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Abstract—The paper is concerned with the development and
mathematical justification of the methodology for applying the time-
domain methods in the study of spectral characteristics of open
electrodynamic resonant structures.

1. INTRODUCTION

This paper is concerned with the solution of theoretical and
methodological problems arising in the time-domain (TD) analysis of
open resonators (OR). The potentialities of the frequency-domain (FD)
methods as applied to the problems of this kind have been almost
exhausted. This became evident when researches came up against
the synthesis problems for open dispersive structures in resonant
quasi-optics, for electrodynamic systems in devices of solid-state or
vacuum electronics, and others. The application of more universal
TD methods [1, 2] to the analysis of resonance conditions, which
are acutely sensitive to variations in the system parameters, must
be grounded on stable and reliable numerical algorithms. At the
same time, the physical treatment of the numerical results here is
impossible without justified and simplified analytical representations
for the solutions of the initial boundary-value problems considered. In
numerical experiments, proper allowance must be made for the results
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obtained in FD. We propose to consider the basic stages of the study
of OR by the example of the transient E-polarized fields in the near
zone of compact inhomogeneities of the R2-space. Similar reasoning
holds in the case of H-polarization and in 3-D vector case as well, and
for OR of other types [3].

We discuss the following points:
– rigorous formulation and solution of initial boundary-value

problems in the theory of OR (the finite difference method with
‘fully absorbing’ conditions on the artificial boundaries of the
analysis domain);

– well-grounded analytical relations between spatial-temporal and
spatial-frequency representations for the solutions;

– the problem of choice of the pulsed source in numerical
experiments;

– the general methodology for analyzing OR by TD methods.

2. INITIAL BOUNDARY-VALUE PROBLEMS OF THE
THEORY OF OPEN COMPACT RESONATORS

We consider a two-dimensional initial boundary-value problem


P [U ] ≡
[
−ε(g) ∂

2

∂t2
−σ(g) ∂

∂t
+
∂2

∂y2
+
∂2

∂z2

]
U(g, t) = F (g, t) ≡ ∂Jx

∂t
,

g = {y, z} ∈ Q, t > 0

U(g, t)|g∈S = 0, t ≥ 0

U(g, 0) = ϕ(g),
∂U(g, t)
∂t

∣∣∣∣
t=0

= ψ(g), g ∈ Q

,

(1)
describing transient states of E-polarized (∂/∂x ≡ 0, U(g, t) =
Ex(g, t), Ey = Ez = Hx = jy = jz = 0, ∂Hy/∂t = −η−1

0 ∂Ex/∂z, and
∂Hz/∂t = −η−1

0 ∂Ex/∂y) electromagnetic waves { �E, �H} in compact
open resonators, whose geometry (Fig. 1) is specified by the real-
valued finite functions ε(g) − 1, σ(g) and by the contours S that are
the boundaries of the domains intS filled with a perfect conductor
(Q = R2\intS).

Here g = {y, z} is a point in R2-space, G is the closure of
the domain G, �E ≡ �E(g, t) and �H ≡ �H(g, t) are the electric and
magnetic field vectors, η0 =

√
µ0/ε0 is the free space impedance,

ε0 and µ0 are the electrical and magnetic constants, �J = η0�j (�j ≡
�j(g, t)) is the extraneous current density, σ = η0σ0, ε ≡ ε(g) ≥ 1
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Figure 1. Geometry of the problem (1).

and σ0 ≡ σ0(g) ≥ 0 are the relative permittivity and the specific
conductivity of a locally inhomogeneous, isotropic, nonmagnetic, and
nondispersive propagation medium. The functions F (g, t) describing
‘current’ sources as well as the functions ϕ(g) and ψ(g) describing
‘momentary’ sources are finite in Q.

In the paper, the SI system of units is used. The variable t is the
product of the real time by the velocity of light in free space and has
the dimensions of length.

Statement 1 [4]. Let F (g, t) ∈ L2,1(QT ), ϕ(g) ∈ Ẇ
1
2(Q), ψ(g) ∈

L2(Q), QT = Q × (0;T ), (0;T ) = {t : 0 < t < T < ∞}, while
the functions ∂ε(g)/∂y, ∂ε(g)/∂z and σ(g), g ∈ Q be bounded. Then
problem (1) for all t ∈ [0;T ] has a generalized solution from the energy
class, and the uniqueness theorem is true in this class. �

By a generalized solution from the energy class we understand
a function U(g, t), belonging to Ẇ

1
2(Q) for any t ∈ [0;T ] and

depending continuously on t in the norm W 1
2(Q). Furthermore the

derivative ∂U/∂t should exist as an element of the space L2(Q) for
any t ∈ [0;T ] and vary continuously with t in the norm L2(Q). The
initial conditions in (1) should be continuous in the spaces Ẇ

1
2(Q)

and L2(Q), respectively, while the equation of telegraphy be satisfied
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in terms of the identity∫
QT

{
ε

(
∂

∂t
U

)(
∂

∂t
γ

)
−σ

(
∂

∂t
U

)
γ−

(
∂

∂y
U

)(
∂

∂y
γ

)
−

(
∂

∂z
U

)(
∂

∂z
γ

)}
dgdt

+
∫
Q

εψγ(g, 0)dg =
∫

QT

Fγdgdt.

Here γ = γ(g, t) is an arbitrary element from W 1
2,0(Q

T ) such that
γ(g, T ) = 0. This identity is derived in a formal way from the following
identity

(P [U ] − F, γ) =
∫

QT

(P [U ] − F )γdgdt = 0

by means of single partial integration of the terms, containing second
order derivatives of the function U(g, t). In [4] it was proven that such
a definition makes sense and is actually a generalized notion of the
classic solution.

Under practically the same assumptions, the unique solvability of
the problem (1) and problems (1) with the impedance type boundary
conditions in the space W 1

2(Q
T ) has been proved in [4]. The

class of generalized solutions, that has been called the energy class,
is somewhat narrower than the class of generalized solutions from
W 1

2(Q
T ). However, it can be proved for this class that the solution

U(g, t) has the same differential features that are assumed satisfied at
the initial time (continuable initial conditions). Besides, for a U(g, t)
from this class the following energy relation is satisfied

∫
Q

(
ε

(
∂U

∂t

)2

+|gradU |2
)
dg

∣∣∣∣∣
T

0

+2
∫

QT

(
σ

(
∂U

∂t

)2

+
(
F
∂U

∂t

))
dg dt = 0.

(2)

3. FINITE-DIFFERENCE METHOD

The finite difference method reduces problem (1) with σ ≡ 0 and t ∈
[0;T ] to determining the mesh functions u = U(yj , zk, tm) = U(j, k,m)
that satisfy the difference equations[

−ε(j, k)Dt
+D

t
− +Dy

+D
y
− +Dz

+D
z
−

]
u = F (j, k,m) (3)

at the mesh points gjk = {yj , zk} ∈ Q(h, T ) on the time layers
tm = ml, m = 0, 1, . . . ,M − 1 = T/l. They are complemented by
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the equations{
U(j, k, 0) = ϕ(j, k), U(j, k, 1) = ϕ(j, k) + lψ(j, k), gjk ∈ Q(h, T )
U(j, k,m) = 0, gjk ∈ S(h, T ), m = 0, 1, . . . ,M − 1

(4)
(i.e., the difference analogues of the initial and boundary conditions
in (1)). Here Dy

+[u] = h−1[U(j + 1, k,m) − U(j, k,m)] and Dy
−[u] =

h−1[U(j, k,m)−U(j−1, k,m)] are the standard operators of the right-
and left-hand difference derivatives (the same with obvious changes is
true also for Dz

±[u], Dt
±[u]); yj = jh, zk = kh, j, k = 0,±1, . . . ; h > 0

and l > 0 are the space-step and the time-step of the mesh; all mesh
functions f(j, k) at the mesh points gjk ∈ Q(h, T ) are constructed with
respect to f(g), g ∈ Q as the averages

f(j, k) = h−2
∫

ωh(j,k)

f(g)dg,

ωh(j, k) = {g : jh < y < (j + 1)h; kh < z < (k + 1)h},

Q(h, T ) is the union of cells ωh(j, k) belonging to Q(T ); S(h, T ) is the
boundary of Q(h, T ); Q(T ) is the cut of the cone of influence of sources
F (g, t), ϕ(g), and ψ(g) in the region Q at the time t = τ > T . It is
obvious that equations (3) and (4) uniquely determine u, and u can be
calculated without inversion of any matrix operators (i.e., through an
explicit scheme).

The finite-difference scheme is considered to be stable, if for the
approximate solutions u a boundedness can be determined that is
uniform with respect to h and l. From the stability, the intrinsic
convergence of the sequence {u}h,l follows, and the limiting function
u will be the solution to the original initial boundary-value problem
provided that this problem is approximated by finite difference
equations. The latter is satisfied for (1) and for (3), (4). As for the
stability of the considered scheme, it is most convenient to analyze it
in the ’energy’ spaces where the original problem is well posed. In [4],
the validity of the following statement has been proven on the basis of
difference analogues of the energy inequalities.

Statement 2. Let the functions F (g, t), ϕ(g), ψ(g), and ε(g) − 1
that are finite in the region Q be such that F (g, t) ∈ L2,1(QT ), ϕ(g) ∈
W 1

2(Q), ψ(g) ∈ L2(Q) and ξ ≤ ε−1(g) ≤ η; g ∈ Q, while the
derivatives ∂ε(g)/∂y and ∂ε(g)/∂z are bounded. Then the norms
W 1

2(Q
T ) of the continuous multilinear complements ũ of solutions u

to problems (3), (4) (the interpolations of the mesh functions u that
are linear in each variable) are uniformly bounded for any h and l that
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satisfy one of the following conditions:

η
√

2√
ξ

l

h
< 1 or 2

√
η
l

h
< 1. (5)

The sequence {ũ}h,l converges weakly in W 1
2(Q

T ) and strongly in
L2(QT ) to the solution U(g, t) of the problem (1) as h, l→ 0. �

4. TRUNCATION OF THE COMPUTATIONAL
DOMAIN: “FULLY ABSORBING” CONDITIONS

In Section 3, when describing a general procedure of the algorithmiza-
tion of problem (1) by the finite-difference method, we have truncated
the computational domain by applying the well-known exact radiation
condition

U(g, t)
∣∣∣
g∈L, t∈[0;T ]

= 0 (6)

for the waves U(g, t) outgoing from the region where the sources and
scatterers are localized. The artificial boundary L must be situated,
in this case, outside the region G ⊂ Q, whose points are reached by
the excitation U(g, t) by the time t = T . The principal shortcoming
of this approach consists in the necessity to extend the computational
domain with increasing T .

The Absorbing Boundary Conditions (see for example [5–8]) and
the perfectly-matched absorbing layers [9, 10] allow one to ‘close’ open
initial boundary-value problems by the nearby fixed boundaries L, but
they distort the simulated processes to some extent. These distortions
grow as the observation time t increases [3].

The resonant modes of the nonsinusoidal-wave scattering are
highly sensitive to the influence of the virtual fields caused by
reflections from the imperfect ‘absorbing’ boundaries L. The
calculation of resonance electrodynamic characteristics calls, as a rule,
for a long time intervals 0 < t < T [11]. Therefore, the reliable analysis
of field oscillations in open high-Q resonant structures must not exploit
those algorithms that truncate the computational domain inefficiently.
In the present paper, the problem is solved with the help of the ‘fully
absorbing’ conditions

[
∂

∂t
± ∂

∂z

]
U(g, t) =

2
π

π/2∫
0

∂V1(g, t, ϕ)
∂t

sin2 ϕdϕ, L4 ≤ y ≤ L3, t ≥ 0,
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[
∂2V1(g, t, ϕ)

∂t2
− ∂

2W1(g, t, ϕ)
∂y2

]
= 0, L4<y<L3, t>0

∂V1(g, t, ϕ)
∂t

∣∣∣∣
t=0

= V1(g, t, ϕ)
∣∣∣
t=0

= 0, L4 < y < L3

;
{
z = L1

z = L2
,

(7)
[
∂

∂t
± ∂

∂y

]
U(g, t) =

2
π

π/2∫
0

∂V2(g, t, ϕ)
∂t

sin2 ϕdϕ, L2 ≤ y ≤ L1, t ≥ 0,




[
∂2V2(g, t, ϕ)

∂t2
− ∂

2W2(g, t, ϕ)
∂z2

]
= 0, L2<y<L1, t>0

∂V2(g, t, ϕ)
∂t

∣∣∣∣
t=0

= V2(g, t, ϕ)
∣∣∣
t=0

= 0, L2 < y < L1

;
{
z = L3

z = L4
,

(8)


[
∂

∂t
± cosϕ

∂

∂y

]
W1(g, t, ϕ)

=
2 cosϕ
π

π/2∫
0

sin2 γ

cos2 ϕ+ sin2 ϕ cos2 γ
∂W2(g, t, γ)

∂t
dγ

[
∂

∂t
± cosϕ

∂

∂z

]
W2(g, t, ϕ)

=
2 cosϕ
π

π/2∫
0

sin2 γ

cos2 ϕ+ sin2 ϕ cos2 γ
∂W1(g, t, γ)

∂t
dγ

, t ≥ 0,

(9){
+
+

}
→ g = {L3, L1},

{
+
−

}
→ {L3, L2},{−

+

}
= {L4, L1},

{−
−

}
→ {L4, L2}.

Formulas (7)–(9) represent the exact local ‘absorbing’ condition for the
entire artificial coordinate boundary L. In this case, L is the boundary
of the rectangular domain QL = {g ∈ Q : L4 < y < L3; L2 < z < L1}
(Fig. 1) enveloping all sources and compact inhomogeneities of R2-
space. Conditions (7)–(9), reducing the analysis domain Q of problem
(1) down to QL, have been constructed in [3, 12] without any heuristic
assumptions about a fine structure of the field in the vicinity of the
artificial boundary. They most closely correspond to the nature of
the simulated physical processes. The errors introduced by these
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conditions are less by an order than the finite-difference approximation
error [3]. Equations (9) play a part of boundary conditions in the
auxiliary initial boundary-value problems within formulas (7) and
(8). Here Wj(g, t, ϕ) = Vj(g, t, ϕ) cos2 ϕ + U(g, t) (j = 1, 2) and{

+
+

}
→ g = {L3, L1} specifies the signs in the upper and lower

equations for different corner points g = {y, z}.
In essence, formulas (7)–(9) are the analogue of the exact condition

(6) in the domain, where the spatial-temporal transformations of an
electromagnetic field can be arbitrary in intensity. The boundary L
divides the infinite domain Q of the original problem into two ones,
namely, QL and LQ (Q = QL

⋃
L Q

⋃
L). In the former (bounded)

region, the standard finite-difference algorithms are used for solving
problem (1) with conditions (7)–(9). In the latter region, the field
U(g, t) is determined by its values on the boundary L [3, 12].

Statement 3. Problem (1) in the domain Q and problem (1) in the
domain QL = {g ∈ Q : L4 < y < L3; L2 < z < L1} with conditions
(7)–(9) on its exterior rectangular boundary L are equivalent.

The internal initial boundary-value problems in (7), (8) are well
posed with respect to the auxiliary functionsW1(g, t, ϕ) andW2(g, t, ϕ).
�

The Statement validity results from the following three facts. The
original problem is uniquely solvable [4]. The solution to the original
problem is, at the same time, the solution to the modified problem (in
construction). The solution to the modified problem is unique. The
last-named fact can be proved by using ‘energy’ estimates for the real
function U(g, t) (see, for example, [4, 13]).

5. SPACE-TIME REPRESENTATIONS FOR TRANSIENT
FIELDS

Based on the ‘energy’ estimates, Statement 1 can be reformulated
in terms of the space W 1

2(Q
∞, β) ≡ {{U(g, t)} : U(g, t) exp(−βt) ∈

W 1
2(Q

∞); β ≥ 0}. Hence [4, 14], the direct and inverse Laplace
transforms

f̃(s) = L[f ](s) ≡
∞∫
0

f(t)e−stdt↔ f(t) = L−1[f̃ ](t) ≡ 1
2πi

α+i∞∫
α−i∞

f̃(s)estds

(10)
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can be applied to relate the solutions of the initial boundary-value
problem (1) and the solutions of the elliptic boundary-value problem



P̃ [Ũ ] ≡

[
∂2

∂y2
+
∂2

∂z2
+ ε̃k2

]
Ũ(g, k, f̃) = f̃(g, k), g ∈ Q

Ũ(g, k, f̃)
∣∣∣
g∈S

= 0
. (11)

Here ε̃(g) = ε(g) + iσ(g)/k, f̃(g, k) = F̃ (g, k) + ikε̃(g)ϕ(g) −
ε(g)ϕ(g), F̃ (g, k) ↔ F (g, t), and s = −ik.

As is well-known [14–16], for Im k > 0 and for any f̃(g, k)
from L2(Q), problem (11) is uniquely solvable in W 1

2(Q), while its
resolvent is an analytic operator-function of the parameter k. Suppose
Re s > β ≥ 0 (Im k > β) and the function Ũ(g, k, f̃) is absolutely
integrable with respect to Re k on R1 with some Im k = α > β,
then the solution U(g, t) to problem (1) from the energy class and
the solution Ũ(g, k, f̃) to problem (11) from W 1

2(Q) are related by the
following formulas:

U(g, t) =
1
2π

iα+∞∫
iα−∞

Ũ(g, k, f̃)e−iktdk, Ũ(g, k, f̃) =
∞∫
0

U(g, t)eiktdt.

(12)
A central problem of the approaches based on the space-

time representations is to obtain a reliable information about
analytical properties of the resolvent operator-function of problem
(11) everywhere over the natural region of variation of the complex
frequency parameter k. This problem has been discussed in the context
of the spectral theory of open resonators. Below are given some results
of this theory [14, 15, 17, 18] that will be used in further analysis.

Let us add to problem (11) the radiation condition

Ũ(g, k, f̃) =
∞∑

n=−∞
anH

(1)
n (kρ)einφ (13)

(H(1)
n is the Hankel function, {ρ, φ} are the polar coordinates in the

y0z-plane), which is true for Im k > 0 in the domain aQ : aQ =
Q\Qa, Qa = {g ∈ Q : |g| < a} being free from scatterers and
sources. This condition generalizes the Sommerfeld condition when
extending the elliptic problem into the region of complex k. The
natural boundaries of this extension are determined by the infinite
sheeted Riemann surface K of the analytical continuation of the
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fundamental solution to the Helmholtz equation or, what is the same,
of the function Ln k.

Statement 4 [15, 19, 20]. The resolvent A−1(k) of the problem
(11), (13) A(k)[Ũ(g, k, f̃)] = f̃(g, k) is a meromorphic (in local on
the surface K coordinates) operator-function of the complex parameter
k. Its leading part Ξ[A−1(k)] can be expanded in the vicinity of the pole
k = k (in the vicinity of the eigenvalue k = k of the operator-function
A(k)) as follows

Ξ[A−1(k)] =
J∑

j=1

M(j)∑
m=1

(k − k)−m
M(j)−m∑

l=0

w
(j)
l (·)u(j)

M(j)−m−l. (14)

Here
u

(j)
0 (g), u(j)

1 (g), . . . , u(j)
M(j)−1(g), j = 1, 2, . . . , J

is a canonical set of the eigen and adjoined elements of the operator-
function A(k) associated with the eigenvalue k. This set determines
uniquely the canonical set

w
(j)
0 (g), w(j)

1 (g), . . . , w(j)
M(j)−1(g), j = 1, 2, . . . , J

of the eigen and adjoined elements of the operator-function A(k) =
[A(k∗)]∗ (* signifies the conjugation procedure) associated with the
eigenvalue k∗. �

Numerical algorithms for solving spectral problems for open
compact resonators are grounded on the equivalent reformulation of
homogeneous boundary-value problems like (11), (13) to homogeneous
operator equations

A(k)[u(g, k)] = 0, k ∈ K, g ∈ Qa (15)

with infinite finite-meromorphic matrix-functions B(k) = A(k) − E :
l2 → l2 (E is a unitary matrix), generating a kernel operator or the
Koch matrix. In this case, the determinant det[A(k)] exists, and the
components k of the spectrum Ωk (eigenvalues or eigen frequencies) can
be determined with a given accuracy by reducing exact characteristic
equations

d(k) = det[A(k)] = 0, k ∈ K. (16)

The order of root k of scalar equation (16) determines the order
of the eigenvalue k of operator equation (15), in other words, the
value M = M(1) + M(2) + · · · + M(J), where J is the number of
linear-independent eigenfunctions u(j)

0 (g) (the number of distinctive
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free oscillations at the eigen frequency k), whileM(j)−1 is the number
of the adjoined functions u(j)

m (g) of the eigenfunction of number j.
The order of pole of the resolvent A−1(k) (and of the Green function
G̃(g, g0, k) of problem (11), (13)) is determined for k = k by the
maximal value of M(j).

In the course of the numerical experiments, problem (16) has been
divided according symmetry classes of free oscillations. We have not
detected the roots whose order is greater than 1 [17]. If the poles of
the resolvent A−1(k) are simple, the increase in the order means the
degeneracy of the eigen frequency k (one eigenvalue corresponds to a
few linear-independent free oscillations in an open resonator). As a
rule, this situation does not occur in the physical domain of variables,
however, two eigen frequencies (for example, k1 and k2) associated with
free oscillations of different types and of common symmetry class can
be close in the metric of the corresponding complex space. The free
oscillations begin to ‘interact’. As a result, their spectral characteristics
undergo considerable local (in the interaction area only) or global
changes (see, for example, [17, 21]).

All poles of the resolvent A−1(k) of problem (11), (13) are located
below the axis Im k = 0 on the first sheet Ck of the surface K (on the
plane C of the complex variable k with a cut along the negative part
of the axis Re k = 0). In a number of cases [14, 18], such as a resonator
bounded by a sufficiently smooth convex contour S with everywhere
positive and finite radius of curvature, the poles depart from the real
axis at least logarithmically with increasing |Re k|. By deforming the
contour of integration in formula (12) downward, we obtain:

U(g, t) =
1
2π

iα+∞∫
iα−∞

[
A−1(k)[f̃(g, k)]

]
e−iktdk

=
1
2π

iα+∞∫
iα−∞


∫

Q

G̃(g, g0, k)f̃(g0, k)dg0


 e−iktdk

=
1
i




∑
n

∫
Q

Res
k=kn

[
G̃(g, g0, k)f̃(g0, k)e−ikt

]
dg0

+
∑
m

∫
Q

Res
k=km:km �=0

[
G̃(g, g0, k)f̃(g0, k)e−ikt

]
dg0


 +R(g, t)

g ∈ Qb, t > 0. (17)
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Here Qb is some bounded subdomain of Q, G̃(g, g0, k) is the Green
function of problem (11), (13) (the kernel of the operator-function
A−1(k)), kn ∈ Ωk are the eigenvalues of the operator A(k) (the eigen
frequencies of an open compact resonator) located on the first sheet of
the surface K above some fixed line Im k = c < 0 and being indexed
such that Im kn+1 ≤ Im kn (their number is limited), km are the poles
of the function f̃(g, k) differing from the elements of the spectral set
Ωk (it is assumed that they are located in Ck above the line Im k = c).

Taking into account the evident equality ε̃(−k∗) = ε̃∗(k), the
following Statement can be proved [17].

Statement 5.

G̃(g, g0, k) = G̃(g0, g, k) = G̃∗(g, g0,−k∗). � (18)

With account of (18), rewrite (17) in the form

U(g, t) = 2Im




∑
n

∫
Q

Res
k=kn:Re kn>0

[
G̃(g, g0, k)f̃(g0, k)e−ikt

]
dg0

+
∑
m

∫
Q

Res
k=km:Re km>0

[
G̃(g, g0, k)f̃(g0, k)e−ikt

]
dg0


+R(g, t)

g ∈ Qb, t > 0. (19)

We have taken into consideration that f̃(g,−k∗) = f̃∗(g, k). This
relationship holds for practically all ‘current’ and ‘momentary’ sources
F (g, t) and ϕ(g), ψ(g) .

The term R(g, t) in (19) sums up the contributions of the
singularities of Ũ(g, k, f̃), k ∈ K, that are not swept when deforming
the contour of integration in (12). The estimate of R(g, t) in the
norm of the W 1

2(Qb)-space is determined exclusively by the behavior of
Ũ(g, k, f̃) as k → 0 [14]. Thus, for example, if f̃(g, k) = O(kp lnq k) (p
and q are whole), then ‖R(g, t)‖ ≤ const(f̃)[t−p−1 lnq−2 t].

In the case, where k do not depart from the real axis with
increasing |Re k|, formula (19) remains true. However, its proof calls
for the more detailed analysis of the behavior of Ũ(g, k, f̃) for large |k|
[14, 17, 18].
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6. A METHODOLOGY FOR ANALYSIS OF OPEN
RESONATORS

6.1. Preliminary Qualitative Analysis Based on Rigorous
Theoretical Results

Let us formulate several corollaries from (14), (18), (19). Suppose that
all poles k = k of the Green function G̃(g, g0, k) of the problem (11),
(13) are simple. Otherwise (if, for example, the point k = k, Re k > 0
is the second-order pole) the following term

2 Im
∫
Q

Res
k=k

[
G̃(g, g0, k)f̃(g0, k)e−ikt

]
dg0

= 2 Im


−ite−ikt

∫
Q

G−2(g, g0, k)f0(g0, k)dg0

+ e−ikt
∫
Q

[
G−2(g, g0, k)f1(g0, k)+G−1(g, g0, k)f0(g0, k)

]
dg0




in (19) with f̃(g, k) = ikε̃(g)ϕ(g) − ε(g)ψ(g) (an OR is excited by an
incoming pulsed wave) will grow faster for t < T than the conservation
law (2) admits. From here on, Gl(g, g0, η) and fl(g0, η) are the
coefficients of (k − η)l in the Laurent expansion about k = η of the
functions G̃(g, g0, k) and f̃(g0, k).

Without loss of generality it can be assumed that each eigenvalue
k corresponds to one eigen element u(1)

0 (g) = u(g, k) of the operator-
function A(k). The eigen element w(1)

0 (g) of the operator-function
A(k) (Statement 4) that corresponds to the eigenvalue k∗ is denoted
by w(g, k∗).

Under the above assumptions, the leading part ΞG̃ of the Green
function G̃(g, g0, k) (see (14)) in the vicinity of the eigenvalue k = k
takes the form

ΞG̃(g, g0, k) =
G−1(g, g0, k)
k − k

=
u(g, k)w∗(g0, k

∗)
k − k

, (20)

while for the eigen elements u and w we have from (18) and (20):

u(g, k) = w∗(g, k∗), u(g, k)w∗(g0, k
∗) = −u∗(g,−k∗)w(g0,−k). (21)
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Using (19)–(21), let us give the analytic representation of the solution
to problem (1) for some special cases:

A. The function f̃(g, k) is analytical in Ck. From (19) it follows:

U(g, t) ≈ 2 Im


 ∑

n:Re kn>0

u(g, kn)e−iknt
∫
Q

u(g0, kn)f̃(g0, kn)dg0




= 2
∑

n:Re kn>0

et Im kn

∣∣∣u(g, kn)
∣∣∣ ∣∣∣C(f̃ , kn)

∣∣∣
sin

[
arg u(g, kn) + argC(f̃ , kn) − tRe kn

]
. (22)

From here on g ∈ Qb, 0 < T1 < t < T (T is sufficiently great, while T1

is dictated by the experimental conditions) and

C(f, k) =
∫
Q

u(g0, k)f(g0, k)dg0. (23)

In the near-field zone of a compact OR, the field U(g, t) represents
a superposition of free oscillations (FO) with complex-valued eigen
frequencies k. The rate of damping for each FO is determined by the
value of | Im k| (by the Q-factor Q = Re k/2| Im k| of the oscillation
u(g, k)). The initial state (the excitation level) is determined by the
value C(f̃ , k), which accounts for a degree of matching of amplitude-
spatial and amplitude-frequency characteristics of the functions u(g, k)
and f̃(g, k).

B. The function f̃(g, k) possesses one simple pole at the point
k = k of the right half-plane of the sheet Ck that is not coincide with
the members k of the set Ωk. (Wherever a quantity of singularities is
concerned, the singularities from the right half-plane (Re k > 0) of the
sheet Ck are thought of.) From (19) it follows:

U(g, t) ≈ 2 Im




∑
n:Re kn>0

u(g, kn)e−iknt
∫
Q

u(g0, kn)f̃(g0, kn)dg0

+ e−ikt
∫
Q

G̃(g, g0, k)f−1(g0, k)dg0




= 2




∑
n:Re kn>0

et Im kn

∣∣∣u(g, kn)
∣∣∣ ∣∣∣C(f̃ , kn)

∣∣∣
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sin
[
arg u(g, kn) + argC(f̃ , kn) − tRe kn

]

+et Im k
∣∣∣Ũ(g, k, f−1)

∣∣∣ sin [
arg Ũ(g, k, f−1) − tRe k

] }
. (24)

Here the term is added, which represents the field oscillating with a
frequency Re k. Its spatial configuration is determined by the solution
Ũ(g, k, f−1) of the elliptical problem A(k)[Ũ(g, k, f−1)] = f−1(g, k),
while its amplitude decreases as exp(t Im k). With Im k = 0 and
sufficiently great t, this term will dominate in the field U(g, t): the
so-called ‘limiting amplitude principle’ is realized.

C. The function f̃(g, k) possesses one second-order pole at the
point k = k that is not coincide with the members k of the set Ωk.
In this case we have:

U(g, t) ≈ 2 Im




∑
n:Re kn>0

u(g, kn)e−iknt
∫
Q

u(g0, kn)f̃(g0, kn)dg0

−ite−ikt
∫
Q

G̃(g, g0, k)f−2(g0, k)dg0

+ e−ikt
∫
Q

[
G̃(g, g0, k)f−1(g0, k)+G1(g, g0, k)f−2(g0, k)

]
dg0




= 2




∑
n:Re kn>0

et Im kn

∣∣∣u(g, kn)
∣∣∣ ∣∣∣C(f̃ , kn)

∣∣∣
sin

[
arg u(g, kn) + argC(f̃ , kn) − tRe kn

]
−tet Im k

∣∣∣Ũ(g, k, f−2)
∣∣∣ cos

[
arg Ũ(g, k, f−2) − tRe k

]
+et Im k

∣∣∣Ũ(g, k, f−1) + Ũ1(g, k, f−2)
∣∣∣

sin
[
arg

[
Ũ(g, k, f−1) + Ũ1(g, k, f−2)

]
− tRe k

] }
. (25)

Here
Ũl(g, η, f) =

∫
Q

Gl(g, g0, η)f(g0, η)dg0.

With Im k = 0 and sufficiently large t, the contribution of free
oscillations associated with the complex eigen frequencies k into the
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field U(g, t) is negligible. The field oscillating with the frequency k = k
will dominate, whose spatial structure is determined by the solution
Ũ(g, k, f−2) of the elliptical problem A(k)[Ũ(g, k, f−2)] = f−2(g, k) and
whose amplitude grows proportionally with t.

D. The simple poles k = k and k = k of the functions f̃(g, k) and
G̃(g, g0, k) coincide (k = k). This yields that

U(g, t) ≈ 2 Im




∑
n:Re kn>0;kn �=k

u(g, kn)e−iknt
∫
Q

u(g0, kn)f̃(g0, kn)dg0

−ite−iktu(g, k)
∫
Q

u(g, k)f−1(g0, k)dg0

+e−iktu(g, k)
∫
Q

u(g0, k)f0(g0, k)dg0

+ e−ikt
∫
Q

G0(g, g0, k)f−1(g0, k)dg0




= 2




∑
n:Re kn>0;kn �=k

et Im kn

∣∣∣u(g, kn)
∣∣∣ ∣∣∣C(f̃ , kn)

∣∣∣
sin

[
arg u(g, kn) + argC(f̃ , kn) − tRe kn

]
−tetIm k

∣∣∣u(g, k)∣∣∣∣∣∣C(f−1, k)
∣∣∣ cos

[
arg u(g, k)+argC(f−1, k)−tRe k

]
+et Im k

∣∣∣u(g, k)∣∣∣ ∣∣∣C(f0, k)
∣∣∣ sin [

argu(g, k) + argC(f0, kn)−tRe k
]

+et Im k
∣∣∣Ũ0(g, k, f−1)

∣∣∣ sin [
arg Ũ0(g, k, f−1) − tRe k

] }
. (26)

The overlapping of the singularities of the Green function of
problem (11), (13) and of the source function f̃(g, k) results in a
prevalence of the corresponding free oscillation in U(g, t). It depends
on the values | Im k| and |C(f−1, k)| how long the field

W (g, t) = −2tet Im k
∣∣∣u(g, k)∣∣∣ ∣∣∣C(f−1, k)

∣∣∣
cos

[
arg u(g, k) + argC(f−1, k) − tRe k

]
(27)

will remain dominant.
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E. The simple poles k and k of the functions G̃(g, g0, k) and f̃(g, k)
do not coincide being closely spaced (|k − k| � 1). In this case,

U(g, t) ≈ 2




∑
n:Re kn>0;kn �=k

et Im kn

∣∣∣u(g, kn)
∣∣∣ ∣∣∣C(f̃ , k)

∣∣∣
sin

[
arg u(g, kn) + argC(f̃ , kn) − tRe kn

]

− Im


ite−iktu(g, k)

∫
Q

u(g0, k)f−1(g0, k)dg0

−e−iktu(g, k)
∫
Q

u(g0, k)f0(g0, k)dg0

− e−ikt
∫
Q

G0(g, g0, k)f−1(g0, k)dg0





+O

(
t2|k − k|

)
. (28)

Representations (26) and (28) are almost identical. The only
distinction is that the excitation level both of the dominating
component

W (g, t) = −2tet Im kRe


e−it Re ku(g, k)

∫
Q

u(g0, k)f−1(g0, k)dg0


 (29)

and of the background components oscillating with the frequencies
Re k and Re k is determined somewhat differently than in the above-
mentioned situations.

6.2. Selection of Sources in Numerical Experiments

In numerical experiments, where the amplitude centers k of the exciting
signals do not coincide exactly with the eigen frequencies k and the
observation interval [0, T ] is not too long, the contributions of the
quasi-monochromatic components into the field U(g, t) are mostly
commensurable. Consequently, the further analysis calls for variation
of the source function F (g, t) in such a way that a particular oscillation
dominates against the background of the remaining ones.

Consider the situation described by (22). For an oscillation
with the eigen frequency k to be isolated from free oscillations of
comparable Q-factor, we need only to take the source f̃(g, k) such
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that |C(f̃ , k)| � |C(f̃ , kn)|, kn �= k. Formula (23) determines the
requirements for the function f̃(g, k):

• f̃(g, k) as a function of k must have in the frequency range
under study a single and sufficiently sharp amplitude center in
the vicinity of the point k = k;

• f̃(g, k) as an element of the L2(Qb)-space must be as ‘parallel’ to
the element of the same space w(g, k∗) = u∗(g, k) as possible.

Both of these requirements are easily satisfiable when f̃(g, k) ↔ F (g, t)
and some a priori information on a spatial structure of u(g, k) is
available.

The choice of the source parameters is illustrated by the following
example. In Fig. 2 the results of numerical experiments with

F (g, t) = 10χ[3.5 − |y|]χ[1.5 − |z + 1|] cos
(
β1k̃y + β2

)
cos

(
β3k̃z + β4

)
× exp

[
−(t−T̃ )2/4α̃2

]
cos[k̃(t−T̃ )]χ(t− T )=P1(g)F1(t), (30)

are presented. This source function has seven free parameters (k̃, α̃, T̃ ,
and βj , j = 1, . . . , 4). The parameter k̃ specifies an amplitude center
of the primary signal in the spectral domain (Fig. 2a), namely, the
point at which an absolute value of the function

Ũprim(g, k, f̃) =
T∫

0

Uprim(g, t)eiktdt↔
{
Uprim(g, t), t ≤ T
0, t > T

(31)

is maximal. Here Uprim(g, t) represents the field generated by F (g, t)
in free space. Together with α̃, it determines a range [k̃− b/α̃; k̃+ b/α̃]
of real frequencies k, where the normilized spectral amplitudes of
Uprim(g, t) (|Ũprim(g, k, f̃)|/|Ũprim(g, k̃, f̃)|) do not exceed γ. On the
t-axis, the value |Uprim(g, t)|/|Uprim(g, T̃ )| does not exceed γ out of the
range T̃ − cα̃ ≤ t ≤ T̃ + cα̃ occupied by the signal Uprim(g, t). In
Table 1 we give approximate values of b and c obtained [11] from the
well-known analytical representations for some fixed γ.

Parameters βj allows one to excite the oscillation of a given
symmetry class.

The source parameters obviously depend on whether range
characteristics or separate oscillations of an OR are of interest. When
studying an OR in a frequency range (Fig. 2b), k̃ is made to agree with
the range center, while α̃ is chosen such that the level of the normalized
spectral amplitudes of Uprim(g, t) (of the function f̃(g, k)) is not too low
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Figure 2. Temporal and spectral characteristics of the source (30) at
g = {0, 0} (a) and of the confocal resonator (36) at g = {0.2, 0.2} (b);
k̃ = 4.2, α̃ = 1, T̃ = 6, β1 = 1, β2 = π/4, β3 = β4 = 0, T = 150.
(c) H12,1-oscillation in the OR (34). The spatial field distribution and
the field amplitude at g = {0.5,−1}; k̃ = 4.33, α̃ = 20, T̃ = 60, β1 =
1, β2 = π/4, β3 = β4 = 0, T = 300.

(> 0.5 is desirable). To reduce the calculating time, the left boundary
of the interval T̃ − cα̃ ≤ t ≤ T̃ + cα̃ is placed at t = 0. In order to
conserve the desired spectral characteristics of the source, the value of
|Uprim(g, 0)| must be negligible (0.001 ≤ γ ≤ 0.01). This requirement
along with α̃ determine the effective duration of the signal 0 ≤ t ≤ 2T̃ .
When studying the frequency characteristics, oscillations belonging to
a certain symmetry class are usually of interest. Therefore, the function
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Table 1. Approximate values of b and c ensuring a given signal
duration and frequency band.

γ = 0.001 γ = 0.01 γ = 0.1 γ = 0.5
b ≈ 2.63 2.14 1.52 0.83
c ≈ 5.25 4.29 3.04 1.66

f̃(g, k) must belong to the same symmetry class in its spatial structure
and ensure much the same magnitudes of the coefficients C(f̃ , k) (see
formula (23)). Then the study of spectral characteristics of an OR in
a frequency range reduces to the determination of the field U(g, t) at
a fixed point g ∈ QL as a function of t ∈ [0, T ] with a consequent
analysis of its transform Ũ(g, k, f̃) ↔ U(g, t) (the function U(g, t) is
assumed zero outside of the interval t ∈ [0, T ]).

In the study of separate oscillations u(g, k) (Fig. 2c), the interval
[k̃ − b/α̃; k̃ + b/α̃] (k̃ ≈ Re k) may not contain the resonance points
adjacent to Re k, while the spectral amplitudes of Uprim(g, t) must be
negligible at the ends of this interval. Clearly, this requirement can be
weakened by considering the classes of symmetry of the analyzed and
the adjacent oscillations.

The source

F (g, t) = P1(g)
sin[∆k(t− T̃ )]

(t− T̃ )
cos[k̃(t−T̃ )]χ(t−T ) = P1(g)F2(t) (32)

generates the signals Uprim(g, t) with a more suitable distribution of
spectral amplitudes as compared with (30) (Fig. 3). In the frequency
range [k̃−∆k; k̃+∆k], the absolute value of the function f̃2(k) ↔ F2(t)
remains practically constant, whereas outside of this interval we have
|f̃2(k)| ≈ 0 for all k > 0.

The chief drawback of the sources (30) and (32) is the lack of
information on the singularities of the function f̃(g, k) in the lower
half-plane of the sheet Ck. The presence of poles k, their orders and
location can be inferred only indirectly by the behavior of the function
f̃(g, k) in the domain of real frequencies k. To tune more precisely for
a certain singular point k, one can use, for example [22], the sources
F (g, t) with the time function like

F3(t) =
1

Re k
et Im k sin(tRe k) ↔ f̃3(k) = − 1

(k − k)(k + k∗)
. (33)
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Figure 3. The characteristics of the source given by (32): k̃ =
4.2, ∆k = 1, T = 200, T̃ = 50 (a) and T̃ = 100 (b).

6.3. Analysis of the Results

In Fig. 2c the source (30) separates the H12,1-oscillation from the
spectrum of the following OR:

σ(g) = 2.19 · 108χ[5 − |y|]
{
χ[4 − |z|]χ

[
z2 + (y − 4.5)2 − 92

]
+ χ [4 − |z +D|]χ

[
(z +D)2 + (y + 4.5)2 − 92

]}
. (34)

Formula (34) describes the confocal copper resonator whose reflectors
are shifted relative to each other by D = 2.0. All dimensions are given
in centimeters. The subscripts m and n in the oscillation descriptor
Hm,n indicate the number of semi-variations of the field along y-
axis and z-axis, respectively. The source is practically ‘turned-off’
at t = 2T̃ = 120, and hence, for τ = t− 2T̃ > 0 we have from (22)

U(g, t) ≈ U(τ) = A exp(τ Im k) cos(τ Re k + a) (35)

for every fixed point g ∈ Qb. By comparing (35) with U(g, t) plotted
in Fig. 2c, we obtain the following estimates: Re k ≈ k̃ = 4.33, Im k ≈
−0.0034, A ≈ 37, and a ≈ 0.79.
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In the simple case considered above, it has been possible to
minimize the contribution of other free oscillations into the field U(g, t)
due to the absence of other eigen frequencies adjacent to k. The
analysis becomes more complicated if two eigen frequencies k1 and
k2 are close to an extent that none of them can be separated even
with a considerable bandwidth reduction of the signal Uprim(g, t) in
the spectral domain.

To illustrate this situation, consider (Fig. 4) the following confocal
resonator

σ(g) = 2.19 · 108χ[5 − |y|]χ[4 − |z|]χ
[
z2 + (|y| + 4.5)2 − 92

]
(36)

excited by the source (30) with k̃ = 4.235, α̃ = 50, T̃ = 150, β1 =
1, β2 = 0.785, β3 = β4 = 0, and T = 2500. The spectral characteristics
of the source as well as its spatial configuration are such that during
the observation period two oscillation modes H12,1 with Re k1 ≈ 4.2212
and H11,3 with Re k2 ≈ 4.239 dominate concurrently in the field U(g, t)
(Fig. 4a). In Fig. 4b the function U(g, t) at the point g = {0.82, 0.0}
is plotted for τ = t− 2T̃ > 0.

(a)

(b)

Figure 4. To the analysis of free oscillations with close eigen
frequencies k1 and k2.
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From (22) we obtain

U(g, t) ≈ U(τ) = U1(τ) + U2(τ)
= A exp(τ Im k1) cos(τ Re k1)

+B exp(τ Im k2) cos(τ Re k2 + b), τ > 0. (37)

By introducing the notation Γ0(τ) = cos[τ(Re k2 − Re k1) + b] we can
verify (see a model example in Fig. 4c with Re k1 = 5.1, Re k2 =
5.2, A = 0.9, Im k1 = −0.002, B = −6.0, Im k2 = −0.005, b = 0.8)
that:

• the curves
Γ±

1 (τ) = ±
[
|A| exp(τ Im k1) − |B| exp(τ Im k2)

]
and

Γ±
2 (τ) = ±

[
|A| exp(τ Im k1) + |B| exp(τ Im k2)

]
represent ‘global inner’ and ‘global outer’ envelopes of U(τ);

• for A > 0, B > 0 at the points of contact of U(τ) and Γ±
2 (τ) we

have:
Γ0(τ) = 1 and cos(τ Re k1) = cos(τ Re k2 + b) = ±1,
while at the points of contact of U(τ) and Γ±

1 (τ) we have:
Γ0(τ) = −1 and cos(τ Re k1) = − cos(τ Re k2 + b) = ±1;

• for A < 0, B < 0 at the points of contact of U(τ) and Γ±
2 (τ) we

have:
Γ0(τ) = 1 and cos(τ Re k1) = cos(τ Re k2 + b) = ∓1,
while at the points of contact of U(τ) and Γ±

1 (τ) we have:
Γ0(τ) = −1 and cos(τ Re k1) = − cos(τ Re k2 + b) = ∓1,

• for A > 0, B < 0 at the points of contact of U(τ) and Γ±
1 (τ) we

have:
Γ0(τ) = 1 and cos(τ Re k1) = cos(τ Re k2 + b) = ±1,
while at the points of contact of U(τ) and Γ±

2 (τ) we have:
Γ0(τ) = −1 and cos(τ Re k1) = − cos(τ Re k2 + b) = ±1;

• for A < 0, B > 0 at the points of contact of U(τ) and Γ±
1 (τ) we

have:
Γ0(τ) = 1 and cos(τ Re k1) = cos(τ Re k2 + b) = ∓1,
while at the points of contact of U(τ) and Γ±

2 (τ) we have:
Γ0(τ) = −1 and cos(τ Re k1) = − cos(τ Re k2 + b) = ∓1.

The above facts allow one to determine uniquely basic parameters
of free oscillations possessing close eigen frequencies k1 and k2 from
the behavior of the function U(τ) ≈ U(g, t) for τ > 0. Thus, for
example, for the case presented in Fig. 4a,b, we obtain: Re k2−Re k1 ≈
0.0178, A ≈ 3.5, Im k1 ≈ −0.0005, B ≈ 18.5, Im k2 ≈ −0.00105, b ≈
2.91.
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7. CONCLUSION

Until recently, it was customary to analyze spectral problems of the
theory of OR in the context of FD methods. In the present work, the
methodology has been developed for applying TD algorithms to the
problems of this kind. This enables the range of rigorously solvable
fundamental and applied problems to be considerably extended,
since the TD methods operate on practically arbitrary geometry
of electrodynamic objects allowing inclusion of any kind of metal-
dielectric, magnetic, or plasma inhomogeneities. At the same time,
the boundary conditions truncating the computation domain are exact,
and hence, they do not distort the simulated processes.

The analytical and methodological results together with the
associated software have made possible the detailed and reliable
physical analysis of transient and steady-state processes in such open
structures that are used in solid-state and vacuum electronics, resonant
quasi-optics, and resonant antennas. The relevant results are to be
presented in future papers.

APPENDIX A. TABLE OF SYMBOLS

• Rn and G ⊂ Rn – the n-dimensional Euclidean space and the
domain G in it.

• Ln(G) – the space of the functions f(g), g ∈ G, such that a
function |f(g)|n is integrable in G.

• W l
m(G) – the set of all elements f(g) from Lm(G) that have

generalized derivatives up to the order of l inclusive belonging to
Lm(G).

• Ẇ
1
2(G) – the subspace in W 1

2(G) such that D(G) is a dense set.
• D(G) – the set of finite infinitely differentiable in G functions.
• L2,1(GT ) – the space composed of all elements f(g, t) ∈ L1(GT )

with a finite norm ‖f‖ =
T∫

0


∫

G

|f |2dg



1/2

dt.

• W 1
2,0(Q

T ) – the subspace in W 1
2(G

T ) such that the smooth
functions belonging to this subspace and going to zero in the
vicinity of P T = P × (0, T ) form a dense set (P is the boundary
of G).

• l2 – the space of infinite sequences

{
a = {an} :

∑
n

|an|2 <∞
}

.
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• χ[f1(g)]χ[f2(g)] · · ·χ[fm(g)] – the generalized step-function such
that it is equal to unity in the intersection G of the sets Gj =
{g ∈ Rn : fj(g) ≥ 0}, j = 1, 2, . . . ,m and it is equal to zero in
Rn\G.
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