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Frequency domain methods allow us to simulate and study efficiently only some of the periodic structures that
are widespread in optics and spectroscopy. Time domain approaches could be more effective, but their deploy-
ment is held back by a number of unsolved problems associated mainly with a proper truncation of the com-
putation space in the so-called open problems. This paper is devoted to analysis of these problems in the 2-D
case (infinite one-dimensionally periodic semitransparent and reflecting gratings in the field of pulsed E- and

H-polarized waves). © 2010 Optical Society of America
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. INTRODUCTION
tudy of transient electromagnetic waves [1–8] is a domi-
ating trend in theoretical radiophysics today, because
ommunications, electronics, and radiolocation are impos-
ible without profound insights into spatial–temporal and
patial–frequency field transformations in sophisticated
lectromagnetic structures. Also the potential of tradi-
ional frequency domain approaches is exhausted to a
arge extent. Additionally the time domain approaches

• are free from some frequency domain idealizations;
• are universal, because limitations imposed on geo-
etrical and constitutive parameters of considered ob-

ects are minimal;
• make it possible to construct explicit and straightfor-

ard computational routines (without inversion of any
perators) that are rather efficient (limited time and
emory resources required) and solve the problems
ithin a reasonable time;
• deliver results that are easy to translate into a stan-

ard set of frequency domain characteristics.

However in time domain approaches we still face prob-
ems for which complete and justified solution takes a lot
f analytic effort. For example there are problems of (a)
orrect and effective truncation of the computation space
n the so-called open problems in which the domain of
nalysis tends to infinity along one or several spatial di-
ections, (b) far-zone treatment, (c) large and distant
ources of the fields, etc. [7,8]. Problems of this kind are
onsidered in this paper.

Available heuristic and approximate solutions of prob-
ems associated with finite domain transition in the
nalysis of open time domain problems are mostly based
n the so-called absorbing boundary conditions (ABCs)
1084-7529/10/030532-12/$15.00 © 2
9–11] and the perfectly matched layers (PMLs) [12–14].
weak point of these solutions is the unpredictable be-

avior of computational errors when the observation time
s large. As a consequence, the obtained results are not
afe to rely on in the case of resonant wave scattering.

In this paper an alternative approach will be elabo-
ated. It will allow us to estimate evenly and minimize er-
ors caused by translation of open initial boundary prob-
ems into corresponding closed problems. It is based on
xact absorbing conditions (EACs), specifically on con-
tructing and embedding them into the standard finite-
ifference method. Incorporation of EACs into the initial
oundary problem turns it into the equivalent closed
roblem. The history of this approach dates back to 1986,
hen Maykov et al. first formulated [15] the exact nonlo-

al conditions for virtual boundaries across a regular
emi-infinite hollow waveguide. This approach is based on
he use of the radiation condition for spatial–time ampli-
udes of partial components (modes) of nonsinusoidal
aves emitted from effective sources and scatterers. Af-

erwards this approach was modified and adapted (refer,
.g., to [8,16–24]) for a great variety of problems in theo-
etical and applied radiophysics. Its validity and effi-
iency has been proved repeatedly by numerical experi-
ents and special tests.

. TWO-DIMENSIONAL INITIAL BOUNDARY
ALUE PROBLEMS
et us present the scalar problems for analysis of the
patial–time transformations of E- and H-polarized fields
n a near zone of a 1-D periodic grating (see Fig. 1 the
tructures are uniform along the x axis and periodic with
period l along the y axis) in the following form:
010 Optical Society of America
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�
Pε,�,��U� � �− ε�

�2

�t2 − ��
�

�t
+

�2

�y2 +
�2

�z2�U�g,t� = F�g,t�; g = 	y,z
 � Q, t � 0

U�g,0� = ��g�, � �

�t
U�g,t��

t=0

= ��g�; g � Q̄

�Etg�p,t��p=	x,y,z
�S = 0; t � 0

Etg�p,t� and Htg�p,t� are continuous at the surfaces Sε,�,�; t � 0
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ere, U=Ex, Ey=Ez=Hx�0 in the case of the E-polarized
eld and U=Hx, Hy=Hz=Ex�0 in the H case; E� �E� �g , t�
	Ex ,Ey ,Ez
 and H� �H� �g , t�= 	Hx ,Hy ,Hz
 are vectors of
lectrical and magnetic field strengths; �=�0�0, �0
�0�g��0 is the specific conductivity of a locally inhomo-

eneous medium; ε�ε�g��1 and ����g��1 are its rela-
ive permittivity and magnetic permeability; (�0�g�, ε�g�,
nd ��g� are piecewise constant functions); �0= ��0 /ε0�1/2

s the free-space impedance; ε0 and �0 are electric and
agnetic vacuum constants; p= 	x ,y ,z
 is a point in R3

pace; and x, y, and z are Cartesian coordinates. The S.I.
etric system is used for all physical parameters except

ime t, which is measured in meters—it is the product of
he natural time and the velocity of light in vacuum.

The surfaces S=Sx� ��x�	
� of perfectly conducting el-
ments in the geometry of the gratings and the surfaces
ε,�,� of discontinuities of material properties of the me-
ium are assumed to be sufficiently smooth. The domain
f analysis in the problems (1) coincides with a part of the
2 plane limited by the contours Sx :Q=R2\int Sx; int Sx

s the closure of int Sx domains that are occupied by ideal
onductors.

In the case of the classical statement of the problems
1) (all the equations are satisfied in each point of the rel-
vant domain), the solutions should have as many con-
inuous derivatives as are present in the equations, and

ig. 1. Geometry of model problems: (a) semi-transparent and
b) reflecting plane gratings. All structures are homogeneous
long the x axis.
hat implies strict limitations on the smoothness for all
he entries. The generalized statements and solutions are
ore suitable for a description of physical phenomena

hat are governed by differential equations, and they
ake analysis of the problem much simpler. It is known

25] that initial boundary value problems (1) can be for-
ulated in such a way (source functions ��g�, ��g� and
�g , t� for all t�0 are finite in Q̄, and so on) that they will
e unambiguously resolved in Sobolev’s space W2

1�QT�;
T=Q� �0;T�, �0;T�= 	t :0� t�T�

. Let us assume that

ll necessary conditions are fulfilled and consider the fol-
owing problem.

The analysis domain Q=R2\int Sx comprises all of the
pace R2. For such domain the problems (1) can be re-
olved efficiently only in two cases:

• The problem (1) degenerates into a conventional
auchy problem (int S=�, medium is homogeneous, and

he supports of functions F�g , t�, ��g�, and ��g� are
ounded). With some restriction on the source functions a
lassical and generalized solution of the Cauchy problem
oes exist, is unique, and is described by the well-known
oisson formula [26].
• Functions F�g , t�, ��g�, and ��g� have the same

isplacement symmetry as periodic structure. In this case
he domain of analysis can be reduced to Qnew

	g�Q :0�y� l
, completing problems (1) with periodic-
ty conditions [8] on lateral surfaces of the plane-parallel
loquet channel R= 	g�R2 :0�y� l
.

The domain of analysis can be reduced to Qnew in a
ore general case also. The objects of analysis in this case

re not quite physical (complex sources, waves, and
elds). However by simple mathematical transformations
ll the results can be presented in the usual, physically
orrect form. There are many reasons why the modeling
f physically realizable situations in the electromagnetic
heory of gratings should start with the analysis of initial
oundary value problems for the images fnew�g , t ,�� of the
unctions f�g , t� describing the true sources:

f�g,t� =�
−





f̃�z,t,��e2
i��y/l�d�

=�
−





fnew�g,t,��d� ↔ fnew�g,t,��

=
exp�2
i�y/l�

l �
−





f�ȳ,z,t�e−2
i��ȳ/l�dȳ. �2�

rom Eq. (2) it follows that
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fnew� �f

�y ��y + l,z,t,�� = e2
i�fnew� �f

�y ��y,z,t,��.
i

T
i
=
t
p

he use of the foregoing conditions restricts the analysis
omain to the domain Qnew, which is a part of Floquet
hannel R, and this allows us to rewrite the problems (1)

n the following form:
U�g,t� =�
−





Unew�g,t,��d�,

�
�− ε�

�2

�t2 − ��
�

�t
+

�2

�y2 +
�2

�z2�Unew�g,t� = Fnew�g,t�; g = 	y,z
 � Qnew, t � 0

Unew�g,0� = �new�g�, � �

�t
Unew�g,t��

t=0

= �new�g�; g � Qnew

�Etg
new�p,t��p=	x,y,z
�S = 0; t � 0

Etg
new�p,t� and Htg

new�p,t� are continuous at the surfaces Sε,�,�; t � 0

Unew� �Unew

�y ��l,z,t� = e2
i�Unew� �Unew

�y ��0,z,t�; t � 0


 . �3�
In Sections 3–6, we will obtain important results re-
uired for correct truncation of the computational domain
n the open 2-D initial boundary value problems (3). Such
esults are indispensable in construction of reliable and
ffective computational schemes, and allow us to study
ransformations of the field in resonant cases [8].

. TRANSFORMATION OF EVOLUTIONARY
ASIS OF A SIGNAL IN A REGULAR
LOQUET CHANNEL
et us consider (from this point on) problems (3) for semi-
ransparent infinite gratings (see Fig. 2) in the simplified
orm for which indices new are dropped. We assume also
hat the supports of source functions F�g , t�, ��g�, and
�g� belong to the set QL

¯ \L; QL= 	g�Q :−L2−h�z�L1
,
1�0 and L2�0. The regular parts A and B of the chan-
el R (the parts z�L1 and z�−L2−h of the domain �LQ
Q\ �QL�L�=A�B� are free from sources and scatter-
rs. Here, L=L1�L2 is an artificial boundary that sepa-
ates domain QL from domain LQ. It is denoted by dashed
ines in Fig. 2. The field formed by the grating propagates
nfinitely far along A and B.

Let us take, for the sake of definiteness, the upper
z�L1� regular part of the R channel. Here, ε�g�=��g�

1 and ��g�=��g�=��g�=F�g , t��0. Assuming that the
xcitation U�g , t� in domain QL has not yet reached
oundary L1 �z=L1� by the time t=0, we obtain via the
eparation of variables the following representation for
he solutions U�g , t� of problems (3):

U�g,t� = �
n=−





un�z,t��n�y�; z � L1, 0 	 y 	 l, t � 0.

�4�
he orthonormal system 	�n�y�
 of transversal, complete
n the space L2�0; l� functions of the form �n�y�
l−1/2 exp�i�ny�; �n= �n+��2
 / l, n=0, ±1, . . ., comes from

he nontrivial solutions of the homogeneous (spectral)
roblem

��
d2

dy2 + �n
2��n�y� = 0; 0 � y � l

�n�d�n

dy ��l� = e2
i��n�d�n

dy ��0�
 . �5�

Fig. 2. Geometry of model problems (3).
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he spatial–time amplitudes 	un�z , t�
 (evolutionary ba-
is) of the signal U�g , t� are obtained from the solutions of
he initial boundary value problems

��−
�2

�t2 +
�2

�z2 − �n
2�un�z,t� = 0; t � 0

un�z,0� = 0, � �

�t
un�z,t��

t=0

= 0 
 ;

z � L1, n = 0, ± 1, ± 2, . . . . �6�

he cosine Fourier transform of problems (6) with respect
o z̄=z−L on semi-axis z̄�0 �image↔original� , namely,
1

f

E
t
t
f
p
Q
Z
t

a
fi
t
f

a

f̃��� = Fc�f���� ��2



�

0




f�z̄�cos��z̄�dz̄↔

↔f�z̄� = Fc
−1�f̃��z̄� ��2



�

0




f̃���cos��z̄�d�, �7�

esults in the following Cauchy problems for images
n�� , t�:
�D���n
2 + �2��ũn��,t�� � � �2

�t2 + ��n
2 + �2��ũn��,t� = −�2



ūn��0,t�; � � 0, t � 0

ũn��,0� = 0, � �

�t
ũn��,t��

t=0

= 0; � � 0 
 . �8�
ere, ũn�� , t�↔ ūn�z̄ , t�=un�z , t�, and ūn��0, t�
��ūn�z̄ , t� /�z̄�z̄=0. It has also been considered that

− �2f̃��� −�2



�� d

dz̄
f�z̄���

z̄=0

↔
d2

dz̄2
f�z̄�,

nd that the wave U�g , t� in the region A does not contain
omponents propagating in the sense of decreasing z. The
omponents emitted toward z=
 are equal to zero for suf-
ciently large z at any finite instant of time t=T.
Extending functions ũn�� , t� with zero on semi-axis

�0, let us pass to the generalized statement of the
auchy problems (8) [26]:

D���n
2 + �2��ũn��,t��

� � �2

�t2 + ��n
2 + �2��ũn��,t�

= −�2



ūn��0,t� + ��1��t�ũn��,0� + ��t�� �

�t
ũn��,t��

t=0

= −�2



ūn��0,t�; � � 0, − 
 � t � 
. �9�

ere, �� . . . � is the Dirac delta function and ��m�� . . . � is its
eneralized mth derivative. The convolution of the funda-
ental solution G�� , t�=��t��−1 sin �t of the operator D���

see [8]) with the right-hand side of Eq. (9) gives the fol-
owing representation of ũn�� , t�:

ũn��,t� = −�2



�

0

t

sin��t − ����n
2 + �2�

ūn��0,��

��n
2 + �2

d�;

� � 0, t � 0. �10�

pplying inverse Fourier transform (7) to Eq. (10), we ob-
ain
ūn�z̄,t� = −�
0

J0��n��t − ��2 − z̄2�1/2����t − ��

− z̄�ūn��0,��d�; z̄ � 0, t � 0, �11�

rom which it follows that

un�z,t� = −�
0

J0��n��t − ��2 − �z − L1�2�1/2����t − ��

− �z − L1��un��L1,��d�;

z � L1, t � 0. �12�

xpressions (12) display the general property of the solu-
ions U�g , t� of problems (3) in the subdomain LQ, namely,
he solutions satisfying zero initial conditions and being
ree of the components (modes) propagating toward com-
act inhomogeneity of the channel R (toward the domain
L). These expressions define diagonal transport operator
L1→z�t� (see [8,17,20,27,28]), which operates according to

he rule

u�z,t� = 	un�z,t�
 = ZL1→z�t��u��L1,���; u��b,��

= 	un��b,��
, z � L1, t � � � 0;

nd enables us to trace changes of the transient wave
eld during its free propagation along a finite regular sec-
ion of the R channel. Here, Jm� . . . � is a Bessel cylindrical
unction, �� . . . � is the Heaviside step function,

un��b,t� = � �un�z,t�

�z �
z=b

= ��
0

l �U�g,t�

�z �
z=b

�n
*�y�dy,

�13�

nd asterisk * stands for complex conjugation.
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. NONLOCAL ABSORBING CONDITIONS
et us consider the case when the observation point in ex-
ressions (12) lies on the artificial boundary L1 �z=L1�.
hen

un�L1,t� = −�
0

J0��n�t − �����t − ��un��L1,��d�; t � 0.

�14�

ifferentiation of Eq.(14) with respect to t gives

�� �

�t
+

�

�z�un�z,t��
z=L1

= �n�
0

J1��n�t − �����t − ��un��L1,��d�; t � 0

�15�

n account of the familiar relationships dJ0�x� /dx=
J1�x�, J0�0�=1, and ��1��t−��=��t−��, where ��1�� . . . � is
he generalized derivative of �� . . . �.

Next, the application of the Laplace transform regard-
ng t (image ↔ original),

f̃�s� = L�f��s� � �
0




f�t�e−stdt ↔ f�t� = L−1�f̃��t�

�
1

2
i�
�−i


�+i


f̃�s�estds, �16�

n view of the familiar formulas f̃1�s�f̃2�s�↔�0
t f1�t

��f2���d� (the convolution theorem), �2��s2+�2��s2+�2

s��−1↔�J1��t� [29], and sf̃�s�− f�0�↔df�t� /dt gives [in
he space of images ũn�z ,s�]

�� �

�z
+ s�ũn�z,s��

z=L1

=
�n

2ũn��L1,s�

�s2 + �n
2��s2 + �n

2 + s�
, �17�

nd finally

ũn��L1,s� = − �s +
�n

2

s + �s2 + �n
2�ũn�L1,s�. �18�

he inverse Laplace transform of Eq.(18), in view of �s
�s2+�2�−1↔ ��t�−1J1��t� [30], allows us to return to the
riginal functions un�z , t�

�� �

�t
+

�

�z�un�z,t��
z=L1

= − �n�
0

J1��n�t − ����t − ��−1��t − ��un�L1,��d�;

t � 0. �19�

he translation of Eq.(15) into Eq.(19) [the truth of trans-
ormations (16)] rests on the assertion [31] that at some
oints g of any bounded subdomain inside a Q domain,
he field U�g , t� from a set of compact support sources can-
ot grow faster than exp��t� as t→
, where ��0 is a con-
tant. The assertion is true for any electromagnetic struc-
ure whose spectrum �k does not contain points k̄ of the
pper half-plane of the first (physical) sheet of the surface
iving the natural variation range of the complex fre-
uency parameter k. This holds for all the gratings under
onsideration (see, for example, [8]).

In terms of Eqs. (4) and (13), expressions (14), (15), and
19) become

U�y,L1,t� = − �
n=−



 ��
0

t

J0��n�t − ���

����
0

l �U�ỹ,z,��

�z �
z=L1

�n
*�ỹ�dỹ�d���n�y�

= V1�y,t�; 0 	 y 	 l, t � 0, �20�

�� �

�t
+

�

�z�U�y,z,t��
z=L1

= �
n=−



 ��
0

t

J1��n�t − ���

����
0

l �U�ỹ,z,��

�z �
z=L1

�n
*�ỹ�dỹ�d���n�n�y�

= V2�y,t�; 0 	 y 	 l, t � 0, �21�

�� �

�t
+

�

�z�U�y,z,t��
z=L1

= − �
n=−



 ��
0

t

J1��n�t − ����t − ��−1

���
0

l

U�ỹ,L1,���n
*�ỹ�dỹ�d���n�n�y� = V3�y,t�;

0 	 y 	 l, t � 0. �22�

et us consider the possibility of Eqs. (20)–(22) being
oundary conditions for restriction of the analysis domain

of open problems (3). Using the results from
8,15,25,26] we can prove the following statement.

Statement 1. Problems (3), and problems (3) supple-
ented with any one of conditions (20)–(22), are equiva-

ent. The requirements that ensure their unique solvability
correctness classes) are identical.

Formulas (20)–(22) are exact. Hence their addition to
he original problems does not actually increase the com-
utation error or distort the process of simulation.
Relations (14), (15), and (19)–(22) constitute the exact

adiation conditions for the outgoing transient waves
ormed by the grating. Formulas (14), (15), and (19) de-
cribe behavior of spatial–temporal amplitudes of all par-
ial components (modes) of the waves guided by the regu-
ar channel R in direction z→
. Behavior of these wave
elds as a whole is governed by formulas (20)–(22). There-
ore the open problems (3) are equivalent to the problems
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3) whose analysis domain QL is finite, with any condition
f (20)–(22) met on the virtual boundaries L1 and L2. By
he same reasoning, conditions (20)–(22) can be regarded
s exact absorbing conditions: the wave field U�g , t� nei-
her undergoes deformation across L1 boundary nor re-
ects back into the QL domain, the wave U�g , t� fully
ransmitting to the upper �z�L1� regular part of the R
hannel as if it were absorbed by the domain A or its
oundary L1.
At V2�y , t�=V3�y , t�=0, the nonlocal conditions (21) and

22) coincide with the simplest local classical ABC of the
rst-order approximation [9,10]. This means that func-
ions V2�y , t� and V3�y , t� determine the ABC’s closing er-
or, or the difference between the exact values of the func-
ion ��� /�t+� /�z�U�y ,z , t��z=L1

and the corresponding
esults given in the computational schemes using this ap-
roximate absorbing condition. The availability of the
losing error allows us to estimate the accuracy of the cor-
esponding computational scheme as a whole.

. LOCAL ABSORBING CONDITIONS
inite-difference algorithms employing the nonlocal (both

n space and time variables) absorbing conditions
20)–(22) call for substantial memory resources as the
j�y , t� function databases grow progressively with time.
hey are all stored to make the next step, proceeding
hrough time layers [32]. The problem can be solved in
he following manner. We will turn to the local conditions
y applying the following scheme which is easy to realize.
n view of the representation [33]

J0�x� =
2



�

0


/2

cos�x sin ��d�,

ewrite relations (14) as

un�L1,t� = −
2



�

0


/2��
0

cos��n�t − ��

�sin ����t − ��un��L1,��d��d�; t � 0.

�23�
ntroduce [
wn�t,�� = −�
0

sin��n�t − ��sin ����t − ��un��L1,��

�n sin �
d�;

t � 0, 0 	 � 	 
/2. �24�

hen

�wn�t,��

�t
= −�

0

cos��n�t − ��sin ����t − ��un��L1,��d�,

nd from relations (23) we have

un�L1,t� =
2



�

0


/2 �wn�t,��

�t
d�; t � 0. �25�

he integral form (24) is equivalent to the differential for-
ulation

��
�2

�t2 + �n
2 sin2 ��wn�t,�� = − un��L1,t�; t � 0

wn�0,�� = � �wn�t,��

�t �
t=0

= 0 
 .

�26�

ndeed, passing from formulation (26) to the generalized
auchy problem and using the fundamental solution
�� , t�=��t��−1 sin �t of the operator D�����d2 /dt2+�2�

see [8]), one easily learns that relations (24) and (26) de-
ne the same functions wn�t ,��.
Now multiply relations (25) and (26) by �n�y� and sum

ver n=0, ±1, ±2, . . .. On account of

�
n=−





�n
2wn�t,���n�y� = −

�2W�y,t,��

�y2

or

W�y,t,�� = �
n=−





wn�t,���n�y�
see problem (5)], we obtain
U�y,L1,t� =
2



�

0


/2 �W�y,t,��

�t
d�; t � 0, 0 	 y 	 l,

�
� �2

�t2 − sin2 �
�2

�y2�W�y,t,�� = − � �U�y,z,t�

�z �
z=L1

; 0 � y � l, t � 0

W�y,0,�� = � �W�y,t,��

�t �
t=0

= 0; 0 	 y 	 l

W� �W

�y ��l,t,�� = ei2
�W� �W

�y ��0,t,��; t � 0

 . �27�
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his local (both in space and time variable) exact absorb-
ng condition (EAC) enables us to truncate efficiently the
omputation domain when solving problems (3) numeri-
ally. From here on, W�y , t ,�� is an auxiliary function

oming from the solution of the separate initial boundary f

U
t
A
d
fi
t

a

o

alue problem, which is the inner problem with respect to
he corresponding condition, and 0	�	
 /2 is a numeri-
al parameter.

A similar treatment for relations (15) and (19) gives the

ollowing local EACs, different from relations (27):
�� �

�t
+

�

�z�U�y,z,t��
z=L1

=
2



�

0


/2

W�y,t,��cos2 �d�; t � 0, 0 	 y 	 l,

�
� �2

�t2 − cos2 �
�2

�y2�W�y,t,�� = −
�2

�y2�� �

�z
U�y,z,t��

z=L1

�; 0 � y � l, t � 0

W�y,0,�� = � �W�y,t,��

�t �
t=0

= 0; 0 	 y 	 l

W� �W

�y ��l,t,�� = ei2
�W� �W

�y ��0,t,��; t � 0

 , �28�

�� �

�t
+

�

�z�U�y,z,t��
z=L1

=
2



�

0


/2 �W�y,t,��

�t
sin2 �d�; t � 0, 0 	 y 	 l,

�
� �2

�t2 − cos2 �
�2

�y2�W�y,t,�� =
�2U�y,L1,t�

�y2 ; 0 � y � l, t � 0

W�y,0,�� = � �W�y,t,��

�t �
t=0

= 0; 0 	 y 	 l

W� �W

�y ��l,t,�� = ei2
�W� �W

�y ��0,t,��; t � 0

 . �29�
xpression (28) was obtained by virtue of the formula [34]

J1�x� =
2



�

0


/2

sin�x cos ��cos �d�

ith the substitutions

wn�t,�� = �n�
0

sin��n�t − ��cos ����t − ��un��L1,��

cos �
d�;

t � 0, 0 	 � 	 
/2.

he derivation of expression (29) was through the Poisson
ntegral [33]

J1�x� =
2x



�

0


/2

cos�x cos ��sin2 �d�

nd
wn�t,�� = − �n�
0

sin��n�t − ��cos ����t − ��un�L1,��

cos �
d�;

t � 0, 0 	 � 	 
/2.

nder the assumption W�y , t ,���0 (which cannot be jus-
ified), expressions (28) and (29) reduce to the classical
BC of the first-order approximation. Using the trapezoi-
al rule, the integral in expression (28) is replaced by a
nite sum and we end up with an approximate condition
hat agrees well with [11].

By invoking formulas [34]

J0�x� =
1

2

�

−





exp�ix sin ��d�

nd

J1�x� =
1



�

0




sin�x sin ��sin �d�,

ne also arrives at the following local EACs:
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U�y,L1,t� = −
1

2

�

−





W�y,t,��d�; 0 	 y 	 l, t � 0,

�
� �

�t
− sin �

�

�y�W�y,t,�� = � �

�z
U�y,z,t��

z=L1

; 0 � y � l, t � 0

W�y,0,�� = � �W�y,t,��

�t �
t=0

= 0; 0 	 y 	 l

W� �W

�y ��l,t,�� = ei2
�W� �W

�y ��0,t,��; t � 0

 , �30�

�� �

�t
+

�

�z�U�g,t��
z=L1

=
1



�

0




W�y,t,��d�; 0 	 y 	 l, t � 0,

�
� �2

�t2 − sin2 �
�2

�y2�W�y,t,�� = − sin2 �
�2

�y2�� �U�g,t�

�z �
z=L1

�; 0 � y � l, t � 0

W�y,0,�� = � �W�y,t,��

�t �
t=0

= 0; 0 	 y 	 l

W� �W

�y ��l,t,�� = ei2
�W� �W

�y ��0,t,��; t � 0

 . �31�

onditions (30) and (31) are concerned with relations (14), (15), (20), and (21) in the same way as relations (27) and (28).
ere, we have made the substitutions

wn�t,�� =�
0

t

exp�i�n�t − ��sin ��un��L1,��d�; ��� 	 
, �32�

wn�t,�� = �n sin ��
0

t

sin��n�t − ��sin ��un��L1,��d�; 0 	 � 	 
,

o deduce conditions (30) and (31), respectively. Note the new technical detail—the differential form �� /�t
i�n sin ��wn�t ,��=un��L1 ,�� [from which follows the equation with respect to W�y , t ,�� in the inner initial boundary
alue problem in condition (30)] that is equivalent to the integral form (32) has been constructed with the help of the
undamental solution G�� , t�=��t�exp�−�t� of the operator �d /dt+�� (see [8]).

We return now to the representation (4) for the lower regular part z�−L2−h of the R channel as well as for its upper
art and construct the following initial boundary value problems similar to problems (6)

��−
�2

�t2 +
�2

�z2 − �n
2�un�z,t� = 0, t � 0

un�z,0� = 0, � �

�t
un�z,t��

t=0

= 0 
 ; z 	 − L2 − h, n = 0, ± 1, ± 2, . . . �33�

or the evolutionary basis elements un�z , t� of the signal U�g , t�, g�B. Problems (6) generate three types of nonlocal EACs
formulas (20)–(22)] and five types of local EACs [formulas (27)–(31) ]. A comparison between problems (6) and problems
33) shows how all these EAC formulas can be rewritten in terms of boundary L2. In what follows, conditions (21) and (28)
ill be used. Taking into account the change both in the direction of free propagation of pulsed waves (toward z→−


nstead of z→+
) and in the position of the artificial boundary L2 (z=−L2−h instead of z=L1), we have

�� �

�t
−

�

�z�U�y,z,t��
z=−L2−h

= − �
n ��0

t

J1��n�t − ������
0

l �U�ỹ,z,��

�z �
z=−L2−h

�n
*�ỹ�dỹ�d���n�n�y�;

0 	 y 	 l, t � 0 �34�
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�� �

�t
−

�

�z�U�y,z,t��
z=−L2−h

=
2



�

0


/2

W�y,t,��cos2 �d�; t � 0, 0 	 y 	 l,

�
� �2

�t2 − cos2 �
�2

�y2�W�y,t,�� =
�2

�y2�� �

�z
U�y,z,t��

z=−L2−h
�; 0 � y � l, t � 0

W�y,0,�� = � �W�y,t,��

�t �
t=0

= 0; 0 	 y 	 l

W� �W

�y ��l,t,�� = ei2
�W� �W

�y ��0,t,��; t � 0

 . �35�
0
v
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s
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ow we can formulate the main result of this section.
Statement 2. Open problems (3) with analysis domain
are equivalent to closed problems (3) with analysis do-

ain QL and with any one of nonlocal or local EACs
20)–(22), (27)–(31), (34), and (35) on its outer boundary
=L1�L2. For auxiliary functions W�y ,z ,��, the inner

nitial boundary value problems in (27)–(31) and (35) are
ell posed.

. PROBLEMS OF LARGE AND DISTANT
IELD SOURCES

n formulating earlier the initial boundary value problem
nd specifying Q and QL domains, we assumed that the
unctions describing the sources that excite the gratings
re finitary in the closure of the complete analysis domain
, and their supports belong to Q \L for all the time
L
	 t	T. The advantage is the following: conditions on
irtual boundaries L can be formulated in terms of the to-
al field U�g , t�. The limitations introduced by these as-
umptions can be partially or completely removed by en-
losing a certain part of the current �F�g , t�� and/or the
omentary sources (��g� and ��g�) in the LQ domain. The

nly concern is the following: one should exclude the in-
oming primary wave Ui�g , t� generated by this source
rom the field U�g , t� on L. To this end, the scattered (sec-
ndary) field Us�g , t�=U�g , t�−Ui�g , t� is introduced. The
nal equations for the modified problem can be formu-

ated either in terms of the total field U�g , t� or in terms of
he secondary field Us�g , t�. The first alternative is pre-
erred, as the formally true separation of the field U�g , t�
nto Us�g , t� and Ui�g , t� can be physically invalid in par-
ial subdomains of the domain Q.

The problems (36) stated as
�
�− ε�

�2

�t2 − ��
�

�t
+

�2

�y2 +
�2

�z2�U�g,t� = F�g,t� + F̃�g,t�; g = 	y,z
 � Q, t � 0

U�g,0� = ��g� + �̃�g�, � �

�t
U�g,t��

t=0

= ��g� + �̃�g�; g � Q̄

�Etg�p,t��p=	x,y,z
�S = 0; t � 0

Etg�p,t� and Htg�p,t� are continuous at the surfaces Sε,�,�; t � 0

U� �U

�y ��l,z,t� = e2
i�U� �U

�y ��0,z,t�; t � 0


 �36�

iffer from problems (3) by the existence of the functions F̃�g , t�, �̃�g�, and �̃�g� that are finitary in the domain Q. It is
ssumed that the supports of these functions and the corresponding sources belong to the domain A= 	g�Q :z�L1
 (see
ig. 2). As before, domain B= 	g�Q :z�−L2−h
 carries no sources or efficient scatterers.
In A the total field can be written as U�g , t�=Ui�g , t�+Us�g , t�, where Ui�g , t� is the field in the channel R from the

ources F̃�g , t�, �̃�g�, and �̃�g�:
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�
�−

�2

�t2 +
�2

�y2 +
�2

�z2�Ui�g,t� = F̃�g,t�; g � R, t � 0

Ui�g,0� = �̃�g�, � �

�t
Ui�g,t��

t=0

= �̃�g�; g � R̄

Ui� �Ui

�y ��l,z,t� = e2
i�Ui� �Ui

�y ��0,z,t�; t � 0

 . �37�

n order to find Us�g , t� in A and U�g , t� in B, we may consider now the following homogeneous initial boundary value
roblems:

�
�−

�2

�t2 +
�2

�y2 +
�2

�z2��Us�g,t�

U�g,t� � = 0; g � �A

B�, t � 0

�Us�g,0�

U�g,0� � = 0, � �

�t�Us�g,t�

U�g,t� ��
t=0

= 0; g ��Ā

B̄
�

�Us

U���Us

U�� �y��l,z,t� = e2
i��Us

U���Us

U�� �y��0,z,t�; �z � L1

z � − L2 − h�, t � 0

 . �38�

t is assumed that the perturbation caused by the sources concentrated in QL have not reached boundaries L1 and L2 of
omains A and B at time t=0. The solutions of problems (38) are function U�g , t� in B and function Us�g , t� in A. They
etermine the outgoing waves traveling in the z→−
 and z→+
 directions, respectively. Therefore we will prove that (see
ections 4 and 5)

U�y,L1,t� − Ui�y,L1,t� = − �
n=−



 ��
0

t

J0��n�t − ������
0

l ��U�ỹ,z,�� − Ui�ỹ,z,���

�z �
z=L1

�n
*�ỹ�dỹ�d���n�y�;

0 	 y 	 l, t � 0, �39�

U�y,− L2 − h,t� = �
n=−



 ��
0

t

J0��n�t − ������
0

l �U�ỹ,z,��

�z �
z=−L2−h

�n
*�ỹ�dỹ�d���n�y�;

0 	 y 	 l, t � 0, �40�

nd

U�y,L1,t� − Ui�y,L1,t� =
2



�

0


/2 �W�y,t,��

�t
d�; t � 0, 0 	 y 	 l,

�
� �2

�t2 − sin2 �
�2

�y2�W�y,t,�� = − � ��U�y,z,t� − Ui�y,z,t��

�z �
z=L1

; 0 � y � l, t � 0

W�y,0,�� = � �W�y,t,��

�t �
t=0

= 0; 0 	 y 	 l

W� �W

�y ��l,t,�� = ei2
�W� �W

�y ��0,t,��; t � 0

 , �41�

U�y,− L2 − h,t� =
2



�

0


/2 �W�y,t,��

�t
d�; t � 0, 0 	 y 	 l,
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�
� �2

�t2 − sin2 �
�2

�y2�W�y,t,�� = � �U�y,z,t�

�z �
z=−L2−h

; 0 � y � l, t � 0

W�y,0,�� = � �W�y,t,��

�t �
t=0

= 0; 0 	 y 	 l

W� �W

�y ��l,t,�� = ei2
�W� �W

�y ��0,t,��; t � 0

 . �42�

s before, W�y , t ,�� are certain auxiliary functions here.
The couples (39) and (41) are exact (nonlocal and local) absorbing conditions on the boundary L1 in region A with cross

ection at z=L1. The couples (40) and (42) represent the same conditions for the boundary L2 in region B with cross
ection at z=−L2−h. They are direct analogues of conditions (20) and (27) constructed in Sections 4 and 5. It is evident
hat other nonlocal and local conditions from these sections may be adjusted for the situation considered here.

In QL function U�g , t� is governed by the equations

�
�− ε�

�2

�t2 − ��
�

�t
+

�2

�y2 +
�2

�z2�U�g,t� = F�g,t�; g � QL, t � 0

U�g,0� = ��g�, � �

�t
U�g,t��

t=0

= ��g�; g � QL

�Etg�p,t��p=	x,y,z
�S = 0; t � 0

Etg�p,t� and Htg�p,t� are continuous at the surfaces Sε,�,�; t � 0

U� �U

�y ��l,z,t� = e2
i�U� �U

�y ��0,z,t�; t � 0


 . �43�
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Statement 3. Problems (36) and problems (43) with con-
itions (39) and (40) or (41) and (42) in the domain QL
ave the same solutions U�g , t� for an arbitrary observa-
ion time t� �0;T�. In the modified problems, functions

i�g , t�, which are involved in the EACs of (39) and (41)
ype for the virtual boundary L1, act as real sources out-
ide the bounded analysis domain QL.

EACs of (39) and (41) type allow us to truncate the cal-
ulation space QL to a reasonable size when dealing with
he problem of the type of (36) with large and/or distant
ources of transient waves Ui�g , t�. These sources—F̃�g , t�,
�g�, and �̃�g�—are merely enclosed in the LQ domain.
heir contribution to the total field U�g , t� is considered
ia the boundary values of the functions Ui�g , t�,
� �0;T� and their normal derivatives on the L bound-
ries. All information relevant for the realization of the
cheme is provided by the solution of problem (37), which
s quite simple computationwise. Also the problem is ex-
licitly solved using the mirror image technique. The
oisson formula governing a given source field in a free
-D space (in space R2) readily admits the boundary wall
ondition of the Floquet channel R [26,35].

Where and how the primary Ui�g , t� wave is excited is
sually not a problem for standard scattering analysis of

nfinite periodic gratings. Nor does it need Ui�g , t� values
t all observation time t� �0;T� and at all points g from
. A proper numerical experiment needs only �Ui�g , t��g�L1
nd ���Ui�g , t� /�z��g�L1

values for all times t� �0;T�. But
hese values must be in agreement with the boundary val-
es of some function Ui�g , t� that governs in domain A a
ransient electromagnetic wave running on the virtual
oundary L1 (principle of causality). On the L1 boundary
eparating domains QL and A this requirement complies
ith the functions

Up
i �y,L1,t� = vp�L1,t��p�y�, ���Up

i �y,z,t�/�z��z=L1

= vp��L1,t��p�y�,

0 	 y 	 l, p = 0, ± 1, ± 2, . . . , �44�

hose amplitudes vp�L1 , t� and vp��L1 , t� are related as

vp�L1,t� =�
0

J0��p�t − �����t − ��vp��L1,��d�; t � 0.

�45�

t is evident that relations (44) and (45) give boundary
alues of the function Up

i �g , t�=vp�z , t��p�y� describing a
ransient wave running on the boundary L1 from region
. This is so because relation (45) comes from relation

12), taking into account changes in the direction of
ropagation of the wave.

. CONCLUSION
his paper offers novel exact absorbing conditions that al-

ow one to truncate efficiently the computation domain of
nite-difference algorithms [7] applied for open initial
oundary-value problems in the theory of gratings. An
nalytical approach to the problem of equivalent replace-
ent of open problems with closed ones is developed.
ear-to-far field relations are obtained for periodic grat-
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ngs. Operators of these relations act in the space of am-
litudes of the outgoing impulse waves. These operators
epresent exactly all changes in the field during its free
ropagation in regular plane-parallel Floquet channels.
he problem of large and distant sources is solved. Rela-
ions required for correct formulation and algorithmiza-
ion of the problems for gratings excited by their spatial
pectrum’s impulse harmonics are deduced.

The efficiency and correctness of the approach, and the
alidity of the results, are attributed to the rigorous
athematical methods used, and have been proved many

imes [8,17,21–24,32,36–40].
In our companion paper in this issue we will use the re-

ults obtained here to solve a number of actual gratings
roblems.
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