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Abstract—A model of the ring waveguide of a fixed cross-section
and variable distribution of the surface impedance of waveguide’s wall
has been considered. For a class of circular hodographs of surface
impedance the analytical solution of the corresponding boundary-value
problem has been obtained. This solution has been used for simulating
a ‘cycle slipping’ phenomenon, known from the observations of VLF
signals propagating over long paths in the earth-ionosphere waveguide,
with the goal of clarifying the cause for its initiation. Numerical
experiments have shown that this phenomenon, in the context of the
model in question, is a consequence of the interconversion of two
dominant waveguide modes in circumstances where their propagation
constants are close.

1. INTRODUCTION

Electromagnetic VLF propagation in the earth-ionosphere waveguide
has been studied intensively in the last four decades [1–4]. In
particular, the analysis of peculiarities of the wave processes in this
range is of importance in developing global navigation systems. One
feature of this kind has been revealed in experimental observations of
diurnal variations of VLF signals over long paths [5] what is known as
‘cycle slipping’ (CS) lying in the fact that the initial and final phase
values differ by ±2πm (as a rule, m = 1) in diurnal phase records.
The CS phenomenon corresponds to an extremely deep fading of the
received signal. This phenomenon can be explained in a qualitative
sense starting from the assumption [6] that not only the principal
(first) mode arrives at the observation point but also do the second
mode and the higher-order modes resulting from the transformation of
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the principal mode on a waveguide discontinuity at the intersection of
the path and the terminator (i.e., the sunrise or sunset line).

With the aim of numerical simulation of the above-mentioned
phenomenon, different modifications of irregular waveguides have been
investigated. In particular, in papers [7, 8], the first-into-second-mode
conversion coefficient has been calculated by the method of partial
domains for a number of two-dimensional impedance waveguides.
In the approximation taking no account of the reflection from a
discontinuity, its magnitude did not exceed 0.5 even for an abrupt
stepwise change of the waveguide height. For the same purpose, the
method of cross-sections [9] developed for wave guiding structures with
slowly varying parameters over a wavelength has been used in [10]. A
two-dimensional model represented a coaxial waveguide with varying in
azimuth cross-section and surface impedance Z of one wall. The above-
mentioned conversion coefficient reached 1.2, what, as the authors
noted, was also too small to explain the CS phenomenon occurring
mostly away from the terminator. The approach developed in [8] has
been extended in a number of papers to a case of the waveguide whose
upper wall is a flat-layered anisotropic medium [11].

The results of all these investigations cast doubt on the statement
that the CS phenomenon can be explained purely by the diffraction
effect of the conversion of the principal mode into the higher-order
modes during its scattering on the section of variable cross-section
of a waveguide. In regular waveguides whose walls are of finite
conductivity being constant along the structure, the more efficient
mode-interconversion mechanism takes place. It is well known [12]
that there exist values of normalized surface impedance of walls ηdeg

i, i+1

such that the propagation constants νi and νi+1 of two adjacent (i and
i + 1) waveguide modes coincide. Here η = Z/Z0, where Z0 =

√
μ0/ε0

is the wave resistance of vacuum. In this case the modes together with
the associated impedance value are said to be degenerate. The mode-
interconversion effect occurs in the neighborhood of the degeneracy
regime [13]. For example, by varying a complex value of the impedance
η of the wall of a regular waveguide such that it describe a closed curve
around the degenerate value ηdeg

i, i+1, we get a complete interconversion
of i and i + 1 modes. In particular, the degeneracy of two VLF modes
in the natural waveguide has been discussed in [14].

The aim of the present paper is to clear up the role of the waveguide
mode interconversion effect taking place in the neighborhood of the
degeneracy regime in the occurrence of CS. In the first part of the work
we present a model of the irregular waveguide of a fixed cross-section
with varying in azimuth impedance, what is a simplified version of the
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model given in [10]. This model allows us to exclude from consideration
a diffraction effect of electromagnetic wave transformation on spatial
inhomogeneities of walls and to obtain the analytical solution of the
associated boundary-value problem for some class of surface impedance
distributions. In the second part, with the help of the well-known
Watson method, the solution is transformed into a series rapidly
converging for large wave sizes of the model. In the third part we
present the results of the numerical experiment.

2. STATEMENT AND SOLUTION OF THE PROBLEM

In the cylindrical coordinates ρ, ϕ, z, consider a azimuthal waveguide
formed by a perfectly conducting wall ρ = a and a wall ρ =
b with a variable surface impedance (see Fig. 1), in which a
filament of a magnetic linear current with the time-dependence
e−iωt at �ρ0 = {ρ0, ϕ0} generates a TM-polarized field �E =
iωμ0{∂U/ρ∂ϕ,−∂U/∂ρ, 0}, �H = k2{0, 0, U}. The Hertz potential U
is the solution of the equation(

1
ρ

∂

∂ρ
ρ

∂

∂ρ
+

1
ρ2

+ k2U(�ρ, �ρ0)
)

= − iI(m)

ωρ
δ(ρ−ρ0)δ(ϕ−ϕ0),

(a<ρ, ρ0 <b, −π≤ϕ, ϕ0≤π) (1)

with the boundary conditions

a)
∂U

∂ρ
= 0 for ρ = a; b)

∂U

∂ρ
− ikη(ϕ)U = 0 for ρ = b, (2)

Figure 1. Azimuthal waveguide geometry.
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where k = ω/c is the wave number and I(m) is the linear magnetic
current density. Let a normalized surface impedance of the wall ρ = b
is given in the form

η(ϕ) = η0
eiϕ + η1

eiϕ + η2
, (3)

with arbitrary complex parameters ηj (j = 0, 1, 2). The values of the
function η(ϕ) form in the plane of the complex variable η a circle (a
hodograph curve) of radius rimp = |η0(η1 − η2)/(1− |η2|2)| centered at
the point ηimp = η0(1 − η1η̄2)/(1 − |η2|2). To find the function U , use
the Green’s theorem

U(�ρ, �ρ0)

= U0(�ρ, �ρ0)+
∫

S

(
U(�ρ1, �ρ0)

∂

∂N
G(�ρ1, �ρ )−G(�ρ1, �ρ )

∂

∂N
U(�ρ1, �ρ )

)
ds1,(4)

where N is the outer normal to the boundary S of the ring domain
(a < ρ1 < b,−π < ϕ1 < π). By choosing as

G(�ρ1, �ρ ) = − i

8

∞∑
n=−∞

ein(ϕ1−ϕ)H(10)
n (ka, kρ<)

H
(1)
n (kρ>)

H
(1)′
n (ka)

, (5)

the Green function of the space containing the perfectly conducting
cylinder of radius a [15], and as the function

U0(�ρ, �ρ0) = − iI(m)

k
G(�ρ0, �ρ ), (6)

the Hertz potential of the field generated by a linear magnetic current
in the presence of the conducting cylinder ρ = a, we satisfy conditions
(1) and a) in (2). In (5), the following notation is used:

H(j1j2)
n (x1, x2)=

∂j1

∂xj1
1

∂j2

∂xj2
2

(
H(1)

n (x1)H(2)
n (x2)−H(2)

n (x1)H(1)
n (x2)

)
,

(7)
j1, j2 = 0, 1; H

(j)
n (x) stands for the Hankel functions, H

(1)′
n (x) =

d
dxH

(1)
n (x), ρ< = min(ρ, ρ1), ρ> = max(ρ, ρ1). Let us denote the direct

and inverse Fourier transform operator as

Wϕ[an] = A(ϕ) =
∞∑

n=−∞
aneinϕ,

W−1
n [A(ϕ)] = an =

1
2π

∫ π

−π
A(ϕ)e−inϕdϕ.
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By using boundary condition b) in (2) and applying the operator W−1
n

to Equation (4) for ρ = b − β (0 < β � 1), upon proceeding to
the limit β → 0 and accounting for the well-known relation for the
Hankel functions H

(j)
−n(x) = (−1)nH

(j)
n (x), we obtain the following

finite-difference equation [16]

un = −η−1
2 snun−1 + gn, (−∞ < n < ∞), (8)

where

un = W−1
n [U(b, ϕ)], sn =

H
(11)(10)
n,1 (x, y)

H
(11)(10)
n, δ (x, y)

, (9)

gn = −I(m)e−inϕ0

2πiη2ky

H
(10)
n (x, kρ0)

H
(11)(10)
n, δ (x, y)

,

H
(11)(10)
n, δ (x, y) = H(11)

n (x, y) − iη0δH
(10)
n (x, y),

H
(11)(10)
n, 1 (x, y) = H

(11)(10)
n, δ (x, y)|δ=1, x = ka, y = kb, δ = η1/η2, .

The solution of (8) is constructed basing of the factorization of
its coefficient (see Appendix). From relationships (4, 5, 6, 9, A2,
A4), upon rather cumbersome transformations, we get the following
expression for the Hertz potential

U(�ρ, �ρ0) =
I(m)

8k
(Ur(�ρ, �ρ0) + Uir(�ρ, �ρ0)), (10)

where the regular part with a simple angular dependence as ϕ − ϕ0 is

Ur(�ρ, �ρ0) =
∞∑

n=−∞
ein(ϕ−ϕ0) H

(10)
n (x, kρ0

<)

H
(11)(10)
n, α (x, y)

H(10)(00)
n, α (y, kρ0

>), (11)

α =
{

1 for |η2| < 1
δ for |η2| > 1,

ρ0
< = min(ρ, ρ0), ρ0

> = max(ρ, ρ0), while the irregular part is

Uir(�ρ, �ρ0) = −4
η0(1 − δ)

πy

∞∑
n=−∞

ein(ϕ−ϕ0) H
(10)
n (x, kρ)

H
(11)(10)
n, 1 (x, y)

Un(�ρ0), (12)
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Un(�ρ0) =
∞∑

m=1

e−imϕ0(−η2)m
m∏

j=1

H
(11)(10)
n+j, δ (x, y)

H
(11)(10)
n+j,1 (x, y)

H
(10)
n+m(x, kρ0)

H
(11)(10)
n+m, δ (x, y)

,

for |η2| < 1, (13)

Un(�ρ0) = −
∞∑

m=1

eimϕ0(−η2)−m
m−1∏
j=0

H
(11)(10)
n−j,1 (x, y)

H
(11)(10)
n−j, δ (x, y)

H
(10)
n−m(x, kρ0)

H
(11)(10)
n−m, δ (x, y)

,

for |η2| > 1. (14)

The first term in (10) coincides with the solution to the problem where
the source in question excites the regular coaxial waveguide whose
reduced surface impedance of the wall ρ = b equals η0α. In order to
make certain that function (10) is really the desired solution, substitute
(10) directly into (1) and (2).

3. WATSON TRANSFORMATION

The series in n in (11), (12) represent expansions in terms of
radially propagating waves. Since the number of the terms
contributing significantly to the field are of the order of O(ka)
(see [17]), Equation (10) is convenient for analysis only for ka �
1. For the applications considered in the present paper, the range
ka � 1 is important, where expansions in terms of azimuthally
propagating ‘creeping’ waves (alternative to the series in (11), (12))
obtainable from (10) by Watson transformations [15, 17, 18] are rapidly
convergent. Without going into details we give the result of this
transformation:

Ur(�ρ, �ρ0) =−2π
∞∑

s=1

H
(10)
νs (x, kρ0

<)

sin πνsḢ
(11)(10)
νs, α (x, y)

×H(10)(00)
νs, α (y, kρ0

>) cos(π − Δϕ)νs, (15)

Uir(�ρ, �ρ0) = 4i
η2
0(1 − δ)2

y

∞∑
s=1

H
(10)
νs (x, y)

sin πνsḢ
(11)(10)
νs, α (x, y)

×
(
U(�ρ, �ρ0; νs)ei(Δϕ−π)νs +U(�ρ, �ρ0;−νs)e−i(Δϕ−π)νs

)
, (16)

where Ḣ
(11)(10)
νs, α (x, y) = ∂

∂ν H
(11)(10)
ν, α (x, y)

∣∣
ν=νs

; Δϕ = ϕ − ϕ0 > 0, νs

are the roots of the equation

H(11)(10)
ν, α (x, y) = 0, (17)
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U(�ρ, �ρ0; νs) =
∞∑

m=1

e−imϕ0(−η2)m
m∑

l=0

e−ilΔϕΠ(l)
m (νs − l)

× H
(10)
νs−l(x, kρ)

H
(11)(10)
νs−l, δ (x, y)

H
(10)
νs−l+m(x, kρ0)

H
(11)(10)
νs−l+m, δ(x, y)

, for |η2|<1, (18)

U(�ρ, �ρ0; νs) =
∞∑

m=1

eimϕ0(−η2)−m
m∑

l=0

eilΔϕΠ̃(l)
m (νs + l)

× H
(10)
νs+l(x, kρ)

H
(11)(10)
νs+l, 1 (x, y)

H
(10)
νs+l−m(x, kρ0)

H
(11)(10)
νs+l−m, 1(x, y)

, for |η2|>1, (19)

Π(l)
m (ν) =

m∏
j=0, j �= l

H
(11)(10)
ν+j, δ (x, y)

H
(11)(10)
ν+j, 1 (x, y)

, Π̃(l)
m (ν) =

m∏
j=0, j �= l

H
(11)(10)
ν−j, 1 (x, y)

H
(11)(10)
ν−j, δ (x, y)

. (20)

It can be shown following the methodology given in [19] that the roots
of Equation (17) are located symmetrically in the first and the third
quadrants of the ν-plane. In the analysis which follows, we restrict
ourselves to the case of (|η2| < 1). The CS phenomenon has been
detected on the waves coming to the receiver along the shortest route.
Therefore, extracting them from (15), (16) and placing the receiver
and the source onto the boundary ρ = a at the points with angular
coordinates ϕ and ϕ0 respectively, we arrive at the following expression
for the Hertz vector

4k
I(m)

U(�ρ, �ρ0)
∣∣
ρ=ρ0=a

= −4
x

∞∑
s=1

eiΔϕνs

Ḣ
(11)(10)
νs, 1 (x, y)

Vs(ϕ,ϕ0), (21)

Vs(ϕ,ϕ0) = Vr(νs) + Vir(ϕ,ϕ0; νs), Vr(νs) = H
(10)(00)
νs, 1 (y, x), (22)

Vir(ϕ,ϕ0; νs) = −16
iη0(1 − δ)

π2xy

{
u+

s (ϕ0) + [1 + iη0(1 − δ)

×H(10)
νs

(x, y)u+
s (ϕ0)]u−

s (ϕ)
}
, (23)

u±
s (ϕ) =

∞∑
m=1

e−imϕ(−η2)m

H
(11)(10)
νs±m, δ(x, y)

m∏
j=l

H
(11)(10)
νs±j, δ (x, y)

H
(11)(10)
νs±j, 1 (x, y)

. (24)

To simulate the CS phenomenon let us fix the angular distance Δϕ
between the receiver and the source. In this case, the function

Ũ(ϕ) =
4k

I(m)
U(�ρ, �ρ0)

∣∣
ρ=ρ0=a, ϕ0=ϕ−Δϕ

, (0 ≤ ϕ ≤ 2π), (25)
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may be considered as the ‘diurnal dependence’ of the received signal.
To ensure a nonzero diurnal phase change, the curve Vs(ϕ,ϕ0) in the
complex plane must enclose the origin of coordinates. Since the regular
term Vr in (22) does not depend on ϕ, while the irregular term Vir for
ϕ0 = ϕ−Δϕ is proportional to e−iϕ, then the following inequality is the
necessary condition for the occurrence of CS in the model considered:

|Vr(νs)| < |Vir(ϕ,ϕ0; νs)|. (26)

4. NUMERICAL EXPERIMENT

Let us calculate the Hertz potential Ũ(ϕ) from (21)–(25) for the
frequency f = 10 KHz and waveguide dimensions a = 6370 km
and b − a = 60 km. Since ka = 1335.06 � 1, we will use the
Olver uniform asymptotic representation [20] to calculate the Hankel
functions H

(j)
ν (x) along with their derivatives with respect to argument

and index. The roots of transcendental Equation (17) for α = 1 can be
determined by the Newton-Raphson method [21]. Location of several
first roots as a function of complex parameter η0 has been analyzed.
Fig. 2 illustrates typical trajectories of the first two roots νs (s = 1, 2)
in the complex ν-plane for several fixed values of arg η0 as |η0| increases.
The real values ν0

1 and ν0
2 correspond to zero impedance. The sign

‘+’ indicates the degenerate value νdeg
12 ≈ 1324.91 + 21.64i of these

two roots corresponding to the impedance ηdeg
12 ≈ 0.1826 − 0.1127i

(see [13, 22]). It is easily seen that an abrupt change in the behavior
of the eigenvalues of waveguide modes occurs when crossing the ray
arg η0 = arg ηdeg

12 ≈ 58.31◦.
Let us consider first the case of weakly irregular waveguides δ ≈ 1.

Then for |η2| � 1 we have from (23)

Vir(ϕ,ϕ0; νs) = (η1 − η2)V 0
ir(ϕ,ϕ0; νs), (27)

V 0
ir(ϕ,ϕ0; νs) = −16iη0

π2xy
e−iϕ0

[
1

H
(11)(10)
νs+1, 1 (x, y)

+
e−iΔϕ

H
(11)(10)
νs−1, 1 (x, y)

]

+O(1 − δ). (28)

In Fig. 3, the level curves of the function |V 0
ir(ϕ,ϕ0; ν)| for

ϕ0 = ϕ − Δϕ are shown in the complex ν-plane for the most
interesting domain of variation of the eigenvalues of the first and
the second modes for the impedance iη0 = H

(11)
ν (x, y)/H(10)

ν (x, y)
satisfying Equation (17). The angular distance between the receiver
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Figure 2. Trajectories of the first two roots ν1, ν2 of Equation (17) in
the complex ν-plane for several fixed values of arg η0 as |η0| increases
(0 ≤ |η0| ≤ 0.5); arg(iη0) equal to (1) 63.43◦, (2) 60.94◦, (3) 58.39◦,
(4) 58.21◦, (5) 55.83◦, (6) 53.37◦.

Figure 3. The level curves of the function |V 0
ir(ϕ0 + Δϕ,ϕ0; ν)| for

Δϕ = 2, (maxν |V 0
ir(ϕ0 + 2, ϕ0; ν)| = 3.0517, νmax = 1325.5 + 21.75i,

|V 0
ir(ϕ0+2, ϕ0; ν0

1)| = 1.2593·10−4, |V 0
ir(ϕ0+2, ϕ0; ν0

2)| = 4.5397·10−5).
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Figure 4. The level curves of the function |Vr(ν)|, (maxν |Vr(ν)| =
0.1561, νmax = 1328.25).

and the transmitter is Δϕ = 2, therefore, as it follows from numerical
estimations, the contribution of the third and higher modes can be
neglected. Minimal values of |V 0

ir(ϕ,ϕ0; ν)| are located in the vicinity
of the points ν0

1 and ν0
2 , while the maximum is close to νdeg

12 . By
comparing these results with the level curves of |Vr(ν)| from Fig. 4,
we arrive at the conclusion that for small η0, for which rimp � 1 and
ν1, 2 tends to ν0

1, 2, the inequality |Vr(ν)| > |V 0
ir(ϕ,ϕ0; ν)| holds, and

hence, CS is impossible in view of (26), (27). Let η0 be growing and
approaching ηdeg

12 . At the same time, rimp increases, the center of the
impedance circle ηimp tends to ηdeg

12 , while the eigenvalues of the first
and second modes approach the point νdeg

12 , in the vicinity of which an
amplitude of the irregular part of |V 0

ir(ϕ,ϕ0; ν)| is maximal. Then for
not-too-small values of |η1−η2| inequality (26) holds. In other words, it
follows from the foregoing numerical estimates for the functions |Vr(ν)|
and |V 0

ir(ϕ,ϕ0; ν)| for weakly irregular waveguides that there exists a
threshold value of the hodograph radius rcs

imp of the impedance η(ϕ)
(3) such that the CS phenomenon is impossible for rimp < rcs

imp, while
for rimp > rcs

imp it occurs at least for the hodographs located in the
vicinity of ηdeg

12 . As an angular distance Δϕ increases, the probability
that the phenomenon in question will occur is growing too, all factors
being equal. A similar situation holds when a degree of waveguide
irregularity grows, i.e., with increasing rimp.



Progress In Electromagnetics Research M, Vol. 6, 2009 85

(a) (b)

(c) (d)

Figure 5. The normalized value of ‘diurnal record’ of the received
signal W (ϕ), (η0 = 0.1455 − 0.03638i, η2 = 0.0001, Δϕ = 2).

Figures 5 and 6 present the results of the simulation of ‘diurnal
record ’ of the received signal or, in other words, the ϕ-dependencies of
the normalized value

W (ϕ) =
(

lg
(

max
0≤ϕ≤2π

|Ũ(ϕ)|
)

Ũ(ϕ)
)

/
(
lg

(
|Ũ (ϕ)|

)
|Ũ (ϕ)|

)
,

for Δϕ ≤ ϕ ≤ 2π+Δϕ and the fixed angular distance Δϕ = 2 between
the source and the receiver. On these curves three following values of
the received signal are marked: ‘0’ corresponds to the initial moment of
the record (ϕ0 = 0, ϕ = Δϕ), ‘r’(‘t’) corresponds to the moment of time
when the receiver (the transmitter) is passing through the waveguide
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cross-section ϕ = ϕcr, where the surface impedance value is most close
to ηdeg

12 (see Fig.7). The number of lost phase cycles are shown in these
figures in square brackets [m]; ddeg

imp is the distance from the impedance

circle to the point ηdeg
12 . The numerical experiment has shown that

the CS phenomenon is nonexistent for hodographs of the impedance
η(ϕ) remote from the segment lcs = {0 < |η| ≤ ηdeg

12 , arg η = arg ηdeg
12 }

(Figs. 5(a), (b), (c)). As rimp increases, W (ϕ) behavior becomes more
complex; when the circle η(ϕ) intersects lcs, CS occurs (Fig. 5(d)) for
rimp ≈ 0.04844. At the same time, the signal amplitude decreases over
small variation interval (of the order of 0.01◦) of ϕ. As rimp grows,

(e) (f)

(g) (h)

Figure 6. The normalized value of ‘diurnal record’ of the received
signal W (ϕ), (η0 = 0.1455 − 0.03638i, η2 = 0.0001, Δϕ = 2).
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Figure 7. The domains in the complex η-plane, for which the CS
phenomenon takes place at the given radius rimp and angle Δϕ = 2.

at rimp ≈ 0.05335 (Fig. 6(f)), the CS phenomenon for two cycles, at
rimp ≈ 0.05469 (Fig. 6(h)) for three cycles, and so forth is observable.
A similar situation holds for the circle η(ϕ), whose center is located
in the vicinity of lcs; however, the CS begins for lesser values of rimp.
Each CS phenomenon is accompanied by a sharp decrease in the signal
amplitude, what is typical for the CS in a natural waveguide [6, 9]. The
part played by the segment lcs in the initiation of the CS phenomenon
within the limits of the given model can be explained as follows: for the
impedances only in the vicinity of this segment, the eigenvalues ν1 and
ν2 have closely spaced imaginary parts, and consequently, amplitudes
of the first and the second modes are nearly equal. In addition, when
η0 is moving along lcs towards the point ηdeg

12 , the real parts of ν1 and
ν2 come close together (curves 3 or 4 in Fig. 2), and consequently, the
phase velocities of these modes approach each other.

Of some interest is a localization of the domains in the complex
η-plane, for which the CS phenomenon takes place at the given radius
rimp and angle Δϕ. It is seen from Fig. 7 (Dots indicate center positions
for hodographs of radiuses 0.001, 0.005 and 0.01, for which CS occurs
at Δϕ = 2.) that with increasing rimp the CS phenomenon develops
initially in the immediate vicinity of the point ηdeg

12 , and then, as
rimp grows, this area is extending occupying a constantly increasing
part of the segment lcs. For hodographs with fixed centers, the CS
phenomenon having developed at some rimp, persists for larger values
of the radius.
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5. CONCLUSION

A model of the ring waveguide of a fixed cross-section whose
irregularity is caused only by the behavior of the surface impedance
distribution of its wall has been proposed. Hence we have excluded
from consideration the diffraction effect of wave transformation on a
spatial inhomogeneity of the wall; only the mode degeneracy effect
being inherent in waveguides with finite absorption is analyzed. For
a class of circular hodographs of surface impedance the analytical
solution of the corresponding boundary-value problem is obtained. The
results of the numerical experiment for widely separated (1 ≤ Δϕ ≤ π)
transmitter and receiver have shown that the CS phenomenon here
is directly related to the degeneracy of the first and the second
modes. It is threshold in character and occurs in the waveguides with
sufficiently high irregularity of walls whose impedance is distributed
in the neighborhood of the degenerate value ηdeg

12 . Having developed
this phenomenon persists as the radius of the impedance hodograph
(a degree of waveguide irregularity) increases. At the same time,
the domain of the impedance complex plane where CS takes place
is extending occupying a constantly increasing part of the segment
joining the origin of coordinates and the point ηdeg

12 .
It has been demonstrated with a waveguide of a fixed cross-

section that the CS phenomenon in irregular lossy waveguides (in
particular, in the earth-ionosphere waveguide) may be caused by the
interconversion of two dominant waveguide modes in the neighborhood
of their degeneracy regime rather than by the diffraction effect of
rescattering of the principal mode into the higher modes on a spatial
inhomogeneity of the waveguide wall, as it is customary to assume.

APPENDIX A. THE SOLUTION OF THE
FINITE-DIFFERENCE EQUATION (8)

The solution of (8) is constructed basing of the following factorization
of its coefficient:

sn =
σn

σγ
n−1

, (A1)

where γ > 1 is an auxiliary parameter. Taking the logarithm of (A1)
and applying the operators W and W−1, we can easily show that

ln σn = W−1
n

[
Wθ [ln sn] /

(
1 − γeiθ

)]
= −γn

∞∑
m=n+1

ln smγ−m
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whence it follows that for γ = 1 we have

σn =

⎧⎪⎨
⎪⎩

∏m=0
n sm for n ≥ 0,

1 for n = −1,∏m=−1
n+1 s−1

m for n ≤ −2.

(A2)

By substituting (A1) with γ = 1 into Equation (8), we arrive at the
equation

un

σn
= −η−1

2

un−1

σn−1
+

gn

σn
, (−∞ < n < ∞). (A3)

The solution of this equation is similar to that of the equation for lnσn,
which can be derived by taking the logarithm of (A1), and is as follows

un

σn
= W−1

n

[
Wθ [gn/σn] /

(
1 + η−1

2 eiθ
)]

. (A4)
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