E orH ) or T pq(E orH )

nm(E orH ) are not all of significance for the physical analysis. In
the far-field zone, the secondary field is formed only by the propagating harmonics of the
orders nm such thatReΓnm≥0. However, the radiation field in the immediate proximity of the
grating requires a consideration of the contribution of damped harmonics (nm : ImΓnm >0).
Moreover, in some situations (resonance mode) this contribution is the dominating one [6].

7.4. The simplest corollaries of the reciprocity relations and the energy conservation law

Let us formulate several corollaries of the relations (50), (58), (59), and (62)-(64) basing on the
results presented in [3] and [7] for one-dimensionally periodic gratings and assuming that
ε(g , k)≥0, μ(g , k )≥0, andσ(g , k)≥0.

• The upper lines in (50) and (62) represent the energy conservation law for propagating
waves. IfImΓpq =0, the energy of the scattered field is clearly related with the energy of the

incident wave. The energy of the wave U
→̃

pq(E orH )
i (g , k) is partially absorbed by the grating

(only ifW1≠0), and the remaining part is distributed between spatial TM - and TE -har‐
monics propagating in the domains A and B (the wave is reradiating into the directions
z = ± ∞). If a plane inhomogeneous wave be incident on a grating (ImΓpq >0), the total en‐

ergy is defined by the imaginary part of reflection coefficientRpq(E orH )
pq(E orH ), which in this case

is nonnegative.

• The relations in the bottom lines in (50), (62) limit the values of
∑n,m=−∞
∞ | Rpq(E )

nm(E ) | 2λnm
−2ImΓnm, ∑n,m=−∞

∞ |T pq(E )
nm(E ) | 2λnm

−2ImΓnm, etc. and determine thereby the
class of infinite sequences

l̄2 ={a ={anm}nm=−∞
∞ : ∑

nm=−∞

∞ |anm | 2

n 2 + m 2
∞} (69)

or energetic space, to which amplitudes of the scattered harmonicsRpq(E )
nm(E ), T pq(E )

nm(E ), etc. be‐
long.

• It follows from (58), (59), (63), and (64) that for all semi-transparent and reflecting gratings
we can write

(WR)00(E orH )
00(E orH )(Φx, Φy)= (WR)00(E orH )

00(E orH )(−Φx, −Φy),
(WT )00(E orH )

00(E orH )(Φx, Φy, A)= (WT )00(E orH )
00(E orH )(−Φx, −Φy, B).

(70)
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The first equation in (70) proves that the efficiency of transformation of the TM - or TE -wave
into the specular reflected wave of the same polarization remains unchanged if the grating is
rotated in the plane x0y about z-axis through180° . The efficiency of transformation into the
principal transmitted wave of the same polarizations does not also vary with the grating ro‐
tation about the axis lying in the plane x0y and being normal to the vector k

→
00 (Figure 5).

• When r = s = p =q =0 we derive from (58), (59), (63), and (64) that

R00(E orH )
00(E orH )(Φx, Φy)= R00(E orH )

00(E orH )(−Φx, −Φy),
T00(E orH )

00(E orH )(Φx, Φy, A)=T00(E orH )
00(E orH )(−Φx, −Φy, B).

(71)

That means that even if a semi-transparent or reflecting grating is non symmetric with re‐
spect to the any planes, the reflection and transmission coefficients entering (71) do not de‐
pend on the proper changes in the angles of incidence of the primary wave.

• Relations (50), (58) allow the following regularities to be formulated for ideal (σ(g , k)≡0)
asymmetrical reflecting gratings. Let the parametersk , Φx, and Φy be such that
ReΓ00(Φx, Φy)>0 and ReΓnm(Φx, Φy)=0 forn, m≠0. If the incident wave is an inhomogene‐

ous plane waveU
→̃

± p,±q(E )
i (g , k , ± Φx, ± Φy), then

(| R± p,±q(E )
00(E ) (±Φx, ± Φy)| 2 + η0

2 | R± p,±q(E )
00(H ) (±Φx, ± Φy)| 2) ReΓ00(±Φx, ± Φy)

λ00
2 (±Φx, ± Φy) =

=2ImR± p,±q(E )
± p,±q(E )(±Φx, ± Φy)

ImΓ± p,±q(±Φx, ± Φy)
λ± p,±q

2 (±Φx, ± Φy) .
(72)

SinceRpq(E )
pq(E )(Φx, Φy)= R−p,−q(E )

−p,−q(E )(−Φx, −Φy), we derive from (72)

| Rp,q(E )
00(E ) (Φx, Φy)| 2 + η0

2 | Rp,q(E )
00(H )(Φx, Φy)| 2 =

= | R−p,−q(E )
00(E ) (−Φx, −Φy)| 2 + η0

2 | R−p,−q(E )
00(H ) (−Φx, −Φy)| 2.

(73)

It is easy to realize a physical meaning of the equation (73) and of similar relation for TE -
case, which may be of interest for diffraction electronics. If a grating is excited by a damped
harmonic, the efficiency of transformation into the unique propagating harmonic of spatial
spectrum is unaffected by the structure rotation in the plane x0y about z-axis through180° .
The above-stated corollaries have considerable utility in testing numerical results and mak‐
ing easier their physical interpretation. The use of these corollaries may considerably reduce
amount of calculations.
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8. Elements of Spectral Theory for Two-Dimensionally Periodic Gratings

The spectral theory of gratings studies singularities of analytical continuation of solutions of
boundary value problems formulated in the frequency domain (see, for example, problems
(53), (54) and (60), (61)) into the domain of complex-valued (nonphysical) values of real pa‐
rameters (like frequency, propagation constants, etc.) and the role of these singularities in
resonant and anomalous modes in monochromatic and pulsed wave scattering. The funda‐
mental results of this theory for one-dimensionally periodic gratings are presented in [4,6,7].
We present some elements of the spectral theory for two-dimensionally periodic structures,
which follow immediately form the results obtained in the previous sections. The frequency
k  acts as a spectral parameter; a two-dimensionally periodic grating is considered as an
open periodic resonator.

8.1. Canonical Green function

Let a solution G̃0(g , p, k) of the scalar problem

{ Δg + k 2 G̃0(g , p, k ) =δ(g − p), g ={xg , yg , zg}∈R, p ={xp, yp, zp}∈QL

D G̃0 (lx, yg)=e2πiΦxD G̃0 (0,yg), 0≤ yg ≤ ly, | zg | ≤ L

D G̃0 (xg , ly)=e2πiΦyD G̃0 (xg ,0), 0≤ xg ≤ lx, | zg | ≤ L

G̃0(g , p, k)= ∑
n,m=−∞

∞ {Anm(p, k )

Bnm(p, k )}e±iΓnm(zg∓L )μnm(xg , yg), g∈ {Ā
B̄ }

(74)

is named the canonical Green function for 2-D periodic gratings. In the case of the elementa‐
ry periodic structure with the absence of any material scatterers, the problems of this kind
but with arbitrary right-hand parts of the Helmholtz equation are formulated for the mono‐
chromatic waves generated by quasi-periodic current sources located in the region|z|< L .

Let us construct G̃0(g , p, k) as a superposition of free-space Green functions:

G̃0(g , p, k)= − 1
4π ∑

n,m=−∞

∞ exp ik | g − pnm |
| g − pnm | e2πinΦxe2πimΦy, pnm ={xp + nlx, yp + mly, zp}. (75)

By using in (75) the Poisson summation formula [15] and the tabulated integrals [16]

∫
−∞

∞

exp(ip x 2 + a 2)
x 2 + a 2

eibxdx =πiH0
(1)(a | p 2−b 2 |) and ∫

−∞

∞

H0
(1)(p x 2 + a 2)e ibxdx =2

exp(ia p 2−b 2)
p 2−b 2

,

where H0
(1)(x) is the Hankel function of the first kind, we obtain
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G̃0(g , p, k)= − i
2lx ly

∑
n,m=−∞

∞
ei αn(xg−xp)+βm(yg−yp) exp i | zg − zp |Γnm

Γnm
(76)

The surface K  of analytic continuation of the canonical Green function (76) into the domain
of complex-valued k  is an infinite-sheeted Riemann surface consisting of the complex planes
k∈C  with cuts along the lines(Rek )2− (Imk )2−λnm

2 =0, n, m =0, ± 1, ± 2,..., Imk ≤0(Figure 6).
The first (physical) sheet Ck  of the surface K  is uniquely determined by the radiation condi‐
tions for G̃0(g , p, k) in the domains A andB, i.e. by the choice of ReΓnmRek ≥0 and ImΓnm≥0
on the axisImk =0. On this sheet, in the domain0≤argk <π, we haveImΓnm >0, while ReΓnm≥0
for 0argk ≤π / 2 and ReΓnm≤0 forπ / 2≤argkπ. In the domain 3π / 2≤argk <2π for finite num‐

ber of functions Γnm(k ) (with n and m such that(Rek )2− (Imk )2−λnm
2 >0), the inequalities

ImΓnm <0 and ReΓnm >0 hold; for the rest of these functions we have ImΓnm >0 andReΓnm≤0.
In the domainπ <argk ≤3π / 2, the situation is similar only the signs of ReΓnm are opposite.
On the subsequent sheets (each of them with its own pair{k ;Γnm(k )}), the signs (root branch‐
es) of Γnm(k ) are opposite to those they have on the first sheet for a finite number of n andm.

The cuts (solid lines in Fig. 6) originate from the real algebraic branch pointsknm
± = ± |λnm | .

Figure 6. Natural domain of variation of the spectral parameterk : the first sheet of the surfaceK .

In the vicinity of some fixed point K ∈K  the function G̃0(g , p, k) can be expanded into a
Loran series in terms of the local variable [17]

κ ={k −K ; K ∉ {knm
± }

k −K ; K ∈ {knm
± }.

Therefore, this function is meromorphic on the surfaceK . Calculating the residuals
Res

k=k̄
G̃0(g , p, k ) at the simple polesk̄∈ {knm

± }, we obtain nontrivial solutions of homogeneous

(U
→̃ i(g , k )≡0) canonical (ε̄(g , k)≡1, μ(g , k )≡1,intS̄ =∅ ) problems (53), (54) and (60), (61):

E
→̃ (g , knm

± )= {Ẽ x, Ẽ y, Ẽ z} ; Ẽ x , y or z

=ax , y or zexp i(αnx + βmy) and H
→̃(g , knm

± )= (iknm
± η0)−1rotE

→̃ (g , knm
± ) (77)
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where ax , y or z are the arbitrary constants. These solutions determine free oscillations in the
space stratified by the following conditions:

D E
→̃ (H

→̃) (x + lx, y)=e2πiΦxD E
→̃ (H

→̃) (x, y), D E
→̃ (H

→̃) (x, y + ly)=e2πiΦyD E
→̃ (H

→̃) (x, y ). (78)

8.2. Spectrum qualitative characteristics

Let a set Ωk  of the points {k̄ j} j∈K  such that for all k∈ {k̄ j} j the homogeneous (spectral)
problem

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

0

0

2

2

rot , , , ,

rot , , , ,

, e 0, , 0 ,

, e ,0 , 0 ,

, 0, , 0 ,

x

y

L

i
x y

i
y x

tg nrg g

H g k ik g k E g k

E g k ik g k H g k g Q

D E H l y D E H y y l z L

D E H x l D E H x x l z L

Ε g k H g k

p

p

h e

h m

F

F

Î Î

ì
ï = -
ï
ï = Î
ï
ï é ù é ù= £ £ <í ê ú ê úë û ë ûï
ï é ù é ù= £ £ <ï ê ú ê úë û ë ûï
ï = =
î S S

r r% %
r r% %

r r r r% % % %

r r r r% % % %

% %

(79)

{Ẽ z(g , k )

H̃ z(g , k )}= ∑
n,m=−∞

∞ {Anm(E )(k )

Anm(H )(k )}eiΓnm(z−L )μnm(x, y), g∈ Ā

{Ẽ z(g , k )

H̃ z(g , k )}= ∑
n,m=−∞

∞ {Bnm(E )(k )

Bnm(H )(k )}e−iΓnm(z+L )μnm(x, y), g∈ B̄

(80)

has a nontrivial (not necessarily unique) solution U
→̃(g , k̄ j)= {E→̃ (g , k̄ j), H

→̃(g , k̄ j)}be called the
point spectrum of the grating. It is obvious that these solutions characterize the so-called
free oscillations, whose field pattern, structure of their spatial harmonics and behavior of
these harmonics for large | z |  and t  are determined by the value of k̄ j =Rek̄ j + iImk̄ j and by
a position of the point k̄ j (the eigen frequency associated with a free oscillationU

→̃(g , k̄ j)) on
the surface K  [4,6,7]. By continuing analytically the problems (53), (54) and (60), (61) togeth‐
er with their solutions U

→̃(g , k )= {E
→̃ (g , k ), H

→̃(g , k )} into the domain K  of the complex-valued
k , we detect poles of the function U

→̃(g , k )at the pointsk = k̄ j. In the vicinity of these poles, the
desired solutions can be represented by the Loran series in terms of the local on K  variable κ
[17]. The analytical findings of this kind may form the basis for detailed study of physical
features of resonant wave scattering by one-dimensionally and two-dimensionally periodic
structures [4,6,7,18,19].

Derive now the conditions that constrain existence of nontrivial solutions of the problem
(79), (80). These conditions can be considered as uniqueness theorems for the problems (53),
(54) and (60), (61) formulated for different domains of the surfaceK . Notice that the study of
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the uniqueness allows one to estimate roughly a domain where elements of the set Ωk  are
localized and simplify substantially the subsequent numerical solution of spectral problems
owing to reduction of a search zone of the eigen frequencies. The uniqueness theorems serve
also as a basis for application of the ‘meromorphic’ Fredholm theorem [20] when construct‐
ing well grounded algorithms for solving diffraction problems as well as when studying
qualitative characteristics of gratings’ spectra [4,7].

Assume that grating scattering elements are nondispersive (ε(g , k)=ε(g), μ(g , k )=μ(g), and
σ(g , k)=σ(g)). In this case, the analytical continuation of the spectral problem (79), (80) into
the domain of complex-valued k  are simplified considerably. From the complex power theo‐
rem in the integral form formulated for the nontrivial solutions U

→̃(g , k̄ j) like

∮
SL

( E
→̃

× H
→̃∗ ⋅ds

→)= ∫
QL

div E
→̃

× H
→̃∗ dg

= ikη0 ∫
QL

μ | H
→̃ | 2dg − ik ∗

η0
∫

QL

ε | E
→̃ | 2dg − ∫

QL

σ | E
→̃ | 2dg

(81)

the following relations result:

∑
n,m=−∞

∞ 1
λnm

2 {(ReΓnmRek + ImΓnmImk )
(ImΓnmRek −ReΓnmImk ) } (| Anm(E ) | 2 + | Bnm(E ) | 2)

±η0
2(| Anm(H ) | 2 + | Bnm(H ) | 2) =

1
ε0

{− Imk (V3 + V2)−V1

Rek (V3−V2)
} (82)

Notation:k = k̄ j, E
→̃

= E
→̃ (g , k̄ j), Γnm =Γnm(k̄ j), Anm(E ) = Anm(E )(k̄ j), etc., and

V1 =ε0η0 ∫
QL

σ | E
→̃ | 2dg , V2 = ∫

QL

ε0ε | E
→̃ | 2dg ,V3 = ∫

QL

μ0μ | H
→̃ | 2dg .

No free oscillations exist whose amplitudes do not satisfy equations (82). From this general
statement, several important consequences follow. Below some of them are formulated for
gratings withε(g)>0, μ(g)>0, andσ(g)≥0.

• There are no free oscillations whose eigen frequencies k̄ j are located on the upper half-
plane (Imk0) of the first sheet of the surfaceK . This can be verified by taking into account
the upper relation in (82), the function Γnm(k ) onCk , and the inequalitiesV1≥0, V2 >0,V3 >0.

• If σ(g)≡0 (the grating is non-absorptive), no free oscillations exist whose eigen frequen‐
cies k̄ j are located on the bottom half-plane (Imk <0) of the sheet Ck  between the cuts cor‐

responding to the least absolute values ofknm
± . In Figure 6, this region of the first sheet of K

and the above-mentioned domain are shaded by horizontal lines.
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• If σ(g)>0 on some set of zero-measure pointsg∈QL , then there are no elements k̄ j of gra‐
ting’s point spectrum Ωk  that are located on the real axis of the planeCk .

Investigation of the entire spectrum of a grating, i.e. a set of the pointsk∈K , for which the
diffraction problems given by (53), (54) and (60), (61) are not uniquely solvable, is a compli‐
cated challenge. Therefore below we do no more than indicate basic stages for obtaining
well grounded results. The first stage is associated with regularization of the boundary val‐
ue problem describing excitation of a metal-dielectric grating by the currents
J
→̃ (g , k )↔ J

→ (g , t) located in the domainQL :

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )
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(83)

{Ẽ z(g , k )

H̃ z(g , k )}= ∑
n,m=−∞

∞ {Anm(E )(k )

Anm(H )(k )}eiΓnm(z−L )μnm(x, y), g∈ Ā,

{Ẽ z(g , k )

H̃ z(g , k )}= ∑
n,m=−∞

∞ {Bnm(E )(k )

Bnm(H )(k )}e−iΓnm(z+L )μnm(x, y), g∈ B̄.

(84)

By regularization is meant (see, for example, [7]) a reduction of the boundary value electro‐
dynamic problem to the equivalent operator equation of the second kind

E + B(G̃0, S , ε̄, μ, k ) X =Y , EX = X (85)

with a compact (in some space W  of vector fields) finite-meromorphic (in local on K varia‐
blesκ) operator-function B(G̃0, S , ε̄, μ, k) [20,21]. If the problem given by (83), (84) is consid‐
ered separately for metal gratings (intS̄ ≠ ∅and S  are sufficiently smooth surfaces;
ε̄(g , k)=μ(g , k )≡1) and dielectric gratings (intS̄ =∅ , ε̄(g , k)=ε(g)and μ(g , k )=μ(g) are suffi‐
ciently smooth functions), then its regularization can be performed by applying the poten‐
tial theory methods [4,7,22].

In the second stage, the following statements should be proved: (i) the resolvent E + B(k ) −1

(k∈K ) of the problem in (85) is a finite-meromorphic operator-function; (ii) its poles are lo‐
cated at the points k = k̄ j ( j =1,2,3,...); (iii) the entire spectrum coincides with its point spec‐
trumΩk ; (iv) Ωk is nothing more than a countable set without finite accumulation points. All
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these statements are corollaries of the ‘meromorphic’ Fredholm theorem [4,20,21] and the
uniqueness theorem proved previously.

By inverting homogeneous operator equation (85), we can construct a numerical solution of
the spectral problem given by (79), (80) [4,6], in other words, calculate the complex-valued
eigen frequencies k̄ j and associated eigen waves U

→̃(g , k̄ j)= {E→̃ (g , k̄ j), H
→̃(g , k̄ j)} or free oscil‐

lations of an open two-dimensionnaly periodic resonator. Commonly, this operation is re‐
duced to an approximate solution of the characteristic equation like:

det C(k ) =0. (86)

Here C(k ) is some infinite matrix-function; the compactness of the operator B(k ) ensures (i)
existence of the determinant det C(k )  and (ii) the possibility to approximate the solutions k̄
of equation (86) by the solutions k̄ (N ) of the equation det C(k , N )  with the matrix C(k , N )
reduced to dimensionN × N .

Let k̄  be a root of characteristic equation (86) that do not coincide with any pole of the opera‐
tor-functionB(k ). The multiplicity of this root determines the multiplicity of the eigen value
k̄  of homogeneous operator equation (85), i.e. the value M =M (1) + M (2) + ... + M (Q) [21].
Here, Qis the number of linearly-independent eigen functionsU

→̃ (q)(g , k̄); q =1,2,...,Q(the
number of free oscillations) corresponding to the eigen value (eigenfrequency)k̄ , while
M (q)−1 is the number of the associated functionsU

→̃
(m)
(q) (g , k̄);m =1,2,...,M (q)−1. The order of

pole of the resolvent E + B(k ) −1 (and of the Green function G̃(g , p, k ) of the problem in
(83), (84)) for k = k̄ is determined by a maximal value ofM (q).

9. Conclusion

The analytical results presented in the chapter are of much interest in the development of
rigorous theory of two-dimensionally periodic gratings as well as in numerical solution of
the associated initial boundary value problems. We derived exact absorbing boundary con‐
ditions truncating the unbounded computational space of the initial boundary value prob‐
lem for two-dimensionally periodic structures to a bounded part of the Floquet channel.
Some important features of transient and steady-state fields in rectangular parts of the Flo‐
quet channel were discussed. The technique for calculating electrodynamic characteristics of
multi-layered structure consisting of two-dimensionally periodic gratings was developed by
introducing the transformation operators similar to generalized scattering matrices in the
frequency domain. In the last section, the elements of spectral theory for two-dimensionally
periodic gratings were discussed.
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