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Frequency domain methods allow us to simulate and study efficiently only some of the periodic structures that
are widespread in optics and spectroscopy. Time domain approaches could be more effective, but their deploy-
ment is held back by a number of unsolved problems associated mainly with a proper truncation of the com-
putation space in the so-called open problems. This paper is devoted to analysis of these problems in the 2-D
case (infinite one-dimensionally periodic semitransparent and reflecting gratings in the field of pulsed E- and
H-polarized waves). © 2010 Optical Society of America
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1. INTRODUCTION

Study of transient electromagnetic waves [1-8] is a domi-
nating trend in theoretical radiophysics today, because
communications, electronics, and radiolocation are impos-
sible without profound insights into spatial-temporal and
spatial-frequency field transformations in sophisticated
electromagnetic structures. Also the potential of tradi-
tional frequency domain approaches is exhausted to a
large extent. Additionally the time domain approaches

e are free from some frequency domain idealizations;

e are universal, because limitations imposed on geo-
metrical and constitutive parameters of considered ob-
jects are minimal;

e make it possible to construct explicit and straightfor-
ward computational routines (without inversion of any
operators) that are rather efficient (limited time and
memory resources required) and solve the problems
within a reasonable time;

e deliver results that are easy to translate into a stan-
dard set of frequency domain characteristics.

However in time domain approaches we still face prob-
lems for which complete and justified solution takes a lot
of analytic effort. For example there are problems of (a)
correct and effective truncation of the computation space
in the so-called open problems in which the domain of
analysis tends to infinity along one or several spatial di-
rections, (b) far-zone treatment, (¢) large and distant
sources of the fields, etc. [7,8]. Problems of this kind are
considered in this paper.

Available heuristic and approximate solutions of prob-
lems associated with finite domain transition in the
analysis of open time domain problems are mostly based
on the so-called absorbing boundary conditions (ABCs)
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[9-11] and the perfectly matched layers (PMLs) [12-14].
A weak point of these solutions is the unpredictable be-
havior of computational errors when the observation time
is large. As a consequence, the obtained results are not
safe to rely on in the case of resonant wave scattering.

In this paper an alternative approach will be elabo-
rated. It will allow us to estimate evenly and minimize er-
rors caused by translation of open initial boundary prob-
lems into corresponding closed problems. It is based on
exact absorbing conditions (EACs), specifically on con-
structing and embedding them into the standard finite-
difference method. Incorporation of EACs into the initial
boundary problem turns it into the equivalent closed
problem. The history of this approach dates back to 1986,
when Maykov et al. first formulated [15] the exact nonlo-
cal conditions for virtual boundaries across a regular
semi-infinite hollow waveguide. This approach is based on
the use of the radiation condition for spatial-time ampli-
tudes of partial components (modes) of nonsinusoidal
waves emitted from effective sources and scatterers. Af-
terwards this approach was modified and adapted (refer,
e.g., to [8,16—24]) for a great variety of problems in theo-
retical and applied radiophysics. Its validity and effi-
ciency has been proved repeatedly by numerical experi-
ments and special tests.

2. TWO-DIMENSIONAL INITIAL BOUNDARY
VALUE PROBLEMS

Let us present the scalar problems for analysis of the
spatial-time transformations of E- and H-polarized fields
in a near zone of a 1-D periodic grating (see Fig. 1 the
structures are uniform along the x axis and periodic with
a period [ along the y axis) in the following form:

© 2010 Optical Society of America
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Here, U=E,, E,=E,=H,=0 in the case of the E-polarized
field and U=H,, H,=H,=E,=0 in the H case; EEE(g,t)
={E,,E,,E,} and ﬁsﬁ(g,t):{Hx,Hy,Hz} are vectors of
electrical and magnetic field strengths; o=7y0q, o9
= 0y(g) =0 is the specific conductivity of a locally inhomo-
geneous medium; e=¢e(g)=1 and u=u(g)=1 are its rela-
tive permittivity and magnetic permeability; (og(g), £(g),
and u(g) are piecewise constant functions); 7= (uo/eo) "2
is the free-space impedance; gy and wy are electric and
magnetic vacuum constants; p={x,y,z} is a point in R?
space; and x, y, and z are Cartesian coordinates. The S.I.
metric system is used for all physical parameters except
time ¢, which is measured in meters—it is the product of
the natural time and the velocity of light in vacuum.

The surfaces S=S, X [|x| <] of perfectly conducting el-
ements in the geometry of the gratings and the surfaces
S&#7 of discontinuities of material properties of the me-
dium are assumed to be sufficiently smooth. The domain
of analysis in the problems (1) coincides with a part of the
R? plane limited by the contours S,:Q=R2?\intS,; int S,
is the closure of int S, domains that are occupied by ideal
conductors.

In the case of the classical statement of the problems
(1) (all the equations are satisfied in each point of the rel-
evant domain), the solutions should have as many con-
tinuous derivatives as are present in the equations, and

(€Y

(®)

Fig. 1. Geometry of model problems: (a) semi-transparent and
(b) reflecting plane gratings. All structures are homogeneous
along the x axis.
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g={y,2}eQ, t>0

geQ . (1)

t=0

LE'tg(p,t) and H,,(p,t) are continuous at the surfaces S“*7; t=0

[

that implies strict limitations on the smoothness for all
the entries. The generalized statements and solutions are
more suitable for a description of physical phenomena
that are governed by differential equations, and they
make analysis of the problem much simpler. It is known
[25] that initial boundary value problems (1) can be for-
mulated in such a way (source functions ¢(g), (g) and

F(g,t) for all £>0 are finite in Q, and so on) that they will
be unambiguously resolved in Sobolev’s space W%(QT);
QT=Q % (0;7), (0;T)={t:0<t<T<oc}. Let us assume that
all necessary conditions are fulfilled and consider the fol-
lowing problem.

The analysis domain Q=R?\int S, comprises all of the
space R%. For such domain the problems (1) can be re-
solved efficiently only in two cases:

e The problem (1) degenerates into a conventional
Cauchy problem (int S=@, medium is homogeneous, and
the supports of functions F(g,t), ¢(g), and (g) are
bounded). With some restriction on the source functions a
classical and generalized solution of the Cauchy problem
does exist, is unique, and is described by the well-known
Poisson formula [26].

e Functions F(g,t), ¢(g), and ¢(g) have the same
displacement symmetry as periodic structure. In this case
the domain of analysis can be reduced to Q™"
={g e Q:0<y<l}, completing problems (1) with periodic-
ity conditions [8] on lateral surfaces of the plane-parallel
Floquet channel R={g e R2:0<y <[}.

The domain of analysis can be reduced to Q™" in a
more general case also. The objects of analysis in this case
are not quite physical (complex sources, waves, and
fields). However by simple mathematical transformations
all the results can be presented in the usual, physically
correct form. There are many reasons why the modeling
of physically realizable situations in the electromagnetic
theory of gratings should start with the analysis of initial
boundary value problems for the images /**“(g,¢,®) of the
functions f(g,t) describing the true sources:

flg,t) = f Fz,t,®)e2m 0N g

©

= f (g, t,®)dP — (g t,d)

exp(2mdy/l) ([~ o
-—— f f5.2.0e 7 00dy ()

From Eq. (2) it follows that
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frew " (y +1,2,t, ) = e2mi®pew T (y,2,t,®)
dy e ay |7
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The use of the foregoing conditions restricts the analysis
domain to the domain Q"", which is a part of Floquet
channel R, and this allows us to rewrite the problems (1)
in the following form:

Ulg,t) = J U(g,t,®)d®,

PP
a2 o a2 a2

a
U(g,0)=¢""g),  —U™(g.t)

t=0
E;;fw(p,t)|p={xy,z}es = 07

\

In Sections 3-6, we will obtain important results re-
quired for correct truncation of the computational domain
in the open 2-D initial boundary value problems (3). Such
results are indispensable in construction of reliable and
effective computational schemes, and allow us to study
transformations of the field in resonant cases [8].

3. TRANSFORMATION OF EVOLUTIONARY
BASIS OF A SIGNAL IN A REGULAR
FLOQUET CHANNEL

Let us consider (from this point on) problems (3) for semi-
transparent infinite gratings (see Fig. 2) in the simplified
form for which indices new are dropped. We assume also
that the supports of source functions F(g,t), ¢(g), and
¥(g) belong to the set Q. \L; Q.={g € Q:-Ly—h<z<L1},
L;=0 and Ly=0. The regular parts A and B of the chan-
nel R (the parts z>L; and z<-Ly—h of the domain ;Q
=Q\(Q,UL)=AUB) are free from sources and scatter-
ers. Here, L=L; UL, is an artificial boundary that sepa-
rates domain Qy, from domain ;Q. It is denoted by dashed
lines in Fig. 2. The field formed by the grating propagates
infinitely far along A and B.

Let us take, for the sake of definiteness, the upper
(2>L,) regular part of the R channel. Here, e(g)=pu(g)
=1 and o(g)=d(g)=y(g)=F(g,t)=0. Assuming that the
excitation U(g,?) in domain Q; has not yet reached
boundary L (z=L;) by the time ¢=0, we obtain via the
separation of variables the following representation for
the solutions U(g,?) of problems (3):

0

Ugt)= X, unz,)u,(y); z=Ly, 0<y<Il, t=0.

n=-o

4)

[ 3
—eu— —ou— + — + — | U™ (g,t) = F"*"(g,t);

= y¢(g);

g=1,2e Q" t>0

R

t=0 ®)

E"(p,t) and H,;“(p,t) are continuous at the surfaces S**7 ¢=0

&Unew ) aUnew
ynew (1,z,t) = 2™y 0,2,8); t=0
d A

[

The orthonormal system {u,(y)} of transversal, complete
in the space Ly(0;/) functions of the form u,(y)
=172 exp(i®,y); D,=(n+P)27/l,n=0,+1,..., comes from
the nontrivial solutions of the homogeneous (spectral)
problem

d2
|:ﬁ+(1)3],un(y)=0, o<y<l
Y
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Fig. 2. Geometry of model problems (3).
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The spatial-time amplitudes {u,(z,¢)} (evolutionary ba-

sis) of the signal U(g,t) are obtained from the solutions of
the initial boundary value problems

F P
_E*—ﬁ_@i un(Z,t)=0; t>0
z

J
0)=0 — t =0
un(27 ) > %un(z’ )
t=0
z=Ly, n=0,21,+2 .... (6)

The cosine Fourier transform of problems (6) with respect
to Z=z-L; on semi-axis Z=0 (image+ original), namely,
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5
flw) = F[f)(w) = \/if f(Z)cos(wZ)dz —
TJo

5
<—>f(2)=F;1[7](2)E\/j f Fojcos@ddw,  (7)
TJo

results in the following Cauchy problems for images
Uy(w,t):

P 2
D(®2 + )i, (w,t)] = {E + (D2 + wz)]ﬁn((u,t) =— \/;an'(o,t); >0, t>0

Uy (0,0) =0,

—i,(w,t
P n(@,t)

Here, Uy(w,t)—=u,(Z,t)=u,(z,t), and
= Ji,(Z,t)/ Z|s=¢. It has also been considered that

97 \/? 4.
- wf(lw) - - dgf(z)

and that the wave U(g,t) in the region A does not contain
components propagating in the sense of decreasing z. The
components emitted toward z=~ are equal to zero for suf-
ficiently large z at any finite instant of time =7

Extending functions #,(w,t) with zero on semi-axis
t<0, let us pass to the generalized statement of the
Cauchy problems (8) [26]:

u,(0,1)

d2

. - Ef(f),

D(®2 + )i, (w,t)]
P

= [E + ((DTZL + 0)2):|L7n(0),t)
2 J

=- \/iﬁn’(o,t) + VO, (0,0) + 8t) —i,(w,t)
T at 20
2

=- \/iﬁn’(o,t); w>0, -—-wo<t<o, 9)

Here, &(...) is the Dirac delta function and 8"(...) is its
generalized mth derivative. The convolution of the funda-
mental solution G(\,t)=x(t)\~! sin \¢ of the operator D(\)
(see [8]) with the right-hand side of Eq. (9) gives the fol-
lowing representation of #,,(w,?):

2t u, '(0,7)
- I . _ 2, 27" .
i, (w,t) = \/; fo sin[(¢ T)\/<I>n+a)]vmdr,
0w=0, t=0 (10)

Applying inverse Fourier transform (7) to Eq. (10), we ob-
tain

(8)
w=0
|
un(Z,t) =~ f Jol@,((t = D* =22 Ix((¢ - 7)
0
-zla,' (0,ndr; z=0, t=0, (11)
from which it follows that
up(2,t) = - f Jo[®,((t - % - (z - L1)») I (¢ - 7)
0
- (=Lyu,’ Ly, 7)dT,
z2=L,, t=0. (12)

Expressions (12) display the general property of the solu-
tions U(g,t) of problems (3) in the subdomain ; Q, namely,
the solutions satisfying zero initial conditions and being
free of the components (modes) propagating toward com-
pact inhomogeneity of the channel R (toward the domain
Qr). These expressions define diagonal transport operator
ZLlﬂz(t) (see [8,17,20,27,28]), which operates according to
the rule

u(z,t) ={u,(z,0)} =2y, _.(O[u'(Ly,n]; u'(b,7)
={u,'(b,0}, z=L;, t=7=0;

and enables us to trace changes of the transient wave
field during its free propagation along a finite regular sec-
tion of the R channel. Here, J,,(...) is a Bessel cylindrical
function, x(...) is the Heaviside step function,

L oU(g,t)
| =

Jup(z,t)

u,'(b,t) = P

0

w,0)dy,
b

z=

(13)

and asterisk * stands for complex conjugation.
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4. NONLOCAL ABSORBING CONDITIONS

Let us consider the case when the observation point in ex-
pressions (12) lies on the artificial boundary L, (z=L).
Then

un(th) == f JO[(I)n(t - T)]X(t - T)un,(LbT)dT; t=0.
0

(14)
Differentiation of Eq.(14) with respect to ¢ gives
{ a a } -

—+ — |u,lz,t

ot oz -,

= ‘an JI P, - DXt - Du,' (Ly,dm; t=0

0

(15)

on account of the familiar relationships ddJy(x)/dx=
—J1(x), Jp(0)=1, and yV(E-D=38¢t-7), where yV(...) is
the generalized derivative of x(...).

Next, the application of the Laplace transform regard-
ing ¢ (image « original),

f(s) = L[f1(s) = f f@)e™'dt < f(t) = L[F1®)
0

1 a+i®

fls)e*ds, (16)

- 2_77l a—i©

in view of the familiar formulas }71(3)72(s)<—> ) f)fl(t
—Dfy(nd7 (the convolution theorem), NZ[ysZ+\2(ysZ+\2
+8)" Lo NJ (N8) [29], and sf(s)—f(0)—~df(¢)/dt gives [in
the space of images #,,(z,s)]

i | ®ya,'(Ly,s)
[5*3]“'1(2’3) o el ates 7
and finally
N\
Z?n,(Ll,S) =- (S+6‘+\/T—)\’21)ﬁn(L1,s). (18)

The inverse Laplace transform of Eq.(18), in view of (s
+ys2 42T (\) "1 (At) [30], allows us to return to the
original functions u,(z,t)

d J
PR uy(2,t)

== (an JU@,(t = DIt = D7 x(t = Duy(Ly, D)d s
0

2=L,

t=0. (19)

The translation of Eq.(15) into Eq.(19) [the truth of trans-
formations (16)] rests on the assertion [31] that at some
points g of any bounded subdomain inside a Q domain,
the field U(g,¢) from a set of compact support sources can-
not grow faster than exp(at) as t — o, where >0 is a con-
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stant. The assertion is true for any electromagnetic struc-

ture whose spectrum (), does not contain points % of the
upper half-plane of the first (physical) sheet of the surface
giving the natural variation range of the complex fre-
quency parameter k. This holds for all the gratings under
consideration (see, for example, [8]).

In terms of Eqgs. (4) and (13), expressions (14), (15), and
(19) become

©

t
Uly,Ly,t)=- > f Jo[®@,(t - 7]

0

n=-—w

LU ,z,7) ,
X f— w,¥)dy |d7 by (y)
0 0z
2=L1
=Viiy,t); O0sys<I, t=0, (20)
J J U
— - b ’t
e LU
=Ly

©

= > f J4[ D, (¢ - 7]

n=-—x 0

LUz, o
0 oz
2=L1
=Vyy,t); 0<sys<I, t=0, (21)
J J
—+— |U t
at az (y’z7 )
z=Lq

=- > j Jy[ D, - D]t - 1)

0

n=-o

1
X{f U@,Ll,T)MZ@)@]dT D (y) = V3(y,1);

0
Osys<l, t=0. (22)

Let us consider the possibility of Egs. (20)—(22) being
boundary conditions for restriction of the analysis domain
Q of open problems (3). Using the results from
[8,15,25,26] we can prove the following statement.

Statement 1. Problems (3), and problems (3) supple-
mented with any one of conditions (20)-(22), are equiva-
lent. The requirements that ensure their unique solvability
(correctness classes) are identical.

Formulas (20)-(22) are exact. Hence their addition to
the original problems does not actually increase the com-
putation error or distort the process of simulation.

Relations (14), (15), and (19)—(22) constitute the exact
radiation conditions for the outgoing transient waves
formed by the grating. Formulas (14), (15), and (19) de-
scribe behavior of spatial-temporal amplitudes of all par-
tial components (modes) of the waves guided by the regu-
lar channel R in direction z— . Behavior of these wave
fields as a whole is governed by formulas (20)—(22). There-
fore the open problems (3) are equivalent to the problems
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(3) whose analysis domain Qy, is finite, with any condition
of (20)—(22) met on the virtual boundaries L; and Ly. By
the same reasoning, conditions (20)—(22) can be regarded
as exact absorbing conditions: the wave field U(g,¢) nei-
ther undergoes deformation across L; boundary nor re-
flects back into the Q; domain, the wave U(g,¢) fully
transmitting to the upper (z>L;) regular part of the R
channel as if it were absorbed by the domain A or its
boundary L;.

At Vy(y,t)=V3(y,t)=0, the nonlocal conditions (21) and
(22) coincide with the simplest local classical ABC of the
first-order approximation [9,10]. This means that func-
tions Vy(y,t) and Vs(y,#) determine the ABC’s closing er-
ror, or the difference between the exact values of the func-
tion [ﬂ/ﬂt+&/ﬁz]U(y,z,t)\Z:Ll and the corresponding
results given in the computational schemes using this ap-
proximate absorbing condition. The availability of the
closing error allows us to estimate the accuracy of the cor-
responding computational scheme as a whole.

5. LOCAL ABSORBING CONDITIONS

Finite-difference algorithms employing the nonlocal (both
in space and time variables) absorbing conditions
(20)—(22) call for substantial memory resources as the
Vi(y,t) function databases grow progressively with time.
They are all stored to make the next step, proceeding
through time layers [32]. The problem can be solved in
the following manner. We will turn to the local conditions
by applying the following scheme which is easy to realize.
In view of the representation [33]

2 /2
Jolx) = —f cos(x sin ¢)d ¢,
a

0

rewrite relations (14) as

2 /2
un(Ly,t) =~ ;J J cos[®,(t - 7)
0

0
Xsin @)x(¢ — Du,,' (L1, Dd7 dep; t=0.

(23)

Introduce

U(y’Ll,t) =
TJo

([ #
? - Sinz d)@ W(yat’¢) ==

W(y,t,¢)
< W(y,o,d)) = T

t

2 (™2 dW(y,t, p)
[
ot

U (y,z,t)
az
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sin[®,(t — 7)sin ¢]x(¢ — Nu,,’ (L1, 7)
wn(ty ¢) == f
0

7
®, sin ¢
t=0, 0<¢=<a/2. (24)
Then
w,(t, ¢)
= J cos[®,,(¢ — 7)sin Px(t - Nu,,' (L, 7)d T,
0

and from relations (23) we have

¢; t=0. (25)

2 (™ w,(t,¢)
uy(Ly,t) = —f —Fd
T ot

0

The integral form (24) is equivalent to the differential for-
mulation

P
[? + <I>,2L sin? ¢:| wy(t,d)=-u, (L,t); t>0

Jw,(t, )
w,(0,¢) = ———

(26)

Indeed, passing from formulation (26) to the generalized
Cauchy problem and using the fundamental solution
G\, t)=x(t)\Isin\t of the operator D(\)=[d2/dt?+\?]
(see [8]), one easily learns that relations (24) and (26) de-
fine the same functions w,(t, ¢).

Now multiply relations (25) and (26) by u,(y) and sum
over n=0,+1,+2,.... On account of

” PW(y,t, )
_E_ Drw,(t, ) (y) = — T

for

0

Wy,t,d)= D, wylt,d)u,()

n=—o

[see problem (5)], we obtain

s 0<y<l, t>0

2=L,

O<ys<| . (27)

=0
w 2 =emmowd 0.6, t=0
- »t, =e - >t d); =
e S e
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This local (both in space and time variable) exact absorb-
ing condition (EAC) enables us to truncate efficiently the
computation domain when solving problems (3) numeri-
cally. From here on, W(y,¢,¢) is an auxiliary function
coming from the solution of the separate initial boundary

J J
5 + ; U(y,z,t)

z=L;

2 /2
= —f W(y,t,d)cos® pdp; ¢=0,
T
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value problem, which is the inner problem with respect to
the corresponding condition, and 0 < ¢< 7/2 is a numeri-
cal parameter.

A similar treatment for relations (15) and (19) gives the
following local EACs, different from relations (27):

(17 AN
2208 ¢$ W(y,t,d) =~ P EU(V,ZJ) . ; 0<y<l, t>0
2=l
W(y,t,¢)
{W0,0,9)= ————| =0 O<ys<I : (28)
ot
=0
W&W(Z ) 'Zq’WaW( ) t=0
—— (1, 9) =W — (0,2, 9); =
L dy dy
J 4 2 (™2 oW(y,t,P)
—+— |Uly,z,t) =—f ———sin’¢dg; t=0, 0<y<],
ot oz L 0
2=k
([# , & PUy.Ly1)
ﬁ—cos d)@ W(y’t,¢)=—2; o<y<l, t>0
ﬁW(y’t7 ¢)
{Wy,0,)= ——| =0; Osysl! (29)
ot
t=0
W . W 0
Wy — (L, ) =" Wy — (0,8,¢); =
L dy dy
[
Expression (28) was obtained by virtue of the formula [34] sin[®, (¢ — Dcos lx(t — Du, (L, 7
wy(t,¢)=-P, dr;
2 /2 0 cos d’
Jilx)= —f sin(x cos ¢)cos ¢d ¢ t=0, 0<¢=<nm/2.
T
0
Under the assumption W(y,¢, #)=0 (which cannot be jus-
with the substitutions tified), expressions (28) and (29) reduce to the classical
ABC of the first-order approximation. Using the trapezoi-
sin[@, (¢ — 7)cos Glx(t — Du, 'Ly, 7) dal. rule, the integral in expression (28) is replaced by a
w,(t,d) = n dr finite sum and we end up with an approximate condition
" " 0 cos ¢ ’ that agrees well with [11].
By invoking formulas [34]
t=0, 0<¢=<ma/2.

The derivation of expression (29) was through the Poisson
integral [33]

2 /2
Jilx) = —f cos(x cos ¢)sin® ¢pd ¢
™Jo

and

1 ko
Jolx) = Erf exp(ix sin ¢)d ¢

and

1 m
Jilx) = ;f sin(x sin ¢)sin ¢d ¢,

0

one also arrives at the following local EACs:
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1 T
U(nylyt)=_2_J W(y’t>¢)d¢’ O§y$l’ t>05
™ -

(To 4 a
E—Slmﬁg Wiy,t,¢) = ;U(y,z,t) 2=L1, 0<y<l, t>0
W (y,t, )
<W(y,0,d>)= M =0; O0<ys=l ) (30)
Jt £=0
R P il T t=0
- >t =e!™ - >t d); =
L dy dy
J d 11"
[—+—}U(g,t) =—f Wy,t,p)de¢; O0<ys<lI, t=0,
at oz oL, 7J,
([# , & L R[ aute
E—sm @ W(y,t,¢) =—sin ¢$ P ; 0<y<lI, t>0
z=L1
W (y,t, )
{ W(,0,¢) = v =0; 0<y<lI : (31)
t=0
WﬁW(l ) 'QI’W(?W(O ) t=0
- ,t, =™ - ,t, )5 =
e © e

Conditions (30) and (31) are concerned with relations (14), (15), (20), and (21) in the same way as relations (27) and (28).
Here, we have made the substitutions

t
wn(t,fb):f expli®,(t - sin ¢lu, (L1, Dd7;  |¢] <, (32)
0

t
w,(t,¢) =P, sin ¢f sin[®, (¢ — Dsin plu,' (L1, Dd7m;, 0< =<,
0

to deduce conditions (30) and (31), respectively. Note the new technical detail—the differential form [d/d¢
—-i®, sin ¢lw,(t,¢)=u, (L1,7) [from which follows the equation with respect to W(y,t,¢) in the inner initial boundary
value problem in condition (30)] that is equivalent to the integral form (32) has been constructed with the help of the
fundamental solution G(\,¢)= x(¢)exp(-\t) of the operator [d/d¢+\] (see [8]).

We return now to the representation (4) for the lower regular part z<-Ly—h of the R channel as well as for its upper
part and construct the following initial boundary value problems similar to problems (6)

&# P
-ﬁ+@-¢ﬁ Uy(z,6)=0, t>0
g ; z<-Lo—-h, n=0,+x1,+2,... (33)
un(270)=07 Eun(‘27t) =0

t=0

for the evolutionary basis elements u,(z,?) of the signal U(g,t), g € B. Problems (6) generate three types of nonlocal EACs
[formulas (20)—(22)] and five types of local EACs [formulas (27)—(31) ]. A comparison between problems (6) and problems
(33) shows how all these EAC formulas can be rewritten in terms of boundary Ly. In what follows, conditions (21) and (28)
will be used. Taking into account the change both in the direction of free propagation of pulsed waves (toward z — —o
instead of z— +) and in the position of the artificial boundary Ly (z=-Lo—h instead of z=L;), we have

0 9 ¢ LoUF,z,7
{Q_E]U(y,z,t) =-> JJl[q)n(t_T)] f—T

M*W)dy dr q)mu*n(y);
oz n
z=-Lgy-h n 0 0

z=-Lo-h

O0<y<l, t=0 (34)

and
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J J
5 - ; U(y)zit)

2==Lgy~

IW(y,t,¢)
at

{ W,0,¢) = =

>

t=0

w il (@t ¢) = e?™W il 0,¢,4);
\ éb/ Yy =e &y 2 >

Now we can formulate the main result of this section.

Statement 2. Open problems (3) with analysis domain
Q are equivalent to closed problems (3) with analysis do-
main Qp and with any one of nonlocal or local EACs
(20)-(22), (27)-(31), (34), and (35) on its outer boundary
L=L,;UL,. For auxiliary functions W(y,z, ), the inner
initial boundary value problems in (27)-(31) and (35) are
well posed.

6. PROBLEMS OF LARGE AND DISTANT
FIELD SOURCES

In formulating earlier the initial boundary value problem
and specifying Q and Q;, domains, we assumed that the
functions describing the sources that excite the gratings
are finitary in the closure of the complete analysis domain
Q, and their supports belong to Q. \L for all the time

oUu ) ou
Uy — ((,z,t) =e2™PUy — 1(0,2,8);
dy dy

\

(T 2 » 2 o
$—0052¢$ W(y,t,¢)=? EUO”Z’”
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2 /2
=—J W(y,t, p)cos® pdp; t=0, 0<ys<I,
o TJo

s 0<y<l, t>0
z==Lo-h

(35)

[
0<¢<T. The advantage is the following: conditions on
virtual boundaries L can be formulated in terms of the to-
tal field U(g,¢). The limitations introduced by these as-
sumptions can be partially or completely removed by en-
closing a certain part of the current (F(g,#)) and/or the
momentary sources (¢(g) and ¢(g)) in the ; Q domain. The
only concern is the following: one should exclude the in-
coming primary wave U'(g,t) generated by this source
from the field U(g,#) on L. To this end, the scattered (sec-
ondary) field U%(g,t)=U(g,t)-U'(g,t) is introduced. The
final equations for the modified problem can be formu-
lated either in terms of the total field U(g,?) or in terms of
the secondary field U®(g,¢). The first alternative is pre-
ferred, as the formally true separation of the field U(g,t)
into U?(g,t) and U'(g,t) can be physically invalid in par-
tial subdomains of the domain Q.
The problems (36) stated as

(T 2 o4 & & _
—Sﬂﬁ—ffﬂg+$+g Ulg,t)=F(g,t) + F(g,t); g={y,2teQ, t>0
- d -
U(g,0) = ¢(g) + ¢(g), EU(g,t) = ilg) + Wg); g<eQ
< t=0 (36)
Etg(p’t)|p:{x,y,z}es =0; t=0

E,(p,t) and H,,(p,t) are continuous at the surfaces S“*; t=0

t=0

differ from problems (3) by the existence of the functions F(g,t), ¢(g), and J(g) that are finitary in the domain Q. It is
assumed that the supports of these functions and the corresponding sources belong to the domain A={g € Q:z> L1} (see
Fig. 2). As before, domain B={g € Q:z<-Ly—-h} carries no sources or efficient scatterers.

In A the total field can be written as Ul(g,t)=U'(g,t)+Us(g,t), where Ui(g,t) is the field in the channel R from the

sources F‘(g,t), d(g), and J(g):
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&2+$+E]lﬁ@,t)=f7(g,t); geR, t>0

. - Ja__ -
t=0

| Ut %
U — ((Lz,t) =e*™*U'y — 1(0,2,8); t=0
\ % dy

In order to find Us(g,?#) in A and U(g,t) in B, we may consider now the following homogeneous initial boundary value

problems:
([ # # #][ven| A
"ttt e | ven [T £eB[ 77
) U(g,0) 0 a | U(g,t) .
Ugo) |~  a|lUet || _, £ g ' 38
U U ; o U U® ‘ z>L, _
\ U U &y (7Z,t)=e U U (;f)’ (O,Z7t)’ Z<—L2—h ’ t/O

It is assumed that the perturbation caused by the sources concentrated in Q;, have not reached boundaries L; and Ly of
domains A and B at time t=0. The solutions of problems (38) are function U(g,?) in B and function U’(g,t) in A. They
determine the outgoing waves traveling in the z — —o and z — +« directions, respectively. Therefore we will prove that (see
Sections 4 and 5)

A

©

. t ! 8[U(5;’Z’T) - l]i(.‘yyz’T)]
U(y,Ly,t) - Uly,Ly,t)=- >, f Jo[ @, (t - 7] f

0 0 az

p, @AY AT b (y);

n=-—x
2=L,

O<y<l, t=0, (39)

©

‘ U527 ,
U(yv_LZ - h,t) = E f JO[ch(t - T)] f T M;@)dy dr /-Ln(y),
0 0

z2=—Lg-h

n=-x

Osy<lI, t=0, (40)
and

, 2 (™ W(y,t,¢)
U(y’Ll’t) - U(y’Ll’t) = ;J —d

¢; t=0, 0=<sy=<]|,

o ot
( (92 . 9 &2 ﬁ[U@,Z,t)—U@,Z,t)]
?—sm qﬁy W(y,t,¢p) = - pe ; 0<y<l, t>0
z:L1
IW(y,t,
{Woo.p= OEDI 0<y<I : (41)
at =0
W{ﬁv}(l t ¢)=ei2ﬂw{ﬂ}(o t,d); t=0
@ Uy &‘y v b
\

Uly,-Ly—h,t)=—
»,- Ly )W p

¢; t=0, O0=sys<lI,

2 (™2 W (y,¢t,p)
f AL,

0
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As before, W(y,t, ) are certain auxiliary functions here.
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(T & AU (y,z,t)
E—Slnﬁﬁ Wy,t,d)= —— ; 0<y<l, t>0
z2==Lg-h
AW (y,t,
{ W(y,0,¢) = wtd) =0; 0<ys<I . (42)
at t=0
oW oW
W{E}(l,t,qﬁ) = ei%q’W{E}(O,t,q’)); t=0
\

The couples (39) and (41) are exact (nonlocal and local) absorbing conditions on the boundary L in region A with cross
section at z=L;. The couples (40) and (42) represent the same conditions for the boundary Ly in region B with cross
section at z=—-Ly—h. They are direct analogues of conditions (20) and (27) constructed in Sections 4 and 5. It is evident
that other nonlocal and local conditions from these sections may be adjusted for the situation considered here.

In Q;, function U(g,t) is governed by the equations

ou , U
Uy — ((,z,t) =e2™PUy — 1(0,2,8);
L dy dy

Statement 3. Problems (36) and problems (43) with con-
ditions (39) and (40) or (41) and (42) in the domain Qy,
have the same solutions U(g,t) for an arbitrary observa-
tion time te[0;T]. In the modified problems, functions
Ui(g,t), which are involved in the EACs of (39) and (41)
type for the virtual boundary L, act as real sources out-
side the bounded analysis domain Q..

EACs of (39) and (41) type allow us to truncate the cal-
culation space Qy, to a reasonable size when dealing with
the problem of the type of (36) with large and/or distant

sources of transient waves U'(g,¢). These sources—f;’(g,t),

#(g), and i(g)—are merely enclosed in the ;1 Q domain.
Their contribution to the total field U(g,¢) is considered
via the boundary values of the functions Ut(g,t),
t €[0;T] and their normal derivatives on the L bound-
aries. All information relevant for the realization of the
scheme is provided by the solution of problem (37), which
is quite simple computationwise. Also the problem is ex-
plicitly solved using the mirror image technique. The
Poisson formula governing a given source field in a free
2-D space (in space R?) readily admits the boundary wall
condition of the Floquet channel R [26,35].

Where and how the primary U'(g,t) wave is excited is
usually not a problem for standard scattering analysis of
infinite periodic gratings. Nor does it need Ui(g,t) values
at all observation time ¢ €[0;7] and at all points g from
A. A proper numerical experiment needs only U’(g, t)|gEL1
and [oUi(g, t)/&z]|gEL values for all times ¢ €[0;7]. But
these values must be in agreement with the boundary val-
ues of some function Ui(g,t) that governs in domain A a
transient electromagnetic wave running on the virtual

( 2 9 # &
Iu&tz ME*—J (922 U(g,t) =F(g,t); gEQLa t>0
U(g,0) = ¢(g), Ewg,t) = ¥(g); geQ
t=0
(43)
Etg(p’t |p—{xyz}eS=0- t=0

E,(p,t) and H,,(p,t) are continuous at the surfaces S“*; ¢=0

t=0

boundary L; (principle of causality). On the L; boundary
separating domains Q;, and A this requirement complies
with the functions

U;()/,Lpt) = vp(Llat)Mp(y)’

= v, (L1, (),

(U (y,2,8)/02] .-,

Osygh p=07i1712""7 (44)

whose amplitudes v,(L{,t) and vp’(Ll,t) are related as

vp(Ly,t) = j Jo[®@, (& - Dx(t = v, (Ly,7)d7; t=0.
0

(45)

It is evident that relations (44) and (45) give boundary
values of the function U;(g,t)zvp(z,t)up(y) describing a
transient wave running on the boundary L; from region
A. This is so because relation (45) comes from relation
(12), taking into account changes in the direction of
propagation of the wave.

7. CONCLUSION

This paper offers novel exact absorbing conditions that al-
low one to truncate efficiently the computation domain of
finite-difference algorithms [7] applied for open initial
boundary-value problems in the theory of gratings. An
analytical approach to the problem of equivalent replace-
ment of open problems with closed ones is developed.
Near-to-far field relations are obtained for periodic grat-
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ings. Operators of these relations act in the space of am-
plitudes of the outgoing impulse waves. These operators
represent exactly all changes in the field during its free
propagation in regular plane-parallel Floquet channels.
The problem of large and distant sources is solved. Rela-
tions required for correct formulation and algorithmiza-
tion of the problems for gratings excited by their spatial
spectrum’s impulse harmonics are deduced.

The efficiency and correctness of the approach, and the

validity of the results, are attributed to the rigorous
mathematical methods used, and have been proved many
times [8,17,21-24,32,36-40].

In our companion paper in this issue we will use the re-

sults obtained here to solve a number of actual gratings
problems.

REFERENCES

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

L. B. Felsen, ed., Transient Electromagnetic Fields
(Springer-Verlag, 1976).

V. V. Borisov, Transient Fields in Waveguides (Leningrad
State Univ. Press, 1991) (in Russian).

E. K. Miller, “Time-domain modeling in electromagnetics,”
J. Electromagn. Waves Appl. 8, 1125-1172 (1994).

V. V. Borisov, Electromagnetic Fields of Transient Currents
(St. Petersburg Univ. Press, 1996) (in Russian).

S. He, S. Strom, and V. Weston, Time Domain Wave-
Splittings and Inverse Problems (Oxford Univ. Press, 1998).
S. M. Rao, Time Domain Electromagnetics (Academic,
1999).

A. Taflove and S. C. Hagness,
Electrodynamics: the  Finite-Difference
Method (Artech House, 2000).

Y. K. Sirenko, S. Strom, and N. P. Yashina, Modeling and
Analysis of Transient Processes in Open Resonant
Structures. New Methods and Techniques (Springer, 2007).
B. Engquist and A. Majda, “Absorbing boundary conditions
for the numerical simulation of waves,” Math. Comput. 31,
629-651 (1977).

G. Mur, “Absorbing boundary conditions for the finite
difference approximation of  the time-domain
electromagnetic-field equations,” IEEE Trans.
Electromagn. Compat. 23, 377-382 (1981).

P. A. Tirkas, C. A. Balanis, and R. A. Renaut, “Higher order
absorbing boundary conditions for FDTD-method,” IEEE
Trans. Antennas Propag. 40, 1215-1222 (1992).

J.-P. Berenger, “A perfectly matched layer for the
absorption of electromagnetic waves,” J. Comput. Phys.
114, 185-200 (1994).

J.-P. Berenger, “Three-dimensional perfectly matched layer
for absorption of electromagnetic waves,” J. Comput. Phys.
127, 363-379 (1996).

Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, “A
perfectly matched anisotropic absorber for use as an
absorbing boundary condition,” IEEE Trans. Antennas
Propag. 43, 1460-1463 (1995).

A. R. Maikov, A. G. Sveshnikov, and S. A. Yakunin,
“Difference scheme for the Maxwell transient equations in
waveguide systems,” J. Comput. Math. Math. Phys. 26,
851-863 (1986) (in Russian).

A. R. Maikov, A. D. Poezd, A. G. Sveshnikov, and S. A.
Yakunin, “Difference scheme of initial boundary-value
problems for Maxwell equations in unlimited domain,” J.
Comput. Math. Math. Phys. 29, 239-250 (1989) (in
Russian).

A. O. Perov, Y. K. Sirenko, and N. P. Yashina, “Explicit
conditions for virtual boundaries in initial boundary value
problems in the theory of wave scattering,” J. Electromagn.
Waves Appl. 13, 1343-1371 (1999).

Y. K. Sirenko, V. L. Pazynin, A. I. Vyazmitinova, and K. Y.

Computational
Time-Domain

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Vol. 27, No. 3/March 2010/J. Opt. Soc. Am. A 543

Sirenko, “Compact obstacles in free space: virtual
boundaries for scalar and vector “open” initial boundary-
value problems in electromagnetic wave scattering theory,”
Electromag. Waves Electron. Syst. 8, 33-54 (2003) (in
Russian).

K. Y. Sirenko and Y. K. Sirenko, “Exact “absorbing”
conditions in the initial boundary-value problems of the
theory of open waveguide resonators,” Comput. Math.
Math. Phys. 45, 490-506 (2005).

K. Y. Sirenko, “Transport operators in the axially-
symmetrical problems of the electrodynamics of pulsed
waves,” Electromag. Waves Electron. Syst. 11, 15-26 (2006)
(in Russian).

K. Y. Sirenko and V. L. Pazynin, “Axially-symmetrical
radiators of pulsed and monochromatic TM,,- and
TM,,-waves,” Success Modern Radioelectron. No.4, 52-69
(2006) (in Russian).

V. L. Pazynin and K. Y. Sirenko, “The strong approach to
analysis of transients in the axially symmetrical waveguide
units,” Telecomm. Radio Eng. 65, 1-18 (2006).

K. Y. Sirenko, “Slot resonances in axially symmetric
radiators of pulse-modulated and monochromatic
TM,,,-modes,” Telecomm. Radio Eng. 66, 9—21 (2007).

K. Y. Sirenko, “Splitting of super-broadband pulses by
simple inhomogeneities of circular and coaxial waveguide,”
Telecomm. Radio Eng. 67, 1425-1428 (2008).

0. A. Ladyzhenskaya, The Boundary Value Problems of
Mathematical Physics (Springer-Verlag, 1985).

V. S. Vladimirov, Equations of Mathematical Physics
(Dekker, 1971).

Y. K. Sirenko and N. P. Yashina, “Nonstationary model
problems for waveguide open resonator theory,”
Electromagnetics 19, 419-442 (1999).

Y. K. Sirenko and N. P. Yashina, “Time domain theory of
open waveguide resonators: canonical problems and a
generalized matrix technique,” Radio Sci. 38, VIC 26-
1-VIC 26-12 (2003).

M. Abramowitz and I. A. Stegun,
Mathematical Functions (Dover, 1972).
H. Bateman and A. Erdelyi, Tables of Integral Transforms,
Vol. 1 (McGraw-Hill, 1954).

B. R. Waynberg, Asymptotic Methods in the Equations of
Mathematical Physics (Moscow State Univ. Press, 1982) (in
Russian).

Y. K. Sirenko, Simulation and Analysis of Transient
Processes in Open Periodic, Waveguide, and Compact
Resonators (EDENA, 2003) (in Russian).

G. A. Korn and T. M. Korn, Mathematical Handbook for
Scientists and Engineers (McGraw-Hill, 1961).

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals,
Series, and Products (Academic, 1994).

V. P. Shestopalov and Y. K. Sirenko, Dynamic Theory of
Gratings (Naukova Dumka, 1989) (in Russian).

Y. K. Sirenko, L. G. Velychko, and F. Erden, “Time-domain
and frequency-domain methods combined in the study of
open resonance structures of complex geometry,” PIER 44,
57-79 (2004).

L. G. Velychko, Y. K. Sirenko, and O. S. Shafalyuk, “Time-
domain analysis of open resonators. Analytical grounds,”
PIER 61, 1-26 (2006).

I. K. Kuzmitchev, P. M. Melezhyk, V. L. Pazynin, K. Y.
Sirenko, Y. K. Sirenko, O. S. Shafalyuk, and L. G. Velychko,
“Model synthesis of energy compressors,” Radiophys.
Electron. 13, 166-172 (2008).

V. F. Kravchenko, V. L. Pazynin, K. Y. Sirenko, and Y. K.
Sirenko, “The plane problems of the electrodynamics of
pulsed waves for compact open resonators with the
waveguide feeder line. Gratings as pattern forming
structures,” Electromag. Waves Electron. Syst. 14, 34-20
(2009) (in Russian).

L. G. Velychko and Y. K. Sirenko, “Controlled changes in
spectra of open quasi-optical resonators,” PIER B 16,
85-105 (2009).

Handbook of



