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ABSTRACT: The fundamental relationship of complex conjugate phasors is analyzed 
for two independent sources of a time harmonic field in comparison with the well-known 
reciprocity theorem, the Lorentz lemma and the reaction theorem. It has been shown that 
this relationship in the case of isotropic lossless medium yields a complementary 
reciprocity theorem, whereas in the specific case of a bianisotropic medium it determines 
the “pseudo-reciprocity” property. This universal law seems to be useful in the theory of 
guided waves, antenna theory, etc. 

 
INTRODUCTION 

Two energy laws, which are established by the remarkable Poynting theorem 
and the Lorentz reciprocity theorem (see, e.g. [1-4]), are of key importance in 
the theory of electromagnetism. The standard transition in describing a 
monochromatic field from the time domain to the phasor domain results in 
doubling the number of power relations. This fact in an evident way follows 
from the representation of the product of time-harmonic field components 

 via phasors ( ) ( ),E t H tα β ( ) ( ),E Hα βω ω , similar, for example, to the 
following expression for the cross product 
 

( ) ( ) ( ) ( ){ } ( ) ( ){ }21 1Re Re
2 2

i tE t H t E H E H e ω
α β α β α βω ω ω ω∗ ±⎡ ⎤× = × + ×⎣ ⎦ . 

 
Here and below the subscripts α  and β  label the independent sources of the 
field and the asterisk stands for complex conjugation. 
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When going over to the phasor domain the Poynting theorem generates two 
basic relationships, namely, the famous theorem of complex power and the 
theorem of oscillating power [4]. As for the pair of the fundamental laws 
induced by the Lorentz theorem, the well-known reciprocity theorem includes 
the primary phasors, whereas the second available relation containing the 
complex conjugate phasors has not a conventional name. In what follows these 
two laws will be referred to as the first and the second Lorentz theorem, 
respectively. Such terminology is based on the fact that the latter theorem yields 
the second reciprocity relation for isotropic lossless media and establishes a new 
“pseudo-reciprocity” property for anisotropic materials. 

Many books are surprisingly fuzzy on this doubling of the fundamental 
power relations in the phasor domain. The majority of manuals consider only the 
theorem of complex power and the (first) Lorentz reciprocity theorem. As a rare 
exception we can note, for example, the treatise [4] where the theorem of 
oscillating power has been considered as well. It should be noted that all the 
pairs of the laws stated above have been derived from the Maxwell’s equations 
in the same manner. 

The second Lorentz theorem is not so well-known. Particular cases of this 
theorem have been used earlier in papers [5-7] where some problems of mode 
diffraction by waveguide discontinuities were considered. As was shown in 
papers [7,8], the use of the second Lorentz theorem is a key point in deriving the 
operator form of the power conservation statement. Indeed, the theorem of 
complex power regards the field from a single source which allows determining 
only the principal diagonal of the sought for operator matrix. The second 
Lorentz lemma relates the fields of two independent sources which makes it 
possible to form all off-diagonal blocks and thus to completely construct the 
operator matrix of the generalized power conservation law. 

The present paper is aimed at a comparative analysis of the basic relations 
for the general case of a bianisotropic medium, which form the content of the 
first and second Lorentz theorems, and also of their corollaries known as the 
Lorentz lemma and the reaction theorem. 

In the paper we do not dwell on details of deriving the second Lorentz 
theorem from the phasor form of the Maxwell’s equations. The reason is that the 
derivation procedure is quite ordinary and can be easily implemented following 
the scheme which is available in the above references. Instead of that we present 
a paired record of the familiar and new formulas in order to show in what they 
are similar and different. In what follows formulas related to the first 
(reciprocity) Lorentz theorem and its corollaries are marked by a number with 
the letter “a”, while all the new relations are labeled by “b”. 
 
 
COMPARISON OF THE TWO LORENTZ THEOREMS 

Let two electromagnetic fields be produced by two completely independent 
time-harmonic sources α  and β  separated in space and generating at the same 
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frequency, α βω ω= =ω . Consider a passive bianisotropic medium for which 
the constitutive equations for the field phasors can be represented as 
 

;
with , .

;

D E H

B H E

γ γ γ

γ γ γ

ε ξ

γ α β

μ ζ

= +

=

= +

 

 
Here the dyadic constitutive parameters , ,ε μ ξ  and ζ  are specified at the 
frequency ω  and may depend on space coordinates. 

Following the usual technique (see, e.g. [1-4]), the Maxwell’s equations in 
the phasor form yield two relations 

 
;div E J E M H E J H Mα α β α β α β α β⎤ ⎡ ⎤ ⎡ ⎤= ⋅ − ⋅ − ⋅ − ⋅⎦ ⎣ ⎦ ⎣ ⎦H E Hα β β⎡ × − ×⎣

H E Hα β β
∗ ∗× + ×

)

  (1a) 
 

.div E J E M H E J H Mα α β α β α β α β
∗ ∗ ∗ ∗⎡ ⎤ ⎡ ⎤ ⎡= − ⋅ + ⋅ − ⋅ + ⋅⎣ ⎦ ⎣ ⎦ ⎣ ⎤⎦   (1b) 

 
Here (Jα β  is the conduction current density and ( )Mα β  is the magnetic current 

density. Eq. (1a) is valid for a reciprocity medium whose properties are 
determined by the constitutive parameters 
 

, ,T T Tε ε μ μ ξ= = = ζ− ,            (2a) 
 

whereas the second relation Eq. (1b) holds under the conditions 
 

† † †, ,ε ε μ μ ξ= = ζ= .             (2b) 
 

Here the superscript T  stands for transposition procedure and the dagger “ ” 
denotes the Hermitian conjugation. 

†

The equality Eq. (2b) determines a property of a nonreciprocal material 
medium which can be referred to as “pseudo-reciprocity”. For example, an 
gyrotropic lossless medium can be described by the relations †ε ε=  or 

†μ μ= . As follows from Eqs. (2a) and (2b), the relations Eqs. (1a) and (1b) 
both hold simultaneously in the case of an isotropic lossless medium when ε  
and μ  are real-valued scalars. Note that the right-hand side of the standard 
equality Eq. (1a) has meaning of the oscillating power density, whereas the 
right-hand side of the second equality Eq. (1b) involves the complex power 
density. 
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At those points where no field sources are present the following two 
corollaries of the basic relations Eqs. (1a) and (1b) are met,  

 
0;div E H E Hα β β α⎡ ⎤× − × =⎣ ⎦    (3a) 

 

0div E H E Hα β β α
∗ ∗⎡ ⎤× + × =⎣ ⎦ .    (3b) 

 
These equalities will be referred to as the first and, respectively, the second 
Lorentz lemma in the differential form. 

The two Lorentz lemmas Eqs. (3a) and (3b) are also valid when magnetic 
currents are absent and the Ohm law holds, , ,J Eγ γ ,σ γ α β= =  and the 
conductivity affinor shows the corresponding property as follows 

 
Tσ σ= ;              (4a) 

 
†σ σ= − .             (4b) 

 
To represent the Lorentz theorems in an integral form, let us consider a 

closed nonpathological surface S  enclosing a volume V  of the material 
medium. 

Following [3] the results obtained can be represented in terms of the 
Rumsey reactions. To that end let us introduce the six-component row-vector to 
describe the fields, { }, , ,E i Hγ γ γ ,γ α β= =f  and the row-vector for the given 

sources, { },J i Mγ γ γ ,=g , γ α β= . Treating the reaction concept in the phasor 

domain we can obtain scalar products of two types, viz. 
 

( ), ;T T

V V

dV E J H M dVγ γ γ γ γ γ γ γ⎡≡ ⋅ = ⋅ − ⋅⎣∫ ∫f g f g ⎤⎦    (5a) 

 

( )† †,
V V

dV E J H M dVγ γ γ γ γ γ γ γ
∗ ∗⎡ ⎤≡ ⋅ = ⋅ + ⋅⎣ ⎦∫ ∫f g f g ,   (5b) 

 
which will be referred to as the Rumsey reaction and the complex reaction, 
respectively.  

By applying the divergence theorem to the relations Eqs. (1a) and (1b) we 
can find a general form for both the Lorentz reciprocity theorem and the second 
Lorentz theorem, respectively, viz. 

 

( ) ( ), ,T T

S

E H E H dSα β α β α β β α⎡ ⎤− = − × − ×⎣ ⎦∫f g g f ;   (6a) 
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( ) ( )† †, ,
S

E H E H dSα β α β α β β α
∗ ∗⎡ ⎤+ = − × + ×⎣ ⎦∫f g g f ,   (6b) 

 
where , with n  being the outward normal to the surface. dS n dS≡

Two specific cases of the basic relation Eq. (6a) seem to be special interest, 
which are the integral form of the first Lorentz lemma Eq. (3a) and the reaction 
theorem [3,4]. 

The first and second reaction theorems can be written as 
 

( ) ( ), ,T T
α β β=f αg f g ;     (7a) 

 

( ) ( )††, ,α β β α= −f †g f g ,     (7b) 

 
respectively. They follow in evident way from the integral equalities Eqs. (6a) 
and (6b) when the volume V  under consideration represents the entire 
unbounded space containing the sources and inhomogeneities of a finite scale-
size. These reaction theorems are valid for bounded volumes V  as well, 
provided that the following equalities hold 

 
0

S

E H E H dSα β β α⎡ ⎤× − × =⎣∫ ⎦ ;    (8a) 

 
0

S

E H E H dSα β β α
∗ ∗⎡ ⎤× + × =⎣∫ ⎦ .    (8b) 

 
In turn, two conditions Eqs. (8a) and (8b) will be a fortiori met with the 
impedance boundary conditions for the tangential electric field component, 

 

S S
E W n Hτ ⎡ ⎤= ×⎣ ⎦ ,     (9) 

 
where the impedance W  assumes any arbitrary value in the case of the equality 
Eq. (8a) (see, e.g. [3]) and provided that Re 0W =  in the case of Eq. (8b). Note 
that the complex-valued impedance in Eq. (9) can be dependent on the position 
on the surface . S

Finally, the relations Eqs. (8a) and (8b) coincide with the integral forms of 
the first and second Lorentz lemmata, respectively, provided that the above 
mentioned conditions are met and when the terms corresponding to the Rumsey 
reaction in Eq. (5a) and to the complex reaction in Eq. (5b) vanish. 
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CONCLUSIONS 

When solving electrodynamic problems in the phasor domain it should be taken 
into account two Lorentz theorems are available which are different in the form 
and sense. These two fundamental laws have been referred above as the first 
Lorentz (reciprocity) and the second Lorentz (pseudo-reciprocity) theorems. As 
a result, we have two Lorentz lemmata and two reaction theorems provided that 
the special conditions mentioned above are met. 

As has been shown, the first and the second Lorentz theorems are valid for a 
variety of media which show, generally speaking, absolutely different properties. 
In contrast to the Lorentz reciprocity theorem, the second theorem, which is also 
valid for nonreciprocal media, corresponds to a property which has been defined 
as the “pseudo-reciprocity”. However in the case of isotropic lossless media the 
theorems are both valid, and hence we have in this situation two complementary 
reciprocity relations. 

Besides its significance for the theory, the second Lorentz theorem seems to 
be important for the analytical justification of the methods which are based on 
the modal analysis. Specifically, application of the theorem to solving the 
problem of mode diffraction makes it possible to formulate the power 
conservation law in the operator form [6-8]. It is beyond any doubt that this lost 
universal law will find another important application in the applied 
electrodynamics. 
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