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Pulsed Radiation From a Line Electric Current Near a
Planar Interface: A Novel Technique

Leonid A. Pazynin

Abstract—A novel technique has been suggested for the analysis
of a transient electromagnetic field generated by a pulsed line
current that is located near a planar interface between two dielec-
tric nonabsorbing and nondispersive media. As distinct from the
Cagniard-de Hoop method, which is widely used for the study of
transient fields both in electrodynamics and in the theory of acoustic
and seismic waves, our approach is based on the transformation
of the domain of integration in the integral expression for the field
in the space of two complex variables. As a result, it will suffice
to use the standard procedure of finding of roots of the algebraic
equation rather than construct auxiliary Carniard’s contours. A
fresh type of the representation for the field has been derived in the
form of an integral along a finite contour. The algorithm based on
the representation of this kind may work as the most efficient tool
for calculating fields in multilayered media. The method suggested
allows extension to the case of arbitrary dipole sources.

Index Terms—Electromagnetic radiation, modified Cagniard
technique, planar interface, pulsed line source.

I. INTRODUCTION

T RANSIENT electromagnetic fields generated by pulsed
currents located near a planar boundary between layered

media are the subject of constant theoretical research, as from
the B. van der Pol paper [1]. The approach based on the classical
Cagniard method [2], [3] is the most efficient tool in this study.
De Hoop [4] has suggested a modification of Cagniard’s method
with the help of which exact solutions have been obtained for
a number of problems about a dipole or a line source near an
interface [5]–[9].

Various modifications of Cagniard’s technique have found
wide application in the study of nonstationary acoustic and
seismic wave propagation. Following paper [4], modifications
of de Hoop’s technique [10], [11] as well as the alternative
approaches free from some drawbacks to this method [12], [13]
have been suggested.

In the present paper, the approach alternative to Cagniard’s
technique is used to study the nonstationary field generated by
line sources located in flat-layered media. The approach sug-
gested is applied to the already solved problem, namely, de-
termination of the electromagnetic field generated by a pulsed
line source located near a planar interface between two non-
absorbing and nondispersive media. The corresponding results
have been discussed in considerable detail in [9]. In this paper, a
one-sided Laplace transform with respect to time and two-sided
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Fig. 1. Pulsed line source near the interface between two semi-infinite media.

Laplace transform with respect to a horizontal spatial variable
have been applied and, as a consequence, the electromagnetic
field has been represented in the form of some double integral.
This integral can be calculated efficiently by the Cagniard-de
Hoop method (CHM). The essence of the method is as fol-
lows. The original path of integration for one of two integrals
forming the double integral is deformed into a so-called mod-
ified Cagniard contour. It is chosen such that upon the corre-
sponding change of the integration variable in the integral along
the modified contour, the original double integral turns into a
composition of the direct and inverse Laplace transform for
the known function. The central problem with this method is
finding, generally speaking, numerically, the modified Cagniard
contour whose shape changes as the observation point changes.

The key point of the approach proposed in the present paper
includes the following. To calculate the double integral effi-
ciently, we suggest deforming its domain of integration (the real
plane) in the -space of two complex variables rather than to
deform one contour in the complex -plane, as has been done
in CHM. It is shown that in this case the integral reduces to a
sum of residues. The use of powerful apparatus of the residue
theory instead of somewhat artificial way used in CHM is reason
to hope that our approach can be efficient in the situations where
the CHM fails, such as for anisotropic media. The method pre-
sented in the paper can be extended to multilayered media and
arbitrary dipole sources.

II. PROBLEM FORMULATION

The field generated by the pulsed line electric current

(1)

located near a planar interface (Fig. 1) is to be found. The source
of this kind excites the -polarized field

(2)

where for and for .
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The function is the solution to the wave equation

(3)

that satisfies the conditions of continuity of - and -com-
ponents on the interface and the causality principle.

The Fourier transform in time

(4)

applied to the boundary-value problem in (3), results in the fol-
lowing problem

(5)

with the boundary conditions on

(6)

where . The solution of the equations in (5) is
conveniently represented in the form [7]

(7)

where

(8)

(9)

(10)

are the unknown functions,

, . From the
boundary conditions in (6), we have:

1)
2)

or

(11)

(12)

Thus, we have the required field in the form of the following
double integrals over the plane of real variables and

(13)

(14)

(15)

(16)

where , ( , 2).

III. TRANSFORMATION TO SINGLE INTEGRALS

In formulas (14)–(16), the integrands allow analytic contin-
uation from the real plane into
the -space of two complex variables and

. As previous analysis has shown, there is no need
to operate with the whole of real 4-D space . To calculate ef-
ficiently the integrals in (14)–(16), it is sufficient to consider a
3-D space containing . In ,
the single-valued branches of two square roots in the integrands
should be chosen. In Appendix, it is shown that for a loss-free
media the cut surface ensuring a choice of the branch for which
we have in is (Fig. 4) a double
sector that lies in the plane , contains the -axis,
and is bounded by the branch lines ( , 2).
The root is positive on the upper side of the right-hand sector

and on the bottom side of the left-hand
sector ; while it is negative on the other
sides. Since the integrands in (14)–(16) are uniquely defined in
the -space with the specified cuts, the Cauchy-Poincare the-
orem [14] can be used to deform the surface of integration in

.
In accordance with the causality principle, the cut surfaces

and have to adjoin the real plane from the bottom
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. Then, the integrands have no singularities in the half-
space , and we have for all ,
according the mentioned theorem.

For positive values of the time variable , the -plane can
be deformed to a half-space . Then we have for an
integral over the surface , while for we have integrals
over the surface . Here stands for the closed
surface enveloping the cut .

Using the function as an example, let us demon-
strate how the integrals describing the secondary field in (15),
(16) can be simplified. Denoting the integrand in (15) by

, consider the following integral over the surface

(17)

where . Let and be the right-
hand and the left-hand cavities of the surface

; is the closed contour generated by the intersection of
the surface with the coordinate plane .
Then we have

(18)

In the second integral here, the change of variables
has been carried out. By taking into

account the evenness of the chosen branches of square roots
entering the function with respect to this change of vari-
ables and by performing another change of variables ,
we arrive at the following expression for the integral in (15)

(19)

where

(20)

and the contour envelopes the segment in the
plane of the complex variable . Let us introduce an accessory
parameter for the sake of convergence acceleration; then
(19) can be rewritten in the form of (21), shown at the bottom
of the page.

For the second integral in (17), we obtain a represen-
tation similar to (21) with replaced by , where
is the contour enveloping the segment . Thus, for
the function given by (15), which determines the secondary
field in the first medium (see (13)), we arrive at the following
expression:

(22)

where , is the contour enveloping the segment
, . The root branches are

determined by the inequalities with
zero value of the argument on the bottom side of the cut along
the segment .

Similarly, for the function describing the field in the
second medium, we obtain from (16)

(23)

where . The integrands in (22) and (23) are
analytical in the plane of complex variable with the specified
cut and decrease at infinity as . Therefore, these integrals

(21)



4736 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 59, NO. 12, DECEMBER 2011

can be reduced to the residues determined by zero values of the
denominators in the square brackets

(24)

(25)

IV. FIELD IN THE FIRST MEDIUM

The roots of the (24) are readily determined and can be
written as

(26)

and

(27)

for (24a) and (24b) respectively, where . For

the square root , the same branch in the complex

plane of variable has been determined as for in
the -plane. By calculating the corresponding residues, we have
from (22)

(28)

Here we have used the equality

(29)

It is easy to verify that the following relationships hold for the
chosen branches of the square roots:

(30)

Therefore

(31)

The wave reflected from the interface comes at the given point
in the first medium at time . For the time interval

, in view of (31), we obtain

(32)

where .
For the time interval , we have

(33)

where .
The behavior of the secondary field in the first medium for

the times essentially depends on the relation
between the refractive indices for the first and the second

media.
For an arbitrary point in the first medium, both of the roots

entering in are real (see (29)) if . Consequently,
we have , and the secondary field given by (32)
is zero up to the moment of arrival of the
reflected wave.

In the case that , a more detailed analysis of the
function is required. Let us use the following nota-
tions: , , ,
where stands for the angle of total internal reflection [7],
[15]. Let also introduce a parameter , where
the principal branch of this function has been chosen,
through the formula . Then we arrive at

(34)
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Fig. 2. Wave fronts of the field generated by the line pulsed current located near
a planar interface for � � � : primary (I), reflected (II), transmitted (III), and
“side” (IV) waves; � � � � is the trajectory determining the time of arrival of
the “side” wave at the point �, � is the angle of total internal reflection.

Since for the space-time domain considered we have
, then the arguments of the sine functions

in (34) find themselves within the interval . There-
fore, the function given by (34) has two roots
and corresponding to the points of time

and . There is no
difficulty to show (the trajectory in Fig. 2) that

,
where is the time of arrival of the so-called ‘side’ [7] (or
‘diffraction’ [15]) wave at the observation point located in the
first medium in the region . For , the variable

goes to the unphysical sheet of the function ,
and the ‘side’ wave does not occur in this region. By virtue
of the causality principle, for the times , there is no
secondary field and so the other zero is of no importance

.
Let us find the value of for

in the region . Here, the following relationships
for the arguments of the sine functions in (32) are valid:

which means that . Considering that

, we have .
Thus, for and , the “side” wave

given by the function (32) is generated in the region .
From (32), (33), through the use of the substitutions ,

, we arrive at the following expression for the
function characterizing the primary field:

(35)

where is the time of arrival of the primary wave at
the observation point in the first medium.

V. FIELD IN THE SECOND MEDIUM

Denote the roots of the (25a) and (25b) by and , respec-
tively. Then the integral in (23) takes the form

(36)

where

(37)

(38)

The expressions for the roots can be written explicitly
as the solutions of the associated algebraic quartic equations.
However, they are too cumbersome because of six parameters
entering (25) and are not used in the present paper. In view of the
causality principle, for , where is the
time of arrival of the transmitted wave at the observation point in
the second medium. For , the roots are complex and,
as evident from (25), in terms of (30), we have .
Therefore, having regard to (31), we obtain for

(39)

where .

VI. DISCUSSION AND CONCLUSION

Formulas (13) and (35) for the primary field, formulas (32)
and (33) for the secondary field in the first medium, as well
as formula (39) for the secondary field in the second medium
coincide with the relevant expressions derived in [9] by CHM.

The principal result of the work is a new representation for the
field generated by a pulsed line current in a two-media config-
uration in the form of the integrals over a finite contour (20),
(21). This method, like the CHM, is applicable to the prob-
lems of pulsed electromagnetic radiation from linear sources in
media formed by an arbitrary finite number of homogeneous
parallel layers with permittivity and permeability
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. In this case, for the field in the layers, the inte-
grals over the contour enveloping the interval ,
where , are similar to represen-
tations (20), (21). Two methods for calculating these integrals
are possible.

The first way is to reduce them by the Cauchy theorem to a
sum of residues at the poles of the integrand. These poles are de-
termined by the roots of algebraic equations that coincide with
the equations for the modified Cagniard contours [9]. There-
fore, this technique being alternative to the CHM in an analytical
sense is equivalent to it in a calculating sense.

Another way is to estimate numerically the integrals in (20),
(21). It is easy to show that they can be reduced to the integrals
over the interval . For example, the field in the first
medium (20) can be represented for , in the
following form:

where

We can use a standard integrating procedure of any mathemat-
ical package to calculate by this formula. Comparison of
the data obtained by this way with the explicit expression given
by (33) has demonstrated high efficiency and accuracy of this
approach.

The key point of the CHM is the solution of the algebraic
equation determining the modified Cagniard contour. To do this,
iterative numerical methods are used. The greatest difficulty in-
herent in these methods is to choose the starting value that is
close enough to the required zero of the equation [18]. In the
paper [9], such an initial approximation has been proposed for
the medium consisting of isotropic layers. For , the
efficiency of the iterative method has been shown. For more
complex structures containing anisotropic layers, the initial ap-
proximation of this kind is unknown. (The CHM allows us to
study as yet the simplest situation where the source and the ob-
servation point are located on the boundary of an anisotropic
medium [19].)

The method proposed in the paper being free from the com-
plications of this kind reduces the calculation of the field gen-
erated by a line dipole in a multilayered medium to a standard
procedure of numerical integration over a finite interval.

APPENDIX

Consider a function in assuming
that the refractive index is complex-
valued.

Fig. 3. Sign distribution for ��� and ��� in the plane � � �. Straight lines
indicate the lines of intersection with the plane � � �: a) bold line—for the
cone ��� � �; b) dash line—for the planes ��� � �. Symbols ��� specify
a sign of ��� , while 	�
 specify a sign of ��� ; ��� � �� ����, � is the
cone axis (A1).

1. A surface

(A1)

has the following invariants [16]: , ,
, , . Therefore, it represents a two-pole elliptic

cone symmetrical with respect to the plane with its vertex
at the origin of coordinates. Let us locate the axis of the cone.
The lines of intersection of the cone with the symmetry plane

are two mutually orthogonal straight lines
with the bisecting lines and

. Consequently, the cone axis is determined
by the equations and .

2. A surface

(A2)

has the following invariants: , ,
. Therefore, it represents two mutually orthogonal planes in-

tersecting along the -axis and determined by the equations:
and . The first plane con-

tains the axis of the cone (A1) being its another symmetry plane.
From (A1) and (A2), we derive the following equations for the
branch lines of :

(A3)

In Fig. 3, the distribution of signs for and in is
shown.

In (14)–(16), a single-valued branch of the function ,
for which , has been determined on the real
plane . The above mentioned inequality is hold
everywhere in if the following condition is satisfied:

. In other words, the cut in that separates
this branch should be determined by the conditions ,

. As is seen from Fig. 3, this takes place for a double
sector formed by the intersection of the inner part of the cone
(A1) with its symmetry plane . In with the
cut of this kind (Fig. 4) we have .
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Fig. 4. Location of the branch lines � and the cut surface � ensuring a choice
of the branch for which ������ �� � � in� -space; � is the cone axis (A1).

A similar approach to choosing a branch of the square root is
given in [17] for the case of a single variable. When passing to
a lossless medium , the cut surface is shifted into the
plane representing a double sector which contains the

-axis and is bounded by straight branch lines .
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